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Objective: We wished to explore Parkinson’s disease (PD) subtypes by

clustering analysis based on themultimodalmagnetic resonance imaging (MRI)

indices amplitude of low-frequency fluctuation (ALFF) and gray matter volume

(GMV). Then, we analyzed the di�erences between PD subtypes.

Methods: Eighty-six PD patients and 44 healthy controls (HCs) were recruited.

We extracted ALFF and GMV according to the Anatomical Automatic Labeling

(AAL) partition using Data Processing and Analysis for Brain Imaging (DPABI)

software. The Ward linkage method was used for hierarchical clustering

analysis. DPABI was employed to compare di�erences in ALFF and GMV

between groups.

Results: Two subtypes of PD were identified. The “di�use malignant subtype”

was characterized by reduced ALFF in the visual-related cortex and extensive

reduction of GMV with severe impairment in motor function and cognitive

function. The “mild subtype” was characterized by increased ALFF in the frontal

lobe, temporal lobe, and sensorimotor cortex, and a slight decrease in GMV

with mild impairment of motor function and cognitive function.

Conclusion: Hierarchical clustering analysis based on multimodal MRI indices

could be employed to identify two PD subtypes. These two PD subtypes

showed di�erent neurodegenerative patterns upon imaging.

KEYWORDS

Parkinson’s disease subtypes, cluster analysis, magnetic resonance imaging,

amplitude of low-frequency fluctuations (ALFF), gray matter volume (GMV)

Introduction

Parkinson’s disease (PD) was first described in an article written by British physician

James Parkinson in 1817. PD is a neurodegenerative disease with a high incidence

worldwide. PD pathogenesis is not clear and therapy to prevent PD progression is

not available. PD is considered to be highly heterogeneous, with motor symptoms
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and a wide range of non-motor symptoms (Chaudhuri et al.,

2006; Kalia and Lang, 2015). The heterogeneity of PD suggests

that there may be different subtypes of the disease (Foltynie

et al., 2002). Patients with the same subtype of PD are likely to

have identical pathophysiological characteristics. Identification

of different subtypes contributes to pathophysiological research

but also has an impact on understanding of disease progression,

prognosis, and “personalized” treatment.

Jankovic and colleagues were the first to postulate that

PD can be divided into two subtypes: postural instability and

gait difficulty-dominant (PIGD) and tremor-dominant (TD)

(Jankovic et al., 1990). This is the most widely used subtype

classification in the clinic. However, a significant limitation of

this approach is assigning patients to a specific subtype based

solely on motor symptoms without considering the complexity

of the clinical symptoms of PD. Recent research has suggested

that TD and PIGD are unstable and interchangeable over time

(Simuni et al., 2016; Erro et al., 2019).

Several studies have explored the different subtypes of PD

through data-driven unsupervised cluster analysis (Erro et al.,

2016; Fereshtehnejad et al., 2017; Belvisi et al., 2021). However,

most of the cluster analysis carried out so far is characterized

by a clinical scale score, which lacks the support of objective

biomarkers or imaging data, and is subjective (Hendricks and

Khasawneh, 2021). Undertaking cluster analysis using more

objective disease characteristics combining motor symptoms

and non-motor symptoms is a rational approach.

Neuroimaging provides numerous potential biomarkers for

neurodegenerative diseases. Resting-state functional magnetic

resonance imaging (Rs-fMRI) has been used widely. Measuring

the blood oxygen level-dependent (BOLD) signal amplitude of

low-frequency fluctuation (ALFF) can reflect local spontaneous

neuron activity effectively (Zang et al., 2007). ALFF shows

high retest reliability (Zuo and Xing, 2014), which ensures its

reliability as an indicator to detect individual regional functional

differences (Zuo et al., 2019).

Voxel-based morphometry (VBM) is an efficient method

for analyses of MR images of brain structure. VBM overcomes

the influence of individual differences and is highly sensitive to

shrinkage of gray-matter volume (GMV) (Pereira et al., 2012).

