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Abstract: During pregnancy, amino acids are important biomolecules that play essential roles in fetal
growth and development. Imbalanced amino acid intake during gestation may produce long-term
morphological or functional changes in offspring, for example, developmental programming that
increases the risk of developing hypertension in later life. Conversely, supplementation with specific
amino acids could reverse the programming processes in early life, which may counteract the
rising epidemic of hypertension. This review provides an overview of the evidence supporting the
importance of amino acids during pregnancy and fetal development, the impact of amino acids on
blood pressure regulation, insight from animal models in which amino acids were used to prevent
hypertension of developmental origin, and interactions between amino acids and the common
mechanisms underlying development programming of hypertension. A better understanding of the
pathophysiological roles of specific amino acids and their interactions in developmental programming
of hypertension is essential so that pregnant mothers are able to benefit from accurate amino acid
supplementation during pregnancy in order to prevent hypertension development in their children.

Keywords: amino acid; developmental origins of health and disease (DOHaD); gut microbiota;
hypertension; nitric oxide; nutrient-sensing signal; oxidative stress; pregnancy

1. Introduction

Current evidence indicates that the origins of hypertension can be found in early life [1–4].
Nutrition is the major intrauterine environmental factor that alters fetal morphology and function
through a process termed fetal programming [5]. An imbalance in this process may cause hypertension
in later life [6]. This notion has become globally recognized as the developmental origins of health
and disease (DOHaD) concept [7]. Conversely, growing evidence suggests that the use of intervention
strategies in the early phases of developmental plasticity can ameliorate or reverse the adverse effects
associated with developmental programming through reprogramming [8]. Recent research studies
have started paying more attention to the use of nutritional interventions as reprogramming strategies
to prevent hypertension of developmental origin [6,9].

Twenty amino acids that make up proteins are essential nutrients in a healthy diet that ensure
optimal growth and maintenance in humans. During gestation, an exceptional stage of life defined by
rapid fetal growth and development, adequate dietary amino acid availability is essential to ensure the
development of healthy offspring [10,11]. Despite the fact that protein intake recommendations in
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pregnancy are provided as estimated average requirement (EAR) and recommended dietary allowances
(RDA) values [12], there is a lack of specific amino acid recommendations for pregnant women [11].
Some amino acids and types of proteins have been associated with blood pressure (BP) [13–15];
however, the potential effects of maternal amino acid intake on progeny BP are largely unknown.
This review, therefore, highlights evidence on the impact of amino acids during pregnancy on offspring
hypertension, as well as the role of amino acid supplementation as a reprogramming strategy in
the prevention of hypertension of developmental origin. The associations between amino acids in
pregnancy and the risk of hypertension in adult offspring are illustrated in Figure 1.

Relevant peer-reviewed journal articles published in English were identified in the PubMed and
MEDLINE databases (the last search was conducted on 25 March 2020); different combinations of the
following search terms were used: “amino acids,” “hypertension,” “blood pressure,” “developmental
programming,” “DOHaD,” “offspring,” “progeny,” “pregnancy,” “mother,” “maternal,” and “perinatal.”
Bibliographic references from eligible articles were reviewed, and any additional studies were selected.

Figure 1. Schematic illustration of the association between amino acid intake in pregnancy,
developmental programming, and increased vulnerability to hypertension in adult offspring. The solid
red arrow line indicates that an oversupply or deficiency of amino acids in pregnancy can lead to
developmental programming of hypertension in adult offspring. There are several common mechanisms,
including oxidative stress, epigenetic regulation, nutrient-sensing signals, and gut microbiota involved
in this process. The solid blue line indicates the beneficial effects of amino acid supplementation on
hypertension of developmental origin. BP, blood pressure.

2. Amino Acid Requirements during Pregnancy and Fetal Development

2.1. Amino Acid Requirements in Pregnancy

Pregnancy is associated with hypoaminoacidemia during fasting, which is evident early in
gestation and persists throughout pregnancy [16,17]. In particular, there is a more profound reduction
in glucogenic amino acids—alanine, serine, threonine, glutamine, and glutamate [16]. The current
RDA of the protein Dietary Reference Intake (DRI) is 1.1 g/kg/day during pregnancy, which represents
an increase from 0.8 g/kg/day in the non-pregnant state [12]. It is often stated that the level of amino
acids needs to increase in proportion to the increased protein needs during pregnancy; however, very
few studies have reported specific amino acid requirements in human pregnancy [11]. A previous
study showed that lysine requirements during late gestation increase by 27% when compared to the
requirements in early gestation [18]. Another report demonstrated that there is a 40% higher requirement
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for phenylalanine during late gestation than during early gestation in human pregnancy [19]. In swine
models, the requirements for threonine have been shown to increase by 55%, lysine by 45%, isoleucine
by 63%, and tryptophan by 35% during the late stages of pregnancy when compared to the early
stages [11]. Since isoleucine, a branched chain amino acid (BCAA), is the major source of nitrogen for
ureogenic amino acids [11], it is speculated that the adaptive increase is aimed at overall conservation
of nitrogen and increased protein synthesis. However, whether other BCAA requirements are increased
and the exact mechanism of this adaptation remain unknown. These observations suggest potential
implications for gestation-stage-specific dietary amino acid recommendations.

