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Abstract: Vitamin D (25OHD) pleiotropic effects are widely recognized and studied. Recently,
vitamin D cardiovascular effects are gaining interest, especially in children, although the studies
present conflicting data. Some randomized controlled trials (RCTs) have demonstrated that
cardiovascular risk markers, such as lipid parameters, inflammation markers, blood pressure,
and arterial stiffness, are unaffected by vitamin D supplementation. By contrast, other studies
show that low vitamin D levels are associated with higher risk of cardiovascular disease (CVD) and
mortality, and support that increased risk of these diseases occurs primarily in people with vitamin D
deficiency. An update on these points in pediatric patients is certainly of interest to focus on possible
benefits of its supplementation.
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1. Introduction

Epidemiological studies have found a significant inverse association between serum vitamin
D (25OHD) levels and cardiac injury or hypertension. In vitro, vitamin D appears to suppress the
intracellular NF-κB pathway and renin synthesis attenuating the progression of coronary artery
disease [1]. This could be related to an inflammation increase due to vitamin D deficiency [2].
However, vitamin D supplementation did not clearly show cardiovascular improvements in adults
and children/adolescents.

This review provides a summary of the actual knowledge of the role of vitamin D in cardiovascular
disease (CVD) according to its pathophysiological aspects. Moreover, we discuss whether vitamin
D supplementation may influence cardiovascular risk markers with its anti-inflammatory function.
We included in this review only English language studies meeting these criteria: participants were
children or adolescent; measured endpoints were blood pressure, lipid profile, pulse wave velocity,
and CVD events. Only papers published from 1 January 2015 and 31 March 2020 were considered.

2. Vitamin D and the Cardiovascular Tissue: Pathophysiological Effects

Vitamin D is a group of fat-soluble hormones [3,4]. Two main forms exist in nature: ergosterol
(provitamin D2) and 7-dehydrocholesterol (provitamin D3). The first is a steroid found primarily in
fungi and plants, the latter is of animal origin and is produced in the skin by ultraviolet (UV) B radiation.
Hence, vitamins D2 and D3 are available to human body coming from different sources: ambient UV
exposure (vitamin D3), dietary intakes of vitamin D3-rich foods (egg yolks and oily fish), fortified foods
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(margarine and breakfast cereals, generally vitamin D2 fortification) and vitamin supplements [5].
Ultraviolet B radiation activates both provitamins to ergocalciferol and cholecalciferol, respectively [5].
Season, latitude, melanin, and sunscreen are factors strictly connected with the production.

Vitamin D is transported to the liver by vitamin D binding protein (VDBP), where it is hydroxylated
to 25-hydroxyvitamin D (25OHD), the major circulating form and the most reliable biomarker of
the vitaminic status. Afterwards, VDBP transports 25OHD to the kidneys, where it is filtered by
the glomerulus and uptaken in the tubular cells. In the kidney the enzyme 1-alpha hydroxylase
(Cytochrome P450 27B1, CYP27B1) transforms again 25OHD into its active form, 1,25-dihydroxyvitamin
[calcitriol, 1,25(OH)2D]. This form of vitamin D is also produced in other tissues due to the expression
of CYP27B1: bowel cells, vascular smooth muscle cells, B lymphocytes, monocytes, dendritic cells,
and other ones [6]; in these sites calcitriol seems to have paracrine-autocrine effect to regulate cell
growth and differentiation [7]. From kidney, 1,25(OH)2D reaches cells in target organs through
bloodstream bound to VDBP, then it passes through cellular membranes and, after binding cytosolic
receptor (vitamin D receptor, VDR), it enters the nucleus and activates gene expression. Vitamin D
receptor is a transcription factor regulating the expression of genes. It is a member of a large family
of nuclear hormone receptors and it is not restricted to those tissues considered the classic target of
vitamin D. The VDR-1,25(OH)2D complex heterodimerizes with other nuclear hormone receptors
and binds to special DNA sequences called vitamin D response elements (VDREs) [4]. Thousands of
VDREs in hundreds of genes have been described so far [8]. Therefore, this could explain the potential
responsibility of vitamin D in the development of diabetes, cancers, autoimmune disorders, kidney
disease, and other neurodegenerative disease [3].

From the mid-1980s it became clear that some of the actions of vitamin D were too rapid to be
accounted for changes at the genomic level [9]. In the last decades, studies recognised that 1,25(OH)2D
also exerts non-genomic actions, involving the activation of signaling molecules, such as phospholipase
C and phospholipase A2, phosphatidylinositol-3 kinase and p21ras, and the rapid generation of second
messengers (Ca2+, cyclic AMP, fatty acids, and phosphatidylinositol-3,4,5-trisphosphate), accompanied
by the activation of protein kinases [9]. The non-genomic actions also include the opening of Ca2+ and
Cl- channels [10].