VBM has been used widely to quantify GMV changes in PD

patients (Xu et al., 2016, 2020). Studies have demonstrated that

the changes in patterns of ALFF and GMV are significantly

different in different PD patients (Chen et al., 2015; Ma et al.,

2018). However, studies combining ALFF with GMV to explore

PD subtypes have not been done.

We aimed to identify different PD subtypes based on

hierarchical clustering analysis of ALFF and GMV. We wished

to further analyze the change in patterns of ALFF and GMV

among different subtypes. In this way, we aimed to help

providemore accurate personalized treatment.We hypothesized

that cluster analysis based on multimodal indicators could

accurately identify PD subtypes characterized by different

neurodegenerative patterns. Moreover, different PD subtypes

have unique neurophysiological bases.

Materials and methods

Subjects

Eighty-six PD patients admitted to the Department of

Neurology of the First Affiliated Hospital of China Medical

University from June 2019 to September 2021 were enrolled.

All PD patients met the Brain Bank Diagnostic Criteria of

Parkinson’s Disease Association UK (Hughes et al., 1992). We

also recruited 44 healthy controls (HCs) matched for age, sex,

and education level. For patients taking anti-PD drugs, MRI

and clinical examination were undertaken ≥12 h after drug

withdrawal. The clinical measurements wereUnified Parkinson’s

Disease Rating Scale Part III (UPDRSIII), Hoehn–Yahr (H–Y)

scale, Montreal Cognitive Assessment (MoCA), Mini-Mental

State Examination (MMSE), and Hamilton Depression Scale

(HAMD). The exclusion criteria were patients: (1) with a history

of brain tumors, cerebrovascular diseases, or other mental

disorders; (2) with a history of drug abuse; (3) suffering from

hypertension, diabetes mellitus, or a respiratory disease; (4)

who were not right-handed; (5) with contraindications to MRI

examination. The study protocol was approved by the Ethics

Review Committee of China Medical University (Shenyang,

China). All participants provided written informed consent.

Acquisition of MRI data

Imaging data were obtained on a 3.0-T MRI scanner

(Magnetom Verio; Siemens, Erlangen, Germany) with a 32-

channel head coil. Participants were instructed to close their

eyes, relax, and remain conscious. Functional images were

obtained using an echo-planar imaging sequence: echo time

(TE) = 30ms; repetition time (TR) = 2500ms; field of view

(FOV) = 224mm × 224mm; matrix = 64 × 64; voxel size

= 3.5mm × 3.5mm × 3.5mm; slice number = 43; slice

gap/thickness= 0/3.5mm; flip angle= 90◦; total volume= 240.

High-resolution T1-weighted images were obtained using

a magnetization-prepared rapid gradient echo (MPRAGE)

sequence (TR = 5000ms; TE = 2960ms; FOV = 256mm ×

256mm; matrix = 256 × 256; voxel size =1.0mm × 1.0mm ×

1.0mm; slice number = 176; slice gap/thickness = 0/1mm; flip

angle= 12◦).

Data preprocessing

Data Processing Assistant for Rs-fMRI (DPARSF; http://

rfmri.org/DPARSF) and SPM12 (http://www.fil.ion.ucl.ac.uk/
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FIGURE 1

Dendrogram of the cluster analysis. Cluster 1:The orange area on the left (n = 51,59.3%); Cluster 2:The green area on the right (n = 35, 40.7%).

TABLE 1 Demographic and clinical characteristics of PD subtypes.

Domain Cluster1 Cluster2 HC χ
2/Z p-value

(n= 51) (n= 35) (n= 44)

Age (years) 61.47± 8.46 62.09± 7.97 59.77± 7.61 2.038 0.361

Sex (M/F) 21/30 23/12 22/22 5.016 0.081

Education (years) 10.41± 3.19 10.26± 3.45 11.82± 2.99 4.468 0.107

Disease duration (years) 5.03± 3.46 5.67± 3.02 — −1.356 0.175

H-Y 2.16± 0.79 2.21± 0.68 — −0.785 0.432

UPDRSIII 33.08± 16.51 25.69± 12.10 — −2.307 0.021

MMSE 24.37± 2.15 26.40± 2.28 28.02± 2.03 49.723 0.000*a

MoCA 21.25± 3.43 23.66± 3.62 25.48± 2.13 37.206 0.000*b

HAMD 11.98± 6.97 9.86± 8.42 1.75± 3.04 60.282 0.000*

Variables are mean ± standard deviation; HC, healthy controls; H-Y, Hoehn-Yahr; UPDRS III, Unified Parkinson’s disease Rating Scale part III; MMSE, Mini-Mental State Examination;