2.2. Amino Acid Transport in the Placenta

The fetal plasma concentrations of most amino acids are significantly higher than the maternal
concentrations [20], indicating active amino acid transport across the placenta, from the maternal to the
fetal circulation [21,22]. As shown in Figure 2, three functional types of amino acid transport systems
have been identified in the placenta: accumulative, exchange, and facilitated transporters [23].

Figure 2. Schematic illustration of the placental amino acid transporters within the
microvillous membrane (MVM) and basal membrane (BM) of the placental syncytiotrophoblast.
Accumulative transporters located in the MVM mediate the uptake from the maternal circulation until
their accumulative potential is reached. Exchange transporters mediate the net influx of abundant
external amino acids in exchange for the efflux of relatively more abundant intracellular amino
acids. Facilitated transporters on the BM mediate the efflux of amino acids down the concentration
gradient into the fetal circulation. The placental amino acid pool can be regulated by protein synthesis,
metabolism, and interconversions.

All of them belong to the solute carrier (SLC) superfamily. The accumulative transporters mediate
the net uptake of specific amino acids across the maternal-facing microvillous membrane (MVM)
into the syncytiotrophoblast, leading to the creation of concentration gradients to drive the uptake of
other extracellular amino acids via amino acid exchange transporters. These exchange transporters
on the MVM switch intracellular amino acids for other exchange transporter-specific amino acids
in the maternal plasma. On the basal membrane (BM) of the syncytiotrophoblast, the facilitated
transporters facilitate the net efflux of specific amino acids across the BM into the fetal circulation
down their concentration gradients [23]. Table 1 provides a summary of the amino acid transport
systems identified in the human placenta [24–33].
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Table 1. Amino acid transporter systems in the human placenta.

Human Gene Protein System Location Substrate Ref.

SLC1A1 EAAT3 XAG MVM, BM Anionic amino acids [24,25]
SLC1A2 EAAT2 XAG MVM, BM Anionic amino acids
SLC1A3 EAAT1 XAG MVM, BM Anionic amino acids
SLC1A6 EAAT4 XAG MVM, BM Anionic amino acids

SLC1A4 ASCT1 ASC BM Neutral amino acids [25,26]
SLC1A5 ASCT2 ASC BM Neutral amino acids

SLC3A1 rBAT b0,+ ? Cationic and neutral amino acids [27]
SLC3A2 4F2hc L MVM, BM Neutral amino acids, BCAAs, and tryptophan

SLC6A6 TAUT β MVM Taurine [28]

SLC7A1 CAT1 y+ MVM, BM Cationic amino acids [29]
SLC7A2 CAT2B y+ MVM, BM Cationic amino acids

SLC7A3P CAT3 y+ MVM, BM Cationic amino acids

SLC7A5 LAT1 L MVM, BM Cationic amino acids [26,30]
SLC7A6 y+LAT2 y+L MVM, BM Cationic amino acids
SLC7A7 y+LAT1 y+L MVM, BM Cationic amino acids
SLC7A8 LAT2 L MVM, BM Cationic amino acids
SLC7A10 ASC1 ASC BM Small neutral amino acids
SLC7A11 xCT Xc

- ? Cysteine and glutamate

SLC16A10 TAT1 T BM Aromatic amino acids [26]

SLC38A1 SNAT1 A MVM Neutral amino acids [31,32]
SLC38A2 SNAT2 A MVM Neutral amino acids
SCL38A3 SNAT3 N MVM Neutral amino acids
SLC38A4 SNAT4 A MVM Neutral amino acids
SCL38A5 SNAT5 N MVM Neutral amino acids

SLC43A1 LAT3 L BM Neutral amino acids [26,33]
SLC43A2 LAT4 L BM Neutral amino acids

SCL, solute carrier superfamily; MVM, microvillous membrane; BM, basal membrane; ?, unclear; BCAAs, branched
chain amino acids. EAAT, excitatory amino acid transporter. ASCT, Alanine/Serine/Cysteine transporter. rBAT,
related to b0,+ amino acid transporter. 4F2hc, 4F2 cell-surface antigen heavy chain. TAUT, taurine transporter.
CAT, cationic amino acid transporter. LAT, large neutral amino acid transporter. ASC1, Alanine-Serine-Cysteine-1
transporter. xCT, the core subunit of the system Xc

- high affinity cystine transporter. TAT1, T-type amino acid
transporter. SNAT, neutral amino acid transporter. ASC, Alanine/Serine/Cysteine.

Increased expression/activity of SLC7A5 [34] and SLC7A8 [34] and decreased expression/activity
of SLC7A1 [35] in the kidneys have been reported to be relevant to hypertension. However,
the role of placental amino acid transporters in hypertension of developmental origin has not
been adequately studied.

