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Abstract: Most commercial prosthetic hands lack closed-loop feedback, thus, a lot of research has been
focusing on implementing sensory feedback systems to provide the user with sensory information
during activities of daily living. This study evaluates the possibilities of using a microphone and
electrotactile feedback to identify different textures. A condenser microphone was used as a sensor to
detect the friction sound generated from the contact between different textures and the microphone.
The generated signal was processed to provide a characteristic electrical stimulation presented to
the participants. The main goal of the processing was to derive a continuous and intuitive transfer
function between the microphone signal and stimulation frequency. Twelve able-bodied volunteers
participated in the study, in which they were asked to identify the stroked texture (among four used
in this study: Felt, sponge, silicone rubber, and string mesh) using only electrotactile feedback. The
experiments were done in three phases: (1) Training, (2) with-feedback, (3) without-feedback. Each
texture was stroked 20 times each during all three phases. The results show that the participants
were able to differentiate between different textures, with a median accuracy of 85%, by using only
electrotactile feedback with the stimulation frequency being the only variable parameter.

Keywords: electrotactile feedback; texture sensor; non-invasive stimulation; friction sound; feature
extraction

1. Introduction

Every day the human hand is used to explore and interact with the surroundings. This
is made possible by the delicate interaction between the sensory and motor systems in the
peripheral and central nervous system. The human hand consists of 17,000 mechanorecep-
tors such as Meissner’s corpuscles, Merkel disks, Ruffini organs, and Pacinian corpuscles,
located at different depths in the skin and they react to different stimuli [1]. They are
categorized depending on the size of their receptive fields, adaptation rate, and location
in the dermis. Exploring a texture with the fingers elicits texture-specific vibrations in the
skin, activating both Pacinian and Meissner’s corpuscles which respond to high-frequency
respectively to low-frequency vibrations [2].

Both the spatial pattern of the object manipulated and the temporal pattern with which
the object is being manipulated play a role in texture perception. The different patterns are
conveyed in afferent responses. The spatial, such as gratings and Braille dots (on the order
of millimeters), evoke a response of slowly adapting type I (SAI) afferents. However, in dis-
criminating natural textures the temporal pattern is more dominant. The temporal pattern
is encoded in the responses of rapidly adapting (RA) afferents and Pacinian corpuscles [3].

The loss of a hand, through amputation, disconnects the afferent and efferent pathways
from reaching their targets. In order to achieve the motor control necessary for object
manipulation and object identification, the afferent pathways provide crucial information to
close the loop between the hand and the brain and provide sensory feedback [4]. In addition,
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sensory feedback is essential for information about an object’s physical properties, such as
texture, softness/hardness, etc.

Several different commercial prosthetic hands restore some motor functions to the
amputee. However, these prostheses do not provide any sensory feedback and sensory
feedback has been highlighted, by prosthesis users, as one of the desired functions in
prosthetic hands [5]. It has been suggested that sensory feedback in a hand prosthesis
should be modality-matched, meaning that pressure on a finger should be experienced as
pressure by the amputee. Furthermore, the feedback should be somatotopically matched,
meaning that pressure applied on, for example, the prosthetic index finger should be
experienced as sensory stimulation on the index finger by the amputee. Somatotopically
matched and modality matched sensory feedback mimics normal physiology and thus may
reduce the cognitive burden that sensory substitution imposes on the prosthetic user [6].
Furthermore, it has been shown that adding sensory feedback facilitates the control of the
prosthesis [7].

One way to provide sensory feedback is to use transcutaneous electrical nerve stimu-
lation (TENS), a technique that is based on high-voltage electrical pulses sent through a
pair or a plurality of electrodes placed on the skin, to stimulate nerve fibers. It is commonly
used to relieve pain [8] or provide electrotactile feedback [9]. In addition, TENS can play
an important role in the control of manipulation tasks for prosthesis users [10–14] and
assisting in the interpretation of objects [15]. TENS applied to the skin over the median
or ulnar nerve in the amputation stump result in sensations experienced as originating
from the median or ulnar nerve innervated fingers in the lost hand (somatotopic sensa-
tion) [16]. Using TENS could aid prostheses users to discriminate a surface’s texture in a
more intuitive manner and without sensory substitution, which is dominant in the case
of other types of sensory feedback. Additionally, electrotactile feedback could potentially
reduce phantom limb pain and stump pain in transtibial amputees [17] and also enhance
the feeling of embodiment [18].

Technical solutions to provide sensory feedback of the force generated during a grasp
are well explored, while feedback for texture perception for use in prosthetic hands is
not. Interestingly, sensors used to detect texture-information are more common in self-
organizing robots or robotics in applications such as health, eldercare, and manufactur-
ing [19–23]. To provide an amputee with natural sensory feedback, implants that directly
stimulate a peripheral nerve have been proposed. By using an artificial fingertip with a
Micro Electro Mechanical System (MEMS) sensors using four transducing piezoresistors,
the user could discriminate different textures based on the produced patterns of electrical
pulses, which in turn, stimulate the nerves in the arm [24]. The small size and low power
consumption in MEMS sensors are advantageous if used in a prosthesis. A proposed
system for sensory substitution, to be used in prosthetic hands, used a force-torque sen-
sor to obtain texture data from three different types of textures. By using a convolution
neural network (CNN) algorithm, the different textures were classified and converted to
vibrational stimulations [25]. Sensors based on Polyvinylidene Fluoride (PVDFs) films
have been used for texture detection [26]. PVDFs, when stimulated by vibrations, display
similar characteristics to fast adapting mechanoreceptors [22]. Yi et al. [27] developed a
bioinspired tactile sensor based on piezoelectric materials, which was shown to mimic
Meissner’s corpuscles. In addition, multi-modal sensors have been used to identify dif-
ferent materials, by implementing multiple gauge sensors, to capture resistance changes,
together with PVDFs to capture electric potential changes. As mentioned, PVDFs are
equivalent to fast adapting mechanoreceptors while the gauge sensors represent the slow
adapting mechanoreceptors that detect lateral stretch, hence, it detects the static properties
of a stimulus [22,23].

It has been shown that participants who have lost sensibility in a hand can substitute it,
to some extent, with auditory information [28]. The participants could differentiate between
different textures by listening to the friction sound picked up by small microphones.
Another study used a microphone attached to the forearm to show that vibrations occurring,
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when the fingertip was sliding over a rough surface, can propagate from the fingers to
the forearm [29]. This suggests that a microphone is a good candidate to pick up a
texture’s acoustic characteristics. A classification analysis showed that the frequency
composition in the texture-elicited vibrations consists of enough information to allow for
the identification of different textures with high accuracy [30]. An early approach to texture
recognition, a sensing pen was developed containing an electric microphone to classify
different textures using neural networks [31]. A study showed promising results to use a
capacitor microphone with an attached metal edge for texture sensing. When exploring
different textures, the metal edge vibrates in different frequencies depending on the textural
properties of the stroked material. The different textures could then be identified by using
signal processing with the fast Fourier transformation (FFT), coupled with a supervised
Learning Vector Quantization (LVQ) [32]. Another study implemented a node network of
10 microphones in robotic skin and classified different textures with a logistic regression
model [33].

The current paper contributes a simple electrotactile feedback system with a computa-
tional method to convert recorded friction sounds, arising from stroking different textures,
into somatotopic electrical stimulation in real-time. Electrical stimulation was chosen
because of its easy application and the control of the stimulation parameters, such as the
amplitude and frequency. The friction sound of a texture was recorded with a condenser
microphone and median frequency was calculated of the audio spectrum. By analyzing
the accuracy for discriminating different textures with the proposed system, conclusions
can be made if the system is fit to be used as a texture sensing substitute. With the pro-
posed system the participants had an overall median accuracy of 85% in discriminating
different textures.

2. Materials and Methods
2.1. Participants and Ethics Approval

Twelve able-bodied participants, 10 males and 2 females (median age, 31 years; range,
24–44), with no known neurological disorders participated in the study. Two participants
had previous experience of electrical stimulation, however, they were not familiar with
the current study protocol. The rest of the participants had llittle knowledge of electrical
stimulation in general. All participants provided informed consent, and the study was
approved by the Swedish Ethical Review Authority (DNR 2020-03937).

2.2. Equipment

Four different textures [34] (see Figure 1) were used to evaluate the ability to discrimi-
nate between different surfaces based on electrotactile feedback.

a b c

anodecathode

Figure 1. (a) Close-up image of the omnidirectional electret condenser microphone with an amplifier module. An isolation
cable was put on the circuit board for an easier grip of the microphone during the stroking and to reduce interference
with the components on the printed circuit board (PCB). (b) The experimenter was stroking the different textures with a
microphone in a proximal to distal direction. (c) Placement of the electrodes on the participant’s forearm. The cathode was
placed over the median nerve while the anode was applied on the upper part of the forearm.
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An omnidirectional electret condenser microphone with an amplifier module (Adafruit
MAX9814, Adafruit Industries, New York, NY, USA) (Figure 1a) was used as a sensor for
the exploration of different textures, by picking up the friction sounds during stroking.
The operating frequency range of the microphone was 20–20,000 Hz and the gain was set
to 60 dBA. During the experiments, the experimenter was holding the microphone by hand
while stroking the textures so that the enclosure was in direct contact