Vitamin D exerts many effects on calcium-phosphorus metabolism and has more extra-skeletal
function, although some molecular mechanisms remain still unclear [11]. In recent years, it has
become increasingly evident that 1,25(OH)2D regulates multiple cellular processes with effects on cell
growth and differentiation, on the innate and adaptive immune function, and, getting to the point,
on cardiovascular functionality [12].

The mechanisms by which vitamin D exerts its cardio and vasculoprotective effects are not fully
understood yet. We stress the main pathways involved below (Figure 1).

Modulation of inflammation—Vitamin D is known to be a powerful modulator of inflammation
through different mechanisms. As mentioned above, vitamin D has been reported to inhibit NF-κB
activity [13–15]: this inhibition has been shown to attenuate the development of cardiovascular
complications and to induce cardio-protective effect [16,17]. Derakhshanian et al. [18] have reported
that vitamin D could significantly decrease NF-kB activity in cardiomyocytes of diabetic rats, showing
the potential key role of the vitamin in the cardiovascular health of people with diabetes. In addition,
Al-Rasheed et al. [19] have demonstrated that the administration of cholecalciferol markedly attenuated
the development of induced cardiac hypertrophy in mice probably through these signaling pathways.

Furthermore, vitamin D regulates the levels of cytokines including interleukins (IL-6, IL-8, IL-17A,
IL-10) and TGF-β [20]. In addition, it inhibits the prostaglandins pathway via reducing their receptors,
decreasing COX-2 expression and increasing 15-PGDH expression. Lastly, vitamin D inhibits the
immune cells via VDR including macrophages, dendritic cells, B cells, and T cells [20]. These effects
of 25OHD can contribute to the inhibition of various inflammatory mediated processes such as
atherosclerosis, myocardial infarction and blood clot formation [21]. Vitamin D deficiency may also
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accelerate atherosclerosis through activation of endoplasmic reticulum stress of macrophages within
the atherosclerotic plaque [22].

Regulation of renin-angiotensin-aldosterone system (RAAS)—RAAS is an important contributor to
changes in arterial and cardiac stiffness, leading to hypertension and clinical heart failure [23]. In animal
experiments, vitamin D was found to be a potent endocrine suppressor of renin biosynthesis: VDR -/-
mice had elevated production of renin and angiotensin II, causing hypertension, cardiac hypertrophy,
and increased water intake [24,25]. Chandel et al. [26] analyzed how VDR modulates the RAAS activity
finding that vitamin D receptor deficit induces its activation through SIRT1/PPAR-c/VDR signaling
in podocytes. Zittermann et al. [27] evaluated the effect of three years of vitamin D supplementation
(4000 IU daily) on parameters of the RAAS (renin and aldosterone) in 165 patients with advanced heart
failure, with a not significant change in RAAS parameters; nevertheless, the study showed an increase
in serum renin concentrations in the subgroup with low baseline 25OHD levels.

Regulation of parathormone (PTH)—Vitamin D inhibits production of PTH through a feedback mechanism.
Chronic vitamin D deficiency reduces intestinal calcium absorption and bone calcium mobilization leading
to overproduction of parathyroid hormone. PTH may cause left ventricular hypertrophy (LVH), valvular
calcification, myocardial calcification, cardiac arrhythmia, and arterial hypertension [28–31]. Some of these
effects involve the activation of renin-angiotensin-aldosterone system [32].

Regulation of cardiac myocyte proliferation and hypertrophy—Vitamin D induces hypertrophy in
immature and mature cardiac myocytes and inhibits proliferation blocking entry into the S phase of
the cell cycle [33]. Lower 25OHD levels are associated with left ventricle hypertrophy [34,35].

Regulation of vascular smooth muscle—in vitro, studies support that 25OHD regulates endothelial
cells proliferation and hypertrophy via different pathways: the release of vascular endothelial growth
factor (VEGF) [36,37]; the modulation of tissue factor and protease-activated receptor 2 expression [38];
the activation of phosphatidylinositol 3-kinase [39]; the suppression of lipopolysaccharide-induced
inflammatory response in vascular smooth muscle cells (VSMCs) via inhibition of the p38 MAPK
signaling pathway [40]; the inhibition of VSMC proliferation through a Cdc25A-dependent (cell division
cycle 25 homolog A) mechanism [41]. Moreover, vitamin D enhances endothelial cell-derived vascular
vasodilatation [42]. Lastly, Torremadé et al. [43] have shown that vascular calcification in chronic kidney
disease is mediated by an increase of 1alpha-hydroxylase expression in vascular smooth muscle cells.
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3. Vitamin D Deficiency and Cardiovascular Risk Factors

Over the years, several observational studies in adults have found an association between low
vitamin D levels and higher blood pressure levels, myocardial infarction, heart failure, coronary heart
disease, peripheral arterial disease, and atherosclerosis [21,44,45].