Of note is that placental protein synthesis, metabolism, and interconversions can together influence
the pool of amino acids available for transport [36]. Additionally, the regulation of placental amino acid
transfer is mainly mediated by nutrient-sensing signaling, such as the mechanistic target of rapamycin
(mTOR) pathway [36]. mTOR forms two multiprotein complexes, mTOR complex 1 (mTORC1) and
2 (mTORC2) [37,38]. mTORC1, which consists of mTOR, mammalian lethal with SEC13 protein 8
(GβL), Raptor, and domain-containing mTOR-interacting protein (DEPTOR), is inhibited by rapamycin;
it unifies multiple signals that promote cellular growth and catabolic processes during stress [37].
mTORC2, which consists of mTOR, Rictor, GβL, Sin1, PRR5/Protor-1, and DEPTOR, promotes cell
survival through the activation of Akt [38]. mTOR signaling regulates the activity of several key
placental amino acid transporters. Previous studies have reported that placental mTOR activity, amino
acid transfer, and amino acid transporter activity are decreased in intrauterine growth retardation
(IUGR) [39–41]. Additionally, inhibition of mTOR by rapamycin significantly reduces the activity of
system A, system L, and taurine amino acid transporters [41]. In short, amino acid concentrations in the
fetal circulation are tightly controlled by the placenta, which is decisive for normal fetal development
and lifelong health effects.



Nutrients 2020, 12, 1763 5 of 20

2.3. Amino Acids and Fetal Development

As we reviewed elsewhere [6], excessive or insufficient consumption of a specific nutrient, such as
protein, has been linked to adverse fetal outcomes. One famous example is the Dutch famine study,
which demonstrated that undernutrition in pregnancy is related to an increased risk of developing IUGR
and subsequent hypertension in adult offspring [42]. There is also an association between high-protein
intake in pregnancy and the risk of high BP in adult offspring [43,44]. Yet, few epidemiological human
studies have investigated the impact of excessive or insufficient intake of a particular amino acid on
fetal development and on the offspring outcomes. The total amino acid concentrations have been
shown to be related to fetal outcome, particularly, infant birth weight. A previous study showed
positive correlations among the concentrations of arginine, ornithine, serine, lysine, proline, and
neonatal birth weight [45]. Arginine is a common substrate for nitric oxide (NO) and polyamines
(putrescine, spermine, and spermidine), both of which are crucial for fetal development and placental
angiogenesis [46]. On the other hand, serine is not transported to the fetus in any significant quantity [47].
Thus, these correlations do not necessarily suggest that these amino acids play key roles in fetal growth.
As the changes in a particular amino acid may affect the metabolic processes of other amino acids,
additional studies have focused not only on individual amino acids but also on the balance of the
amino acid pool in fetal development, and further studies are urgently warranted.

3. Amino Acids and Hypertension

3.1. The Role of Amino Acids in the Regulation of BP

Currently, approximately 500 naturally occurring amino acids are known [48]. Among them,
more than a few amino acids have been linked to BP regulation. BP is tightly regulated by several
organs, such as the brain, kidneys, and blood vessels. In conscious rats, intracisternal injections
of the amino acids proline, arginine, cysteine, glutamate, aspartic acid, and asparagine produce
pressor responses, while serine, alanine, taurine, and glycine produce depressor responses [49].
In blood vessels, arginine, homoarginine, and tryptophan are known to exert regulatory effects on
the development of atherosclerosis [50]. Arginine is a substrate for NO, which plays a key role in
endothelium-dependent vasodilatation in blood vessels [51]. Additionally, several arginine-related
amino acids are involved in BP control. Citrulline can be used in the kidneys to produce arginine de
novo. In spontaneously hypertensive rats, citrulline supplementation can increase renal NO production
and prevent hypertension [52]. Protein arginine methylation results in the production of asymmetric
and symmetric dimethylarginine (ADMA and SDMA), both of which cause vasoconstriction via
NO inhibition [53,54]. Homoarginine is a nonproteinogenic amino acid that is structurally closely
related to arginine. Like arginine, homoarginine has been reported to be a substrate in the synthesis
of NO [55]. Methionine is an essential amino acid; among its metabolic byproducts, homocysteine,
when elevated, may induce ADMA production, impair endothelial function, and increase BP [56].
Another sulfur-containing amino acid, cysteine, is the substrate for hydrogen sulfide (H2S). In addition,
cysteine is a component of glutathione, an important antioxidant molecule in our body. As both
glutathione and H2S signaling are closely linked to BP regulation [57,58], cysteine is considered to have
an antihypertensive effect [59]. Likewise, taurine is a sulfur-containing amino acid with a vasodilator
effect [60]. As reviewed elsewhere [61], the antihypertensive effect of taurine supplementation has
been investigated in various hypertensive rat models. Furthermore, tryptophan and its metabolites
have been shown to induce vasodilatation in a dose-dependent manner in the blood vessels [62].
These observations indicate that certain amino acids exhibit organ- or tissue-specific effects on the
regulation of BP.