MoCA, Montreal Cognitive Assessment; HAMD, Hamilton Depression Scale; p < 0.05 was considered statistically significant; 0.000 * = values < 0.001; a= Comparison between the two

subtypes p < 0.001; b= Comparison between the two subtypes p= 0.004.

spm) were used to preprocess fMRI data according to

standardized processing procedures (Yan et al., 2016). There

were six major steps. First, the first 10 volumes of functional

images were discarded. Second, slice timing and correction

of head movements were undertaken by excluding people

with head movement >2.5mm or rotation >2.5◦. Third,

spatial normalization of structure and registration of functional

images were done through DARTEL. Fourth, we carried out

linear regression of disturbance covariables (head parameters,

white-matter signals, cerebrospinal-fluid signals). Fifth, a 6-mm

full-width at half maximum (FWHM) Gaussian kernel was

employed for spatial smoothing. Sixth, we removed the

linear trend.

ALFF was the root mean square of the BOLD-signal power

spectrum between 0.01Hz and 0.08Hz for each voxel. Next, we

divided the global mean value to reduce the impact of variability

among participants. Anatomical Automatic Labeling (AAL) is

provided by the Montreal Neurological Institute (Montreal,

Canada) and divides the human brain into 116 regions. It is

used widely in neuroimaging research, and has good reliability.
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TABLE 2 Brain regions exhibiting an altered ALFF among three groups.

Brain regions (AAL) Cluster

size

MNI coordinates Peak t-value

x y z

Diffuse malignant vs. HC

Calcarine_L/R 113/110 15 −63 9 −2.88148

Lingual_L/R 83/80

Cerebelum_Crus1_L 17

Cuneus_R 12

Frontal_Inf_Tri_R 65 39 18 18 4.91613

Frontal_Inf_Oper_R 64

Precentral_R 14

Temporal_Sup_R 76 60 −3 −9 4.64539

Temporal_Mid_R 65

Insula_R 14

Mild vs. HC

Temporal_Sup_R 302 57 −12 30 7.02314

Frontal_Inf_Oper_R 170

Frontal_Inf_Tri_R 161

Postcentral_R 144

Temporal_Mid_R 137

Precentral_R 93

Temporal_Pole_Sup_R 63

Insula_R 24

Heschl_R 21

Frontal_Mid_R 19

Putamen_L 24 −21 3 −6 −2.89661

Cingulum_Ant_L 22

Frontal_Sup_Medial_L 17

Caudate_L 15

Insula_R 34 33 15 0 5.31788

Frontal_Inf_Orb_R 26

Temporal_Sup_L 58 −60 −9 3 5.61918

Temporal_Mid_L 18

Postcentral_R 37 39 −30 39 5.00571

Heschl_L 13 −36 −24 6 4.57343

Diffuse malignant vs. mild

Calcarine_L/R 74/68 12 −75 −12 −2.88648

Lingual_L/R 34/62

Postcentral_R 59 60 −3 27 −2.89242

Precentral_R 26

Precentral_R 29 42 −15 48 −3.00327

Postcentral_R 25

Temporal_Sup_R 54 51 −18 9 −2.89128

Heschl_R 11

Temporal_Sup_L 33 −54 −12 6 −2.89656

Cingulum_Ant_L 19 −6 27 −9 6.01187

Frontal_Sup_Orb_L 11

Putamen_L 11 −21 21 12 4.04517

Putamen_L 10 −12 0 −6 4.68472

Pallidum_L 10
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FIGURE 2

Statistical parametric map showing the significant di�erences in the ALFF between three groups: Di�use malignant subtype, Mild and HC. GRF

corrected (Voxel p < 0.005, cluster p < 0.05). The color bar on the right indicates the statistical t-value. Warm (cold) overlays indicate higher

(lower) ALFF in PD patients.