Cardiovascular diseases represent a major cause of death and disability worldwide and affect
a large portion of adults past the age of 60 years. Although overt disease in youth is rare, atherosclerotic
process can begin early in childhood [46].

Clinical events such as myocardial infarction, stroke, peripheral arterial disease, and ruptured
aortic aneurysm are the culmination of the lifelong vascular process of atherosclerosis. Pathologically,
the process begins with the accumulation of abnormal lipids in the vascular intima, a reversible stage.
It progresses to an advanced stage in which a core of extracellular lipid is covered by a fibromuscular
cap, and culminates in thrombosis, vascular rupture, or acute ischemic syndromes.

In most of the pediatric population, atherosclerotic vascular changes are mild and can be minimized
or even prevented through a healthy lifestyle. However, in some children, the process is accelerated
due to the presence of identifiable cardiovascular risk factors such as dyslipidemia, hypertension,
hyperglycemia, and obesity. All these conditions are considered as part of the metabolic syndrome [47],
a condition of insulin resistance that predisposes to the development of cardiovascular diseases and
type 2 diabetes mellitus. There are several definitions for metabolic syndrome; however, the clinical
implication of such diagnosis is the identification of patients who need lifestyle interventions focused
on increased physical activity and weight reduction.

The prevalence of overweight and obesity in childhood and adolescence is steadily rising
worldwide. Approximately one-third of children and adolescents in the United States are either
overweight or obese [48]. This condition is due to both poor diet and a sedentary lifestyle [47].

Many recent studies have investigated the association between vitamin D deficiency and
cardiovascular risk factors in overweight and obese children [49–53]. Some studies found a higher
prevalence of dyslipidemia in vitamin D deficiency obese subjects compared to subjects with vitamin
D sufficiency [50–52]. For example, Censani et al. [50] found that overweight and obese children
with 25OHD deficiency (<20 ng/mL) had significantly higher non-High Density Lipoprotein (HDL)
cholesterol (p < 0.03), total cholesterol (TC; p < 0.01), triglycerides (TG; p < 0.03), Low Density
Lipoprotein (LDL) levels (p < 0.03), TG/HDL ratio (p = 0.03), and TC/HDL ratio (p < 0.01) than children
with 25OHD ≥20 ng/mL. Iqbal et al. [51] examined a population of 376 children with severe obesity:
c-HDL resulted lower in children with 25OHD < 30 ng/mL compared to those with 25OHD ≥30 ng/mL
(p < 0.0001). No other correlations between TC and non-HDL cholesterol and 25OHD levels were found.
Lee et al. [52] showed that lipid levels (total cholesterol, non-HDL cholesterol) and oxidized LDL
levels were significantly inversely associated with 25OHD concentration in a population of 209 obese
American children.

In contrast to before mentioned studies, Colak et al. [49] reported no relationship between vitamin
D deficiency and dyslipidemia or abnormal glucose homeostasis. On the other hand, they showed that
serum 25OHD levels were negatively associated with 24-h ambulatory blood pressure and carotid
intima-media thickness (p < 0.05). Similarly, Kao et al. [53] detected that lower serum 25OHD levels
were associated with higher systolic (p = 0.03) and diastolic (p = 0.009) blood pressures, even after
adjustment for BMI.

We must consider that obesity itself is associated to elevated cardiovascular risk factors and
metabolic syndrome [47], and that 25OHD deficiency has a very high prevalence in obese subjects [49–52].
Indeed, obese individuals are sedentary, little exposed to sunlight and with poor diets, leading to lower
vitamin D levels. In addition, vitamin D seems to be stored in adipose tissue [54].

In order to exclude the confounding factor due to body weight, Petersen et al. [55] considered the
impact of fat mass and physical activity on the association between 25OHD levels and cardiometabolic
markers. They found that each 10 mmol/L 25OHD increase was associated with lower diastolic
blood pressure (p = 0.02), TC, c-LDL, TG (p ≤ 0.001 for all lipids), and lower metabolic syndrome
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score (p = 0.01). They observed that adjustment for fat mass index did not change the associations.
Kim et al. [56] also studied a population of non-obese children and found higher TG levels and
TG/c-HDL ratio in the vitamin D-deficient group (<20 ng/mL) than in the normal group (p = 0.03).
Moreover, the vitamin D level was significantly inversely associated with TG level and TG/c-HDL
(p < 0.001). Liang et al. [57] found a serum 25OHD level significantly lower in hypertensive subjects
compared to controls (p = 0.02). In addition, they evaluated the level of 25OHD receptor that turned
out to be lower in hypertensive children (p = 0.003).