3.2. Dietary Amino Acids and Established Hypertension

There is some epidemiological evidence of a connection between dietary amino acids and
hypertension. Several amino acids, as mentioned above, interfere with BP regulation; among
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them, dietary arginine supplementation has shown beneficial effects by lowering both systolic and
diastolic BP in patients with hypertension [63,64]. However, in studies focusing on a usual diet,
excluding supraphysiological intake through dietary supplementation, dietary arginine was not
found to be associated with BP [65,66]. A meta-analysis study recruiting a total of 139 adults
from five trials demonstrated that citrulline supplementation has no beneficial effect on BP [67].
Dietary alanine was shown to have a positive relation with BP in the INTERMAP study and in the
THIS-DIET study [68,69]. Additionally, the associations of three aromatic amino acids—phenylalanine,
tyrosine, and tryptophan—with the risk of hypertension were examined [70]. In this cohort study,
which implemented a three-year follow-up assessment, a positive relationship was observed between
a high intake of phenylalanine, but not tyrosine or tryptophan, and hypertension [71]. Another study
showed that plasma phenylalanine, together with branched chain amino acids (BCAAs), has a positive
association with both systolic and diastolic BP [72]. Regarding BCAAs, the results are conflicting:
dietary BCAAs have been shown to be not associated [73], positively associated [70], or even negatively
associated [74], with the risk of hypertension. Probably because of the varying study populations
used and the differences in the study design and end points, there was little consistency among the
BCAAs reported to be associated with the risk of hypertension. Furthermore, the standardization
of instrumentation used in large research populations will open new horizons for scientists seeking
to understand the impact of BCAAs on hypertension. Moreover, a high dietary intake of glutamate
has been reported to be associated with low systolic and diastolic BP [68], while this finding was not
supported by another study [71]. Likewise, the association between homocysteine and BP remains
inconclusive [56]. A meta-analysis of seven trials showed that taurine supplementation at doses
ranging from 1 to 6 g/day for one day to 12 weeks resulted in a mean reduction of ~3 mmHg in both
systolic and diastolic BP [75]. Another meta-analysis of eight observational studies showed an inverse
association between the consumption of dietary plant proteins and hypertension [76]. Plant proteins
have a reduced content of some essential amino acids, such as methionine, lysine, and tryptophan,
in comparison with animal proteins [77]. On the other hand, vegetarians have a significantly higher
intake of the non-essential amino acids arginine, glycine, alanine, and serine [77]. Vegetarians are also
more likely to be exposed to a low content of other putative metabolic stressors, such as saturated fats
and certain lipid-derived compounds present in protein sources of animal origin. Although evidence
suggests a beneficial effect of plant proteins on BP [76–80], more data are needed to show which specific
amino acids from plant proteins relate to BP. Given the large variability in methodologies used for
assessing amino acid levels, the complexity of amino acid interactions, and the heterogeneity in the
study populations recruited, it is not possible to draw robust conclusions on the effects of certain amino
acid intakes on BP in humans [14].

Since epidemiological studies do not dissect the physiological and molecular mechanisms by which
hypertension is created, animal models allowing full control over dietary manipulations are essential
in the discovery of the mechanisms that drive the programming processes and the development of
specific amino acids as reprogramming interventions before clinical translation to human application.

4. Insight from Animal Models Targeting Amino Acids to Prevent Hypertension of
Developmental Origin

Several animal models related to amino acid intake in pregnancy have been conducted to induce
hypertension in offspring. As we reviewed elsewhere [6], models of low protein feeding in rodents,
ranging from 6–9%, induce a rise in BP in adult offspring. These studies demonstrate that more
severe protein restrictions tend to lead to the earlier development of hypertension [79–83]. Similarly,
a maternal low protein diet has been reported to program hypertension-related disorders in adult
offspring in other species, such as pigs, sheep, and cows [84,85].

On the other hand, oversupply or deficiency of specific amino acids in pregnancy have also been
used to explore the mechanisms of developmental programming of hypertension [6]. We recently
found that feeding pregnant rats with a high-methyl-donor diet or a methyl-deficient diet resulted in
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programmed hypertension in their male adult offspring [86]. Such methyl-donor nutrients include
methionine, choline, folic acid, and vitamins B2, B6, and B12. Since these methyl-donor nutrients
are critical intermediates or cofactors for one-carbon metabolism [87], this leads to the notion that
dysregulated one-carbon metabolism may be a critical determinant of the programming of hypertension.

Conversely, certain amino acids can be used as reprogramming interventions to reverse the
early-life insults induced by programmed processes and can consequently protect offspring against
adverse outcomes. In the current review, we only focus on amino acid supplementation starting during
pregnancy as a reprogramming strategy to prevent hypertension of developmental origin in rodent
animal models, as listed in Table 2 [52,88–106]. This list is by no means complete and is likely to grow
quickly, as the study of DOHaD-related disorders is a flourishing field. Rats grow rapidly during
their childhood and reach sexual maturity at around 5–6 weeks of age. In adulthood, one rat month
is equivalent to three human years [107]. Female rats enter menopause between the ages of 15 and
20 months. Accordingly, Table 2 lists the timing of developing hypertension evaluated at different
ages, which allows calculations to refer to humans of a specific age group.