We used a cutoff of 2 to extract the ALFF values of 116

brain regions.

For high-resolution T1-weighted images, we followed

standard procedures for VBM analysis using the SPM12-based

Computational Anatomy Toolbox (CAT12; http://dbm.neuro.

unijena.de/cat/). The major steps are spatial normalization,

correction of bias fields, segmentation into gray matter, white

matter, and cerebrospinal fluid and, finally, gray-matter images

are smoothed with an 8-mm FWHM Gaussian kernel. In

addition, we used the “Modulation” feature to compensate for
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the effect of spatial normalization. We defined total GMV as the

summation of the GMVs of all voxels. We used the AAL atlas to

segment GMVmaps and extract values (Jiang et al., 2021).

Cluster analysis

We extracted ALFF and GMV from 116 brain regions

as clustering features for each PD patient, and conducted

dimensionless processing through standardization. To reduce

the data dimension and improve the clustering performance

of the model, we used principal components analysis (PCA)

for dimensionality reduction, and took eigenvalue >1 as the

selection criterion for principal components. In hierarchical

clustering analysis, each patient was first treated as a separate

“cluster” and then merged gradually with other patients into a

new cluster.We used theWard linkingmethod tomerge clusters

at each step while minimizing the sum of error squares from the

cluster mean (Uribe et al., 2016, 2018; Inguanzo et al., 2021).

The results of cluster analysis were shown as a dendrogram

(Figure 1). We used the Calinski–Harabasz (C–H) Index to

assess the optimal number of clusters. This was determined

by between-cluster and within-cluster variance, and the larger

the value, the better was the cluster solution. We implemented

the operations stated above using the “sklearn” package on the

Anaconda3 platform (www.anaconda.com).

Statistical analyses

Demographic and clinical data were analyzed using SPSS

26.0 (IBM, Armonk, NY, USA). The normality of data

distribution was assessed using the Kolmogorov–Smirnov test.

The age, education level, as well as scores for MoCA, MMSE,

and HAMD among the three groups were analyzed by the

Kruskal–Wallis H test. Sex was analyzed by the chi-square test.

The Mann–Whitney U-test was employed to test for disease

duration, UPDRSIII score, and H–Y score between the two

clusters. P < 0.05 was considered significant.

Data Processing and Analysis for Brain Imaging (DPABI)

was used for the statistical analyses of imaging data. We

undertook one-way analysis of covariance (ANCOVA) with

age and sex as covariates to explore ALFF changes among

cluster 1, cluster 2, and HCs (Gaussian random field (GRF)

correction; voxel size: p < 0.005; cluster size: p < 0.05).

Also, we used the two-sample t-test to assess the difference

in ALFF between groups, with age and sex as covariates

(within a mask having significant differences in the ANCOVA).

We used ANCOVA with age, sex, and total intracranial

volume as covariates to explore GMV differences among the

three groups (GRF correction; voxel size: p < 0.005; cluster

size: p < 0.05). The method of comparison between groups

was consistent with ALFF. Covariate and multiple methods

for comparison correction were consistent with ANCOVA.

Considering that our data did not conform to a normal

distribution, Spearman correlation analysis was undertaken to

investigate the correlation of ALFF and GMV with clinical

characteristics. P < 0.05 was considered significant.

Results

PD subtypes based on cluster analysis
and clinical data

The study cohort comprised 86 PD patients and 44

HCs. We ranked the independent principal components

generated during reduction of PCA dimensionality in the

order of decreasing variance. Then, we selected the first 34

principal components with eigenvalue >1, and 89.45% of the

effective information was retained (Supplementary Table 1;

Supplementary Figure 1). PD was divided into two subtypes

based on hierarchical clustering analysis of multimodal MRI

indices. The neurodegenerative pattern of patients in cluster

1 (n = 51, 59.3%) was characterized by reduced ALFF in

the visual-related cortex and extensive reduction in GMV.

Patients in cluster 2 (n = 35, 40.7%) were characterized

by increased ALFF in frontal, temporal, and sensorimotor

cortices and mild reduction in GMV. For hierarchical

clustering, we chose the two-cluster solution because it had

the highest CH value (3.13). The CH value of the three-

cluster, four-cluster, and five-cluster solutions was 2.34, 2.31,

and 2.29.