This seems to support the hypothesis that vitamin D level may affect the lipid profile, regardless
of fat mass.

Conversely, Baker et al. [58], evaluating a population of lean and active young adults aged
18–24 years from rural India, did not find a clear association between serum vitamin D levels and
CVD risk factors, including blood pressures, arterial stiffness, carotid intima-media thickness fasting
lipids, glucose, and insulin. They concluded that a vitamin D insufficiency may be considered a marker
of unhealthy lifestyle (such as physical inactivity and obesity) rather than being causally related to
cardiovascular disease risk.

Interestingly, some studies hypothesize that 25OHD may play a role in prenatal life in modifying
CV risk through mechanisms still unknown [59,60].

For example, Arman et al. [59] focused on a population of 135 term healthy infants. They analyzed
vitamin D values at birth and performed ultrasound measurements at 24–48 h after birth. Significant
lower mean and maximum aortic intima-media thickness (IMT) measurements were found in children
with 25OHD sufficiency. IMT value is a good predictor of increased risk of cardiovascular disease and
atherosclerosis [61,62]

Sauder et al. [60] measured total and bioavailable 25OHD in cord blood and in blood from 4-
to 6-year-old children. They then assessed cardiovascular risk factors (blood pressure, arterial stiffness,
body size, and adiposity) at 4 to 6 years. They observed significant inverse associations of 25OHD cord
blood levels with childhood systolic (p < 0.01) and diastolic (p = 0.01) blood pressure.

Wang et al. [63] analyzed the association between systolic blood pression (SBP) and 25OHD
levels (measured both in cord blood and in early childhood) in a prospective birth cohort study of
775 children. Low vitamin D status at birth and a vitamin D insufficiency in early childhood were
associated with elevated SBP at ages 3 to 18 years.

Therefore, low vitamin D status appears a risk factor for hypertension also in pediatric age. It is
possible that a vitamin D insufficiency in early life may modify fetal development and influence arterial
structure and metabolic processes.

However, Miliku et al. [64] did not observe an association between vitamin D and childhood
cardiovascular risk factors evaluating a cohort of 4903 mothers and their offspring.

Table 1 shows the main significant studies on vitamin D deficiency and cardiovascular risk factors
in pediatric age.

The biological mechanisms underlying these results are still not clear. We can suppose that,
as stated above, a vitamin D deficiency increase inflammation in the body activating different pathways,
which might lead to cardiac hypertrophy and increased CVD risk. To support this, in a condition as
Kawasaki syndrome, the most common cause of acquired heart disease in children, low 25OHD serum
concentrations were found in the subgroup who developed coronary artery abnormalities, suggesting
how vitamin D might have a contributive role in the development of coronary artery complications [65].
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Table 1. Reviewed studies on Vitamin D deficiency and cardiovascular risk factors in pediatric age. cIMT: carotid intima-media thickness; BMI-z: BMI-for-age z-score;
RAR: Retinoic Acid Receptor; RXR: Retinoid X Receptors; aIMT: aortic intima media thickness.

Study Participants Vitamin D Deficiency
Cut-Off

25OHD
Mean Levels Endpoint Results

Colak R et al. 2020 [49]

40 obese children
(7–14 years)
30 controls

(7–14 years)

Deficiency: ≤ 20 ng/mL
25OHD levels

Obese children 16.4 ng/mL
Lean children 19.6 ng/mL

Vitamin D levels and lipid profile,
fasting glucose and blood pressure
Vitamin D levels and ultrasound

imaging (cIMT and left ventricular
wall thickness)

25OHD concentrations were negatively
correlated with 24-h ambulatory blood

pressure and cIMT (p <0.05)
No associations between 25OHD

values and fasting plasma glucose,
HOMA-IR or lipid profile were present

Censani M et al. 2018 [50]
178 overweight and

obese children
(6–17 years)

Deficiency: ≤ 20 ng/mL
25OHD levels 20.7 ± 9.2 ng/mL Vitamin D levels and lipid profile

Patients with 25OHD < 20 ng/mL had
significantly higher non-HDL

cholesterol, TC, TG and LDL levels (p ≤
0.03) and a significantly higher

TG/HDL and TC/HDL ratios (p ≤ 0.03)