Table 2. Reprogramming interventions targeting amino acid supplementation to prevent the
developmental programming of hypertension in rodent animal models.

Intervention Animal Model Species/Gender Age at
Measure Ref.

Arginine/Taurine

Arginine (20 g/L) and taurine (25 g/L) in
drinking water plus antioxidants * from day 7

of gestation to postnatal week 4
Genetic hypertension FHH/M and F 9 weeks [88]

Arginine (20 g/L) and taurine (25 g/L) in
drinking water plus antioxidants * from day 7

of gestation to postnatal week 8
Genetic hypertension SHR/M and F 24 weeks [89]

Arginine (20 g/L) and taurine (25 g/L) in
drinking water plus antioxidants * from day 7

of gestation to postnatal week 8
Genetic hypertension SHR/M and F 36 weeks [90]

Arginine (20 g/L) and taurine (25 g/L) in
drinking water plus antioxidants * from day 7

of gestation to postnatal week 4
Genetic hypertension SHR/F 48 weeks [91]

Taurine

3% taurine in drinking water during
pregnancy and lactation High-sugar diet SD/F 8 weeks [92]

3% taurine in drinking water during
pregnancy and lactation

Streptozotocin-induced
diabetes Wistar/M and F 16 weeks [93]

3% taurine in drinking water during
pregnancy and lactation Genetic hypertension SHR/M 22 weeks [94]

5% taurine in drinking water during
pregnancy Genetic hypertension SHRSP/M 3 months [95]

Citrulline

2.5 g/L citrulline in drinking water during
pregnancy and lactation

Maternal 50% caloric
restriction SD/M 12 weeks [96]

2.5 g/L citrulline in drinking water during
pregnancy and lactation

Prenatal dexamethasone
exposure SD/M 12 weeks [97]

2.5 g/L citrulline in drinking water during
pregnancy and lactation

Streptozotocin-induced
diabetes SD/M 12 weeks [98]

2.5 g/L citrulline in drinking water during
pregnancy and lactation

Maternal L-NAME
exposure SD/M 12 weeks [99,

100]
2.5 g/L of water from day 7 of gestation to

postnatal week 6 Genetic hypertension SHR/M and F 50 weeks [52]
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Table 2. Cont.

Intervention Animal Model Species/Gender Age at
Measure Ref.

Cysteine

1% NAC in drinking water during pregnancy
and lactation

Prenatal dexamethasone
and postnatal high-fat diet SD/M 12 weeks [101]

1% NAC in drinking water during pregnancy
and lactation

Suramin-induced
pre-eclampsia SD/M 12 weeks [102]

1% NAC in drinking water during pregnancy
and lactation

Maternal L-NAME
exposure SD/M 12 weeks [103]

NAC (500 mg/kg/day) in drinking water from
gestational day 4 to postnatal day 10

Maternal nicotine
exposure SD/M 8 months [104]

Glycine

3% glycine in chow during pregnancy
and lactation

Maternal 9% protein
restriction Wistar/M 4 weeks [105]

Branched chain amino acids

BCAA-supplemented diets in pregnancy Maternal 70% caloric
restriction SD/M 16 weeks [106]

Studies tabulated according to type of amino acid, animal model, species, and age at measure. * Antioxidants:
vitamin C (594 mg/L) in drinking water and vitamin E (9 g/kg) in chow. FHH, Fawn-hooded hypertensive rat; SD,
Sprague–Dawley rat; SHR, spontaneously hypertensive rat; SHRSP, stroke-prone spontaneously hypertensive rat;
M, male; F, female; L-NAME, NG-nitro–L-arginine methyl ester; NAC, N-acetylcysteine.

4.1. Arginine

Using an oral range of 3–100 g/day, arginine supplementation has been studied in human diseases
as a method to improve NO bioavailability [108]. Single doses exceeding 9 g and a dosing regimen of
over 30 g/day have been reported to cause gastrointestinal upset [109]. Thus far, the benefits of arginine
from human trials remain inconclusive [110]. As shown in Table 2, perinatal arginine supplementation
combined with taurine and antioxidants protects adult offspring against hypertension in spontaneously
hypertensive rats (SHRs) and Fawn-hooded hypertensive (FHH) rats, two commonly used genetic
hypertensive rat models [88–91]. In SHR, the BP-lowering effect of combined perinatal arginine and
taurine supplementation continues to 48 weeks of age [91], which is equivalent to human young
adulthood. Although arginine supplementation alone during the post-weaning period can prevent
hypertension in offspring rats exposed to maternal caloric restriction or diabetes [111,112], whether
perinatal arginine supplementation alone is associated with these effects has not been elucidated.
Of note is that differential gene expression in two-day-, two-week-, and 48-week-old rats varies
between control SHRs and SHRs treated with combined arginine and taurine supplementation, but the
treatment alters only a few genes toward the normotensive control Wistar Kyoto (WKY) phenotype.
These findings suggest that the persistent antihypertensive effect of amino acid supplementation
might be epigenetic and related to renal transcriptome changes [91]. Furthermore, supplementation of
arginine during the gestational period has been shown to have protective effects on IUGR in ovine
and swine [113,114]. However, currently, the reprogramming effects of arginine supplementation in
pregnancy, other than in terms of IUGR, have not been fully examined in these species.