Statistical analyses revealed no significant differences in

age, sex, or years of education between the two PD subtypes

and HC group. Compared with HCs, patients with both

subtypes had lower scores for MMSE and MoCA, and a

higher HAMD score. Moreover, the differences in scores for

MMSE, MoCA, and UPDRSIII between the two subtypes

were significant. Compared with patients in cluster 2, patients

in cluster 1 had lower scores for MMSE and MoCA and

a higher UPDRSIII score. Significant differences were not

observed for disease duration, H–Y Scale score, or HAMD score

between the two subtypes (Table 1). For an identical disease

duration, cluster-1 patients showed more severe impairment

in motor function and cognitive function than cluster-2

patients. In consideration of other studies (Fereshtehnejad

et al., 2015, 2017; Belvisi et al., 2021), we referred to cluster

1 as the “diffuse malignant subtype” and cluster 2 as the

“mild subtype”.

ALFF analysis

Compared with HCs, patients with the diffuse malignant

subtype had lower ALFF in the bilateral primary visual
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TABLE 3 Brain regions exhibiting an altered GMV among three groups.

Brain regions (AAL) Cluster

size

MNI coordinates Peak t-value

x y z

Diffuse malignant vs. HC

Temporal_Inf_R 2082 60 −42 −15 −2.87966

Fusiform_R 770

Temporal_Mid_R 601

Temporal_Pole_Mid_R 520

ParaHippocampal_R 187

Fusiform_L 938 −31.5 −30 −21 −2.87905

Temporal_Inf_L 805

Temporal_Pole_Mid_L 227

ParaHippocampal_L 79

Temporal_Mid_L 66

Calcarine_L/R 563/434 1.5 −73.5 19.5 −2.87914

Cuneus_L/R 514/115

Lingual_L/R 38/467

Cerebelum_Crus1_R 112

Cerebelum_6_R 91

Fusiform_R 88

Frontal_Inf_Orb_L 217 −21 −4.5 −7.5 −2.88584

Amygdala_L 199

Hippocampus_L 183

Thalamus_L/R 332/56 −15 −30 −3 −2.87827

Hippocampus_L 76

Frontal_Inf_Orb_R 405 45 36 −13.5 −2.87847

Mild vs. HC

Calcarine_L/R 543/112 4.5 −88.5 9 −2.89519

Cuneus_L/R 531/307

Lingual_ L/R 70/312

Fusiform_R 66

Cerebelum_6_R 62

Cerebelum_Crus1_R 54

Fusiform_L 894 −34.5 −10.5 −45 −2.89446

Temporal_Inf_L 162

Cerebelum_4_5_L 131

Cerebelum_6_L 48

Thalamus_L/R 514/282 −15 −34.5 10.5 −2.89847

Hippocampus_L 165 −22.5 0 −16.5 −2.89493

Amygdala_L 144

Temporal_Inf_R 224 51 −6 −27 −2.89371

Temporal_Mid_R 79

Diffuse malignant vs. Mild

Frontal_Inf_Tri_R 534 51 34.5 −7.5 −2.96526

Frontal_Inf_Orb_R 208

Cerebelum_4_5_L 338 −24 −30 −31.5 5.45874

Cerebelum_3_L 37

Temporal_Inf_L 112 −39 −3 −39 −2.968

Temporal_Inf_R 18 67.5 −24 −24 −2.96275
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FIGURE 3

Statistical parametric map showing the significant di�erences in the GMV between three groups: Di�use malignant subtype, Mild and HC. GRF

corrected (Voxel p < 0.005, cluster p < 0.05). The color bar on the right shows the statistical t-value. Warm (cold) overlays show higher (lower)

GMV in PD patients.