Iqbal AM et al. 2017 [51] 376 obese children
(2–18 years)

Deficiency: ≤ 20 ng/mL
25OHD levels

Sufficiency: > 30 ng/mL
25OHD levels

25.2 ± 10.10 ng/mL Vitamin D levels and lipid profile

25OHD values were negatively
associated with BMI z-score (p = 0.004)

and were positively correlated with
c-HDL also after adjustment for age,

sex, BMI metric and season of
blood draw

Lee M et al. 2016 [52]
209 overweight or

obese children
(6–18 years)

Deficiency: ≤ 20 ng/mL
25OHD levels 20.3 ± 6.4 ng/mL Vitamin D levels and lipid profile

A 10 mg/dl increase in TC and
oxidated-LDL was associated

respectively with a 1,3% and 0,8%
decrease in 25OHD concentrations

Petersen R et al. 2015 [55] 782 children
(8–11 years)

Deficiency: ≤ 25 nmol/L
25OHD levels 60.8 ± 18.7 nmol/L

Vitamin D levels and glucose
concentration, lipid profile, insulin,

blood pressure and heart rate
weighted for fat mass index

Serum 25OHD was negatively
associated with diastolic blood

pressure, total and c-LDL, TG and
lower metabolic syndrome score, also

after adjustment for fat mass index

Kim MR et al. 2019 [56]
243 non-obese healthy

volunteers
(9–18 years)

Deficiency: ≤ 20 ng/mL
25OHD levels 17.27 ± 6.89 ng/mL Vitamin D levels and lipid profile

Vitamin D levels significantly inversely
associated with TG level and
TG/c-HDL ratio (p < 0.001)
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Table 1. Cont.

Study Participants Vitamin D Deficiency
Cut-Off

25OHD
Mean Levels Endpoint Results

Liang X et al. 2018 [57]

164 children
(6–12 years)

Hypertensive vs
control subjects

Deficiency: <50 ng/mL
25OHD levels

38.22 ± 12 nmol/L in
hypertension group

43.28 ± 12.3 nmol/L in
control group

Vitamin D levels and blood
pressure, the transcription level of
RARs and RXRs, 25OHD receptor

Serum 25OHD in children with
hypertension was lower than that in

the control group (p = 0.02).
Serum 25OHD and 25OHD receptor
were significantly associated with

blood pressure level, and both
breastfed and c-HDL were

independent protective factors of blood
pressure level

Arman D et al. 2019 [59] 135 term healthy neonates

Deficiency: ≤ 20 ng/mL
25OHD levels

Sufficiency: > 30 ng/mL
25OHD levels

15.17 ± 9.66 ng/mL Vitamin D levels and aIMT
and cIMT

Neonates with vitamin D sufficiency
had a lower aIMT than the others

(p = 0.001)

Sauder KA et al. 2019 [60]

1410 birth cohort of
ethnically diverse

pregnant woman and
their offspring

715 children evaluated at
4 to 6 years old

Childhood:
55.8± 21.1 nmol/L

Vitamin D levels and CV risk
factors (blood pressure, arterial

stiffness, body size, and adiposity)

Higher vitamin D levels in cord blood
are associated with lower systolic and
diastolic blood pressure at 4 to 6 years
of age, regardless of childhood 25OHD

levels, race/ethnicity,
and other covariates

Wang G et al. 2019 [63]

Birth cohort study of 775
children, followed
prospectively up to

18 years

Deficiency:
< 11 ng/mL on cord blood

and < 25 ng/mL in early
childhood

25OHD levels

Birth: 13.5 ± 9.9 ng/mL
Childhood:

32.6 ± 10.8 ng/mL

Vitamin D levels and
blood pressure

Low vitamin D status at birth was
associated with higher risk of elevated

SBP at ages 3 to 18 years.
Low vitamin D status in early
childhood was associated with

a 1,59-fold higher risk of elevated SBP
at age 6 to 18 years

Miliku K et al. 2018 [64]

4903 mother-children
pairs

re-evaluated
at 6 years

Deficiency: <50 ng/mL
25OHD levels

Birth: 28.8 ± 9.9 nmol/L;
Childhood:

64 ± 10.8 nmol/L

Vitamin D levels and blood
pressure, lipid profile, BMI

25OHD concentrations were not
associated with cardiovascular

risk factors
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4. The Impact of Vitamin D Supplementation

The protective role of vitamin D for atherosclerosis and coronary arterial disease (CAD) has been
documented in swine and mice models. The beneficial role of its supplementation after myocardial infarction
has been showed in vitro studies [66–68]. However, most randomized controlled trials (RCTs) conducted
in the adult population have shown no beneficial effects of vitamin D supplementation in preventing
cardiovascular diseases or reducing cardiovascular risk [21,69–73]. It is still not clear whether calcitriol or
other potent vitamin D analogues might have major effects and whether specific subgroups of patients,
such as type 2 diabetic subjects with CAD, might benefit most from vitamin D supplementation [69–73].