4.2. Taurine

Table 2 indicates that taurine is the most commonly supplemented amino acid in pregnancy
for studying programmed hypertension. Taurine is the most abundant sulfur-containing amino
acid [115] and is mainly acquired from dietary sources, despite the fact that it can be synthesized
from cysteine. During pregnancy, taurine accumulates in maternal tissues and is released to the fetus
via the placenta [116]. In the human body, the most critical period for taurine exposure is during
perinatal life, as its content is the highest during early postnatal life and declines with advancing
age [116]. In rats, dietary taurine supplementation has been reported to prevent hypertension induced
by a high-salt, high-fructose diet as well as various genetic hypertensive models [60,61,117,118].
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Taurine has several potentially beneficial antihypertensive effects that involve the regulation of NO
and H2S, the renin–angiotensin system (RAS), oxidative stress, and sympathetic activity [60,61,119].
Table 2 shows that combined use of taurine and arginine in the perinatal period causes a reduction
of BP in SHRs as well as in FHH rats [88–91]. Perinatal taurine supplementation alone has also
been shown to prevent hypertension in SHRs and stroke-prone spontaneously hypertensive rats
(SHRSP) [94,95]. Additionally, maternal taurine supplementation protects adult offspring against
hypertension programmed by maternal high-sugar intake or diabetes [92,93]. However, the long-term
reprogramming effects of perinatal taurine supplementation on an offspring’s BP in later life still
requires further clarification.

4.3. Citrulline

Citrulline is a non-essential amino acid that is made naturally in the human body, found in food
(e.g., watermelon), and is available as a dietary supplement [120]. As citrulline can bypass hepatic
metabolism and can be converted to arginine in the renal system, oral citrulline supplementation
has been considered as an add-on therapy to raise plasma arginine concentrations and to increase
NO production [120]. In humans, citrulline supplementation as a single oral dose, ranging between
2 and 15 g, is safe and well tolerated [121]. Following oral citrulline supplementation, circulating
arginine concentrations reach their peak after 1–2 h [121]. In pregnancy, citrulline undergoes limited
degradation in the placenta, being efficiently transferred from the mother to the fetus in favor of
fetal development [122]. Thus far, evidence suggests that there are beneficial effects of citrulline
supplementation on cardiometabolic health [123]. However, the long-term effects of citrulline
supplementation in pregnancy on offspring outcomes remain largely unknown.

Citrulline supplementation has been used in pregnancy and lactation as a reprogramming
intervention to protect adult rat offspring against hypertension in several rat models, including maternal
caloric restriction [96], prenatal dexamethasone exposure [97], streptozotocin-induced diabetes [98],
and maternal NG-nitro–L-arginine methyl ester (L-NAME) exposure [99,100]. Additionally, perinatal
citrulline supplementation can restore NO bioavailability to prevent the transition of prehypertension
to hypertension in spontaneously hypertensive rats [52]. Of note is that a 50% caloric restriction in
pregnant ewes significantly reduced the total concentrations of α-amino acids (particularly serine,
arginine, and BCAAs) in maternal and fetal plasma at both mid- and late-gestation [124]. Similar to the
protein restriction diet model [79,80,105], 50% caloric restriction was found to cause IUGR, a common
adverse outcome of maternal undernutrition [42,124]. These findings suggest that caloric restriction
in pregnancy is equivalent to undernutrition and occurs with certain amino acid deficiencies. In a
maternal NO deficiency rat model, maternal citrulline supplementation prevented hypertension
programmed by L-NAME exposure, which is associated with more than 300 genes, and exhibited a
significant change in the renal transcriptome in adult offspring [100]. These findings suggest that early
citrulline supplementation has a long-term impact on the renal transcriptome. Thus, the implications
of epigenetic regulation by citrulline at an early stage of programming deserve further clarification.

4.4. Cysteine

Like taurine, cysteine is another sulfur-containing amino acid [62]. Cysteine is also known to be
rate-limiting for the synthesis of glutathione [59]. Cysteine supplementation has been used to create
endogenous H2S in experimental studies [58]. Although early post-weaning cystine supplementation
has been reported to prevent hypertension in high-salt-treated SHRs [125], gestational supplementation
with cysteine has not yet been examined in developmental models of hypertension. As cysteine tends to
be absorbed into cells where it cannot exhibit its antioxidant property, N-acetylcysteine (NAC), a stable
cysteine analogue, is often used instead for this purpose. As shown in Table 2, the antihypertensive
effects of perinatal NAC therapy have been reported in several animal models, including prenatal
dexamethasone treatment and a postnatal high-fat diet [101], suramin-induced pre-eclampsia [102],
L-NAME exposure [103], and maternal nicotine exposure [104]. Notably, the reprogramming effect of
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perinatal NAC supplementation is persistent in offspring rats at 8 months of age and correlates with
early stages of middle adulthood in humans [104].