cortex, visual association cortex (bilateral lingual gyrus, right

precuneus), and left cerebellum. ALFF of the right dorsolateral

prefrontal cortex (DLPFC), supplementary motor area (SMA),

right superior temporal gyrus, middle temporal gyrus, and

insula was increased significantly. Compared with HCs, patients

with the mild subtype had more extensive changes in ALFF:

decreased ALFF in the left striatum, left anterior cingulate

gyrus, and left medial prefrontal lobe, and significantly

increased ALFF in bilateral superior temporal gyrus, middle

temporal gyrus, transverse temporal gyrus, right dorsolateral
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FIGURE 4

Scatter plot of correlation coe�cient between PD subtypes and clinical symptoms.

prefrontal lobe, right anterior/posterior central gyrus, and

right insula. Compared with the mild subtype, patients with

the diffuse malignant subtype had decreased ALFF in the

bilateral vision-related cortex, right anterior/posterior central

gyrus, bilateral superior temporal gyrus, and right transverse

temporal gyrus, and increased ALFF in the left anterior cingulate

gyrus, left medial prefrontal lobe, and left striatum (Table 2;

Figure 2).

GMV analysis

Compared with HCs, patients with the diffuse malignant

subtype had reduced GMV in bilateral inferior temporal

gyrus, middle temporal gyrus, inferior frontal gyrus, fusiform

gyrus, parahippocampal gyrus, calcarine cortex, lingual

gyrus, precuneus, thalamus, right cerebellum, left amygdala,

and hippocampus. Patients with the mild subtype had

reduced GMV in the bilateral calcarine cortex, cuneus,

lingual gyrus, fusiform gyrus, inferior temporal gyrus,

thalamus, cerebellum, right middle temporal gyrus, left

hippocampus, and amygdala. Compared with the mild

subtype, patients with the diffuse malignant subtype

had reduced GMV in the right inferior frontal gyrus

triangle, orbital region, and bilateral inferior temporal

gyrus, and increased GMV in the left cerebellum (Table 3;

Figure 3).

Correlation analysis

In patients with the diffusemalignant subtype, theUPDRSIII

score showed a significant negative correlation with GMV in

the left thalamus (r = −0.332, p = 0.017), and the HAMD

score had a significant negative correlation with GMV in the left

temporal lobe (r=−0.312, p= 0.026). In patients with the mild

subtype, the UPDRSIII score had a negative correlation with

GMV in the left thalamus (r = −0.416, p = 0.013), However,

the HAMD score showed a significant negative correlation

with ALFF in the right temporal lobe (r = −0.500, p =

0.002). A scatter plot of the correlation coefficient is shown in

Figure 4.
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Discussion

We identified two PD subtypes according to a clustering

analysis of change patterns in ALFF and GMV. The diffuse

malignant subtype was characterized by reduced ALFF in the

visual-related cortex and extensive reduction of GMV with

severe impairment in motor function and cognitive function.

The mild subtype was characterized by increased ALFF in the

frontal lobe, temporal lobe, and sensorimotor cortex, along

with a slight decrease in GMV with mild impairment in motor

function and cognitive function.

Patients with the diffuse malignant subtypes had decreased

ALFF in the bilateral primary visual cortex and visual association

cortex, which handle the processing and transmission of visual

information. Consistent with our data, Yao and coworkers (Yao

et al., 2015) found that reduced ALFF in the lingual gyrus

was associated with hallucinations in PD patients. Boecker and

collaborators (Boecker et al., 2007) found through positron

emission tomography that the glucose metabolic rate of the

vision-related cortex decreased, which helped to explain the

visual impairment observed in PD patients. We also found that

ALFF in the left cerebellum was reduced, which is consistent

with the study results of Skidmore and colleagues (Skidmore

et al., 2013) and Zhang and collaborators (Zhang et al., 2013).

The cerebellum is believed to be involved in motor regulation

and cognitive regulation through the cerebello-thalamo-cortical

pathway, and has pathological and compensatory roles in

PD. We found only a reduction in cerebellar ALFF, which

may be the pathological change caused by degeneration of

dopaminergic neurons. However, a cerebellar compensatory

effect was not observed, which may be because the cerebellar

compensatory effect is evident in the early stage of PD but

weakens gradually (or even disappears) with the severity of

pathological damage (Jankovic, 2005). In our study, the mean

duration of PD was 5 years, which is not the early stage

of PD.