As discussed previously, there is evidence of association between low levels of vitamin D and
cardiovascular risk factors in children, which may lead to cardiovascular diseases in adulthood.
Therefore, in recent years new randomized controlled studies examining effects of vitamin D
supplementation on cardiovascular outcomes in children and adolescents have been performed [74–84].

In the last five years, six RCTs focused on obese nondiabetic adolescents (11–17 years) [79–84].
Shah et al. [80] failed both to increase 25OHD levels and to alter markers of inflammation and cardiovascular
risk in a group of obese adolescents through a vitamin D supplementation of 150,000 IU every 3 months.

Varshney et al. [84] performed a RCT in a large sample of patients aged 11–17 years, with long duration
of intervention (12 months) and with a high dose of vitamin D supplementation (120,000 IU/month) achieving
25OHD levels > 20 ng/mL in 68% of subjects and > 30 ng/mL in 41.2% of subjects of the intervention group.
Nevertheless, they could not find statistically significant differences neither in beta cell function, nor in
cardiometabolic markers nor in lipid profile. Alike, the other five studies managed to significantly increase
serum 25OHD levels after treatment without reaching cardiovascular endpoints [82–84].

However, two studies revealed improvement trends following vitamin D treatment [79,83]
on CV markers. Sethuruman et al. [83] found a positive correlation between increase of 25OHD
levels and increase of c-HDL after vitamin D supplementation in obese adolescents with baseline
25OHD level < 20 ng/mL. In addition, ergocalciferol supplementation seemed to have a beneficial
impact on fasting insulin without changes in Homeostasis Model Assessment of Insulin Resistance
(HOMA-IR). Brar et al. [79] observed that using a high dose of ergocalciferol in a cross over design
study increased whole body insulin sensitivity in the treated group (p = 0.0577). Moreover, in a recent
meta-analysis [74] HOMA-IR decreased by 0.51 points per 10 nmol/L increase in endpoint 25OHD among
obese patients (p = 0.04); the insulin resistance began to decrease at mean level of 25OHD > 70 nmol/L.

Other studies focused on mainly normal weight healthy children and adolescents [75–78]. All studies
succeeded in significantly increase serum 25OHD levels. Smith et al. [76] supplemented vitamin D3 at
10 and 20 µg/day or placebo for 20 weeks in white healthy adolescents in winter at northern latitudes.
No differences on cardiovascular risk markers in the fully adjusted analyses for sex, age, Tanner stage,
baseline serum 25OHD, and BMI z-score were found. Hauger et al. [75] performed the same RCT in children
instead of adolescents. The study showed a marginally significant increase of plasma triglycerides, by 0.03
mmol/L per 10 nmol/L increase in serum 25OHD (p = 0.07). This result is in contrast with the supposed
beneficial role of vitamin D supplementation on lipid profile and needs to be investigated furtherly.

Ferira et al. [77] have reported an inverse relationship between vitamin D levels and glucose,
insulin, HOMA-IR at baseline. However, they did not find significant difference in these metabolic
parameters between groups after supplementation.

Only one study in the past five years showed a significant beneficial effect of vitamin D supplementation
on cardiometabolic health in children and adolescents. Tavakoli et al. [78] performed a clinical trial including
47 healthy subjects aged 10–14 years who received vitamin D supplementation (1000 IU/die for one month)
or placebo tablets. In the treated group, vitamin D levels increased (p = 0.007) as well as serum levels of
c-HDL (p < 0.001). However, this study has several limitations. The sample was small (only 40 patients
reached the follow up), levels of c-HDL were the only cardiometabolic risk factor analyzed, and the duration
of intervention was short (4 weeks).

Table 2 shows the main significant supplementation studies related to vitamin D and cardiovascular
risk factors in pediatric age.
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Table 2. Reviewed studies on vitamin D supplementation and cardiovascular risk factors in pediatric age. WBISI: Whole Body Insulin Sensitivity Index; HbA1c:
Glycated haemoglobin; hs-CRP: high-sensitivity C-Reactive Protein.