4.5. Others

There are other reprogramming interventions related to amino acids by which hypertension
could be prevented in adult offspring, such as supplementation with glycine [105] and BCAAs [106].
First, supplemental glycine might have potential benefits on human disorders, as it contributes to
glutathione synthesis [126]. Only one study has shown that perinatal glycine supplementation protects
offspring against hypertension programmed by a maternal low-protein intake [105]. Second, BCAA
supplementation in pregnancy is able to prevent hypertension programmed by maternal caloric
restriction in adult offspring [106]. In the human body, BCAAs not only act as building blocks for
protein synthesis but also act as a fuel source and regulate autophagy via the activation of mTOR [127].
Given the fact that the few studies that have addressed the association of BCAAs with hypertension
have been inconclusive [72–74,127], there remains a need to better understand the reprogramming
effects for perinatal BCAA use, especially in hypertension.

5. Common Mechanisms in the Developmental Programming of Hypertension

As various manipulations of amino acid supply in pregnancy create very similar protective effects
against hypertension in adult offspring, there might be some common mechanisms that contribute to
their beneficial effects on programmed hypertension. To date, several mechanisms have been linked
to the developmental programming of hypertension [128–133]. Some of the mechanisms that have
been related to the beneficial effects of amino acids include oxidative stress, epigenetic regulation,
nutrient-sensing signals, and gut microbiota (Figure 1). Here, each of these is discussed in turn.

5.1. Oxidative Stress

Oxidative stress reflects an imbalance between the production of reactive oxygen species and
antioxidant defense. NO, a free radical, plays a role in oxidative stress, and NO deficiency and increased
oxidative stress are involved in the pathogenesis of hypertension [134]. Exposure to early-life oxidative
stress can increase the risk of developing hypertension in later life [135]. Diverse nutritional insults
in pregnancy have been reported to induce programmed hypertension attributed to oxidative stress,
including caloric restriction [96], a low-protein diet [81], a methyl-donor diet [87], a high-fat diet [136],
and a high-fructose diet [137]. Although a maternal low-protein diet leads to a decrease in the total
amino acid concentration in the fetal circulation [138], whether the consumption of a specific amino
acid that is deficient in pregnancy may result in oxidative stress and programmed hypertension in
adult offspring remains unclear.

Several amino acids have antioxidant properties. The major antioxidant nutrient in the human
body is glutathione, which is a tripeptide comprising cysteine, glutamate, and glycine. Several studies
have reported that supplementation with NAC, a stable analogue of cysteine, can reduce oxidative
stress and protect offspring against hypertension [101–104]. Additionally, glycine supplementation
protects offspring against hypertension programmed by maternal low-protein intake [105]. Thus,
these findings suggest that the suppression of oxidative stress may contribute to the antihypertensive
effects of amino acid supplementation. However, whether the antioxidative ability of these amino
acids themselves is important for lowering the BP in concert with other BP-reducing actions requires
further elucidation. The restoration of NO depletion in pregnancy also contributes to the protective
mechanisms that underlie programmed hypertension [132]. Perinatal supplementation with certain
amino acids, including arginine [89], citrulline [96–100], and NAC [102], can restore NO bioavailability
and can protect adult offspring against the development of hypertension.
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5.2. Epigenetic Regulation

Epigenetic regulation processes, such as DNA methylation, histone modifications, and noncoding
RNAs, are involved in mediating the effects of early-life nutritional influences on lifelong health [130].
DNA methylation is dependent on the one-carbon metabolism pathway [139]. Several amino acids,
such as glycine, histidine, methionine, and serine, are involved in this pathway as they supply methyl
donors for DNA and protein synthesis [139].

A low-protein diet in pregnancy has been reported to influence promoter methylation status
and the expression of the glucocorticoid receptor (GR) and peroxisome proliferator-activated receptor
(PPAR) genes of mice offspring via the acetylation of histones H3 and H4 and the methylation of
H3K4 [135]. Importantly, emerging evidence indicates that both the GR and PPARs play important
roles in hypertension of developmental origin [140,141]. Additionally, a low-protein diet has been
associated with DNA hypermethylation of the agtr1b gene, which is implicated in hypertension [142].
Since our previous study demonstrated that feeding pregnant rats with a high-methyl-donor diet or
a methyl-deficient diet causes a rise in BP in their male adult offspring [87], whether these amino
acids involved in the one-carbon metabolism pathway play roles in the DNA methylation of genes
related to BP regulation deserves further study. Currently, only a few studies have reported, using
high-throughput DNA sequencing technologies, that early amino acid supplementation permanently
alters the transcriptome expression profile in offspring [129]. Since arginine/taurine [91] and
citrulline [97] supplementation in early life can alter various genes that drive the programming
processes that affect the lifelong health of offspring, a better understanding of the underlying
epigenetic mechanisms is urgently required. Overall, these studies support the idea that amino
acid supplementation in pregnancy can epigenetically program the development of hypertension in
later life. Nevertheless, the detailed mechanisms underlying the epigenetic modulation of particular
genes by different types of amino acids still require additional study.