Our findings further confirm that the cerebellum is involved

in the pathological changes observed in PD. Compared with

HCs, patients with the diffuse malignant subtype had increased

ALFF in the right DLPFC, SMA, and insula, which are vital

components of the task-positive network (TPN). The latter

antagonizes the default mode network (DMN) and provides

top–down attention direction, which plays an important part

in motion control (Fox et al., 2005). Consistent with our study

results, Boord and colleagues and Maidan et al. (Boord et al.,

2017; Maidan et al., 2019) found increased activation of the TPN

in PD patients. They pointed out that the neural processing

efficiency of the TPN in PD patients was reduced, so activation

of more neurons was required to maintain normal function.

Besides the TPN, we also found an increase of ALFF in the right

temporal lobe, which is consistent with data from other studies

(Wang et al., 2020). The exact mechanism of action underlying

these findings is not clear, but we speculate that the increase in

the right TPN and temporal ALFF in patients with the diffuse

malignant subtype reflects a compensatory function.

Compared with HCs, patients with the mild subtype had

reduced ALFF in the left striatal lobe, which suggests reduced

neuronal activity in this region as a critical node in the striato-

thalamo-cortical pathway. The change in its functional activities

has an important influence on the impairment inmotor function

and cognitive function of PD patients. Pathological studies have

shown that α-synuclein deposition in the striatal neurons of

PD patients further aggravates damage to the dopaminergic

system (Agosta et al., 2014): our findings further support this

conclusion. We also found that ALFF decreased in the left

anterior cingulate gyrus and medial prefrontal lobe, thereby

suggesting DMN injury. The DMN is a functional brain network

with enhanced activity in the resting state. It is involved in

episodic memory, emotional processing, self-reflection, and

maintenance of consciousness awakening (Greicius et al., 2004).

Several studies have shown that PD patients have damaged

and reduced functional connectivity in the DMN (Greicius

et al., 2004; Harrington et al., 2017), which is consistent with

our research results. Compared with HCs, we found increased

ALFF in the right DLPFC and insula in patients with the mild

subtype, which suggested that patients with themild subtype had

compensatory functions in the TPN similar to those of patients

with the diffuse malignant subtype. Therefore, we speculate

that functional compensation of the TPN may be prevalent in

PD patients.

We also found that patients with the mild subtype had

increased ALFF in the right sensorimotor cortex, in which

the right anterior central gyrus have an important role in

the planning and execution of actions. As an important

region of the somatosensory cortex, the right posterior central

gyrus has an information-feedback mechanism composed of

motor-sensory afferent and efferent pathways. This mechanism

regulates and controls motor cortex signals through the

SMA (Fink et al., 2014). Therefore, we speculated that the

increase of ALFF in the sensorimotor cortex of PD patients

reflected its compensation for motor dysfunction. Studies

have found increased functional connectivity between the

sensorimotor cortex and subthalamic nucleus and the spatial

attention network (Kurani et al., 2015; Onu et al., 2015),

which validates our view further. We found that, compared

with the diffuse malignant subtype, the mild subtype had

more extensive compensation in the temporal lobe and

involved bilateral brain regions. We also observed a significant

negative correlation between ALFF in the right temporal lobe

and the HAMD score. Hence, enhancement of spontaneous

neuronal activity in the temporal lobe may be a compensatory

effect on non-motor symptoms such as depression. Studies

have demonstrated that the temporal lobe is associated with

depressive symptoms(Ma et al., 2012). Taken together with the

studies mentioned above, we believe that patients with the mild
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subtype may have a more muscular compensatory function.

This hypothesis also explains why patients with the mild

subtype show relativelymild impairments inmotor function and

cognitive function.

In the present study, patients with PD of both subtypes

had reduced GMV of bilateral vision-related cortices compared

with HCs. The bilateral calcarine cortex, lingual gyrus, and

cuneus are involved in color recognition, shape recognition,

visual memory, and primary processing of visual information.