Study Where and Season Participants Baseline Mean 25OHD Levels Treatment Control Group Duration Endpoints Results

Hauger et al. (2018) [75] Denmark
Winter

130 Normal weight
children
4–8 years

White

10µg/d: 56.9 ± 12.7 nmol/L
20µg/d: 58.1 ± 13.5 nmol/L

Control group:
55.2 ± 10.8 nmol/L

D3
10 or 20 µg/day Placebo 20 weeks

25OHD levels
BMI, SBP, DBP, lipid

profile, glucose, insulin,
HbA1c

25OHD increased to 61.8 ± 10.6
nmol/L in the 10 µg/d group, to

75.8 ± 11.5 nmol/L in the 20
µg/d group

No effect on any of the
cardiometabolic risk markers
Marginal dose-response effect

on triglycerides,
which increased by 0.03 nmol/L

per 10 nmol/L increase in
25OHD (p = 0.07)

Smith et al. (2018) [76] UK
Winter

110 Normal weight
adolescents
14–18 years

White

10µg/d:
49.2 ± 12.0 nmol/L

20µg/d:
51.7 ± 13.4 nmol/L

Control group:
46.8 ± 11.4 nmol/L

D3
10 or 20 µg/day Placebo 20 weeks

25OHD levels
BMI, waist circumference,

SBP, DBP, glucose,
lipid profile

Baseline serum 25OHD was
inversely associated with BMIz

(p < 0.001) and waist
circumference (p = 0.002)

25OHD increased to 56.6 ±
12.4nmol/L in the 10µg/d

group, to 63.9 ± 10.6nmol/L in
the 20µg/d group

No significant differences in
cardiovascular risk factors

within either group or
between groups

Ferira et al. (2016) [77] USA
Winter

323 Normal weight
children and
adolescents
9–13 years

Mixed

Mean: 70.0 ± 1.0 nmol/L
D3

400,1000,
2000 or 4000 IU/day

Placebo 12 weeks

Dose-response effects of
vitamin D on fasting
glucose, insulin and

HOMA-IR

Baseline 25OHD was inversely
associated with BMI (p = 0.003),

insulin (p = 0.005) and
HOMA-IR (p = 0.012)

No significant difference in
fasting glucose, insulin and
HOMA-IR between groups

over time after
supplementation

Tavakoli et al. (2016) [78] Iran
Not known

47 Normal weight
children and
adolescents
10–14 years

Caucasian (Iranian)

Treatment group:
7.55 ± 4.96 ng/mL

Control group:
9.71 ± 5.48 ng/mL

D
1000IU/day Placebo 4 weeks 25OHD levels

c-HDL

25OHD increased in the
treatment group (11.50 ±

5.84ng/mL, p < 0.001)
c-HDL significantly increased

in the treatment group
(+ 4.10 ± 6.10mg/dL, p = 0.007)

Brar et al. (2018) [79] Not known
All year

20 Obese
adolescents
12–18 years
Mixed, 75%

Hispanic

Mean levels: 16.7 ± 2.9 ng/mL D2
300000 IU once

Placebo
(crossover at week 6) 6 weeks 25OHD levels

Insulin metabolism

25OHD treatment group: 19.5
± 4.5 ng/mL (p = 0.0029),
control group: 17.2 ± 4.7

ng/mL (p 0.5262)
WBISI showed a trend towards

improvement in the treated
group (p = 0.0577)
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Table 2. Cont.

Study Where and Season Participants Baseline Mean 25OHD Levels Treatment Control Group Duration Endpoints Results

Shah et al. (2015) [80] USA
All year

40 obese
adolescents
11–17 years

Mixed

Treatment group:
19.6± 1.4 ng/mL
Control group:

25.8 ± 2.6 ng/mL

D2
150000IU baseline
and at 12 weeks

Placebo 24 weeks 25OHD levels
BMI, lipid profile, HbA1c

Baseline 25OHD was inversely
associated with BMI

No significant difference in
25OHD levels and no

significant changes in any of
the markers analysed after

vitamin D2 supplementation

Javed et al. (2015) [81] USA
All year

51 Obese
adolescents
12–18 years
Caucasian

Treatment group:
23.5 ± 8.5 ng/mL
Control group:

24.4 ± 7.7 ng/mL

D3
2000 IU/day 400 IU/day 12

weeks

25OHD levels
Insulin metabolism

Lipid profile

A significant increase in
25OHD

in the 2000IU/d group (p = 0.04)
No change in parameters of

insulin metabolism or
lipid profile

Magge et al. (2018) [82] USA
All year

26 Obese
adolescents
12–17 years

African American

Treatment group:
12.3 ± 3.5 ng/mL
Control group:

11.7 ± 4.1 ng/mL

D3
5000 IU/day 1000 IU/day 12 weeks

25OHD levels
BMI-z, HOMA-IR, lipid

profile, hs-CRP

25OHD treatment group:
28.8 ± 11.4 ng/mL (p < 0.0001),

control group: 18.8 ± 3.9
ng/mL (p = 0.0006)

No significant difference in
cardiometabolic markers

within either group or between
groups following Vitamin

D3 supplementation

Sethuruman et al. (2018) [83] USA
All year

29 Obese
adolescents
13–17 years

African American

Treatment group:
12.1 ± 3.8 ng/mL
Control group:

12.4 ± 3.8 ng/mL

D2
50000IU once per

week + 500 mg/day
calcium carbonate

Placebo once per
week + 500mg/day
calcium carbonate

12 weeks
25OHD levels

Insulin metabolism
Lipid profile

25OHD treatment group:
32 ng/mL (p < 0.0001),

control group: 13 ng/mL
(p = 0.126)

25OHD was positively
correlated with HDL

(r = 0.6, p < 0.05) and fasting
insulin (r = 0.5, p < 0.05),

but not HOMA-IR
(r = 0.5, p = 0.08)

Varshney et al. (2019) [84] India
All year

202 Obese children
and adolescents

11–17 years
Asian Indian

Treatment group:
8.36 ± 5.45 ng/mL

Control group:
9.01 ± 5.59 ng/mL

D
120,000 IU once

a month

12,000 IU once
a month 12 months

25OHD levels
Insulin metabolism

Lipid profile, pulse wave
velocity and

augmentation index

25OHD treatment group:
26.89 ± 12.23 ng/mL;

control group
13.14 ± 4.67 ng/mL (p < 0.001)

No changes in insulin
metabolism or in

cardiovascular risk factors
within either group or

between groups
after supplementation
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None of the studies in obese and normal weight children and adolescents showed symptomatic
hypercalcemia or major adverse effects. Nevertheless, a recent meta-analysis [74] found an increase of
c-LDL by 0.11 mmol/L with no influence of BMI and baseline serum 25OHD (p = 0.002). Another RCT,
previously discussed, also observed a possible trend of worsening in lipid profile following vitamin D
supplementation [75]. This raises concerns about safety of vitamin D supplementation.

Overall, the results of RCTs do not support vitamin D supplementation for reducing cardiovascular
risk in children and adolescents, in accordance with studies conducted in adults.

5. Conclusions

Vitamin D alters the inflammatory response thought different pathways. An inverse correlation
between plasma 25OHD levels and cardiovascular risk factors, in particular blood pressure and lipid
profile has been evaluated in different studies, also in pediatric age.

However, RCTs studies did not show clear cardiovascular improvements following vitamin D
supplementation. A trend of improvement on CV markers was found in two RCTs in obese adolescents
with baseline mean vitamin D deficiency. Moreover, a recent meta-analysis show how insulin resistance
decreased in overweight/obese children and adolescent after vitamin D supplementation [74].

Limitations of the studies are different: 25OHD baseline levels, duration of intervention, type
of vitamin D supplemented (ergocalciferol, cholecalciferol or calcitriol), and quantity administered.
In addition, supplementation was administered differently (daily [78,81,82], weekly [83], monthly [84],
quarterly [80], or on a single time high dose [79]).

Therefore, further standardized supplementation studies are needed to assess a clear benefit due
to vitamin D supplementation in children and adolescents at risk of cardiovascular diseases, such as
obese subjects.
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aIMT Aortic intima media thickness
BMI Body Mass Index
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CAD Coronary artery disease
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c-LDL Cholesterol Low Density Lipoprotein
COX-2 Cyclooxygenase-2
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CYP27B1 Cytochrome P450 27B1, 1-alpha hydroxylase
DBP Diastolic blood pressure
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HDL High Density Lipoprotein
HOMA-IR Homeostasis Model Assessment of Insulin Resistance
hs-CRP high-sensitivity C-Reactive Protein
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IMT Intima-media thickness
LDL Low Density Lipoprotein
LVH Left ventricular hypertrophy
PTH Parathormone
RAAS Renin-angiotensin-aldosterone system
RAR Retinoic Acid Receptor
RCT Randomized controlled trials
RXR Retinoid X Receptors
SBP Systolic blood pression
TC Total cholesterol
TG Triglycerides
UV Ultraviolet
VDBP Vitamin D binding protein
VDR Vitamin D receptor
VDRE Vitamin D response element
VEGF Vascular endothelial growth factor
VSMC Vascular smooth muscle cell
WBISI Whole Body Insulin Sensitivity Index
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