5.3. Nutrient-Sensing Signals

Imbalanced nutrition and metabolic insults in early life can disturb nutrient-sensing signals
that play key roles in fetal metabolism and development [131]. PPARs, mTOR, silent information
regulator transcript (SIRT), PPARγ coactivator-1α (PGC-1α), and cyclic adenosine monophosphate
(AMP)-activated protein kinase (AMPK) are well-known nutrient-sensing signals [143]. Activation of
AMPK by an increased NAD+/NADH ratio or activation of SIRT1 by an increased mitochondrial
AMP/adenosine triphosphate (ATP) ratio can affect PGC-1α activity, thereby promoting mitochondria
biogenesis [144]. The interplay among SIRT1, AMPK, mTOR, and amino acids tightly regulates
autophagy [145]. Certain amino acids can activate the amino acid sensors upstream of mTORC1 to
inhibit autophagy [36]. Among the various amino acids, leucine, phenylalanine, and tyrosine are
the most potent for inhibiting autophagy [146]. Likewise, BCAAs can regulate autophagy via the
activation of mTOR [127]. Hypertension programmed by a maternal methyl-donor diet is associated
with the reduced expression of nutrient-sensing signaling in several forms, including Sirt1, Pparb,
Pparg, and Prkaa2 [87]. Conversely, activation of the AMPK/SIRT1/PGC-1α pathway can reverse the
programming process and prevent hypertension in adult offspring [147].

On the other hand, amino-acid-dependent signaling driven by maternal nutritional interventions
has been found to regulate PPARs and their target genes, thereby generating the programming of
hypertension [141,146]. Several PPAR target genes related to oxidative stress and the RAS, such as
Nos2, Nos3, Sod2, Nrf2, Sirt7, Ren, and Sgk1, are implicated in hypertension. Furthermore, PPARγ
can increase several sodium transporters to increase sodium reabsorption, leading to programmed
hypertension [103]. To sum up, these findings closely link amino acids to nutrient-sensing signals and
hypertension of developmental origin. It will be necessary to study the mechanisms that underlie
the interactions between specific amino acids and nutrient-sensing signals and their impacts on the
hypertension programming process.
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5.4. Gut Microbiota

Maternal nutritional insults can impair the gut microbial balance, leading to consequent adverse
offspring outcomes, including hypertension [148]. The gut microbiota produces a variety of metabolites
that are detectable in the host circulation, including short-chain fatty acids, small organic acids, bile
acids, vitamins, and choline metabolites [149]. Additionally, the gut microbiota can metabolize almost
all essential amino acids, which is critical for amino acid metabolism [150]. The catabolism of amino
acids plays a key role in regulating the intestinal barrier and immune response [151]. Some functional
amino acids, like tryptophan, glutamine, methionine, and BCAAs, have been shown to have beneficial
effects on the gut-associated immune system [152]. Accordingly, the gut microbiota not only alter
the pool of amino acids transported from the intestine to the circulation, they also secrete various
metabolites characterized by nitrogen- and sulfur-containing materials.

Several proposed mechanisms, such as increased sympathetic activity, activation of the RAS,
alterations of microbial metabolite short-chain fatty acids and trimethylamine-N-oxide, inhibition of
NO, and mediation of the H2S signaling pathway, link gut microbiota dysbiosis to hypertension [152].
On the other hand, probiotics are emerging as a functional food supplement that provides several
health benefits, including the lowering of BP [153]. A recent study from our laboratory indicates that
modulation of the gut microbiota by prebiotics or probiotics can prevent hypertension programmed by
a perinatal high-fat diet [154]. Despite the demonstration in recent studies that microbiota-targeted
therapies can be applied to several diseases [155], whether dietary amino acid supplementation can
improve the gut microbiota and mucosal immunity, therefore benefiting the offspring’s BP, requires
further exploration.

6. Conclusions

In pregnancy, amino acids play an essential role in fetal growth and development. This review
highlights the impact of an imbalanced amino acid intake in pregnancy on the risk of developing
hypertension in adult offspring. In particular, the targeting of specific amino acids as a reprogramming
strategy opens a new avenue for preventing hypertension of developmental origin. However,
this reprogramming strategy is in its infancy, so we must consider that any nutritional interventions in
pregnancy could have unintended long-term consequences. So far, there remains a lack of accurate
dietary recommendations for amino acid requirements for pregnant women. Given the complexity of
amino acid metabolism between the mother and the fetus in pregnancy and the multifactorial nature
of hypertension, elucidation of the pathophysiologic roles of specific amino acids and their interactions
in the developmental programming of hypertension are needed before mothers and their children are
able to benefit from using amino acid supplementation during pregnancy to prevent hypertension
in adulthood.
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