The fusiform gyrus is part of the ventral visual pathway involved

in facial recognition. Goldman and coworkers (Goldman et al.,

2014) found that damage to the lingual gyrus, cuneus, and

fusiform gyrus caused hallucinations. Those observations are

consistent with our findings, suggesting that the decrease

in GMV in this region may cause visual impairment and

hallucinations in PD patients. We also found that GMV

decreased in the bilateral thalamus, left hippocampus, and

amygdala in PD patients with both subtypes. Studies in

PD patients with mild cognitive impairment and dementia

have shown a correlation between reduced GMV in this

region and cognitive impairment (Bouchard et al., 2008; Fu

et al., 2020). In the present study, scores for MoCA and

MMSE for the two subtypes in PD patients were lower than

those observed in HCs, thereby showing varying degrees

of cognitive impairment. Those findings further support

the notion that the reduction of GMV in the thalamus,

hippocampus, and amygdala are a cause of cognitive impairment

in PD patients.

Interestingly, we also found that GMV of the left thalamus

in both subtypes was negatively correlated with the UPDRSIII

score. Similar findings were documented by Xu and colleagues

(Xu et al., 2020), who showed that left-thalamus injury had

a significant impact on dyskinesia in PD patients. Compared

with HCs, GMV of the bilateral frontal lobe, parahippocampal

gyrus, and temporal lobe was decreased in patients with

the diffuse malignant subtype, whereas only bilateral inferior

temporal gyrus and right middle temporal gyrus were involved

in patients with the mild subtype. A meta-analysis showed

reduced frontal-limbic system-temporal GMV to be the major

feature of cognitive decline in PD patients. The progression

of reduced GMV from a unilateral brain region to bilateral

brain regions is an important marker of gradual worsening

of PD cognitive impairment and progression to dementia (Xu

et al., 2016). Our findings are consistent with the conclusions

stated above.

Under an identical disease duration, patients with the

diffuse malignant subtype had more extensive brain areas with

reduced GMV and more severe cognitive impairment than

those with the mild subtype. In addition, patients with the

diffuse malignant subtype had a negative correlation between

GMV and the HAMD score in the left temporal lobe, which

suggested that the decrease in GMV in the temporal lobe may

be related to the depressive symptoms observed in PD cases.

Studies have demonstrated that patients with temporal-lobe

epilepsy have a higher likelihood of depression compared with

patients with other types of epilepsy (Valente and Busatto Filho,

2013). We also found that both subtypes had reduced GMV

in the cerebellum, and studies have shown that the reduction

in cerebellar GMV of PD patients involves several functional

disorders (e.g., motor, cognitive, and emotional regulation) (Ma

et al., 2018). However, we found that the reduced GMV in the

left cerebellum of patients with themild subtype wasmore severe

than that of patients with the diffuse malignant subtype, which

differed significantly from the changing trend of GMV in the

brain of PD cases with both subtypes. This phenomenon may

be because: (i) of the different pathophysiological mechanisms

involved in the two subtypes; (ii) the cerebellar damage in PD

patients with the mild subtype is more severe than that in PD

cases with the diffusemalignant subtype. However, the structural

and functional changes involved in the cerebellum in PD are

extremely complex, and more targeted studies are needed to

identify them.

Our results for clustering analysis using an independent

PD dataset are in good agreement with those obtained

by Fereshtehnejad and colleagues (Fereshtehnejad et al.,

2017) and Belvisi and coworkers (Belvisi et al., 2021).

Among them, the diffuse malignant subtype showed

more severe impairment in motor function, cognitive

function, and brain atrophy than other subtypes. Our

study had two main strengths. First, it provides detailed

information on brain regions with gray-matter atrophy and

spontaneous neuronal activity between different subtypes.

Second, use of brain imaging data rather than clinical

scales as clustering features reduces the interference of

human subjectivity.

Our study had two main some limitations. First, our study

cohort was small and all PD subtypes could not be covered.

Second, the cumulative effect of long-term anti-PD drugs may

have influenced our results.

Conclusions

Cluster analysis based on multimodal MRI indicators

allowed us to identify two PD subtypes. These two PD

subtypes showed different neurodegenerative patterns

upon imaging. Our results provide a new direction for

exploring PD subtypes. Study of the pathophysiological

mechanism may provide important clues for the prognosis.

Longitudinal studies are needed to examine the stability of

our results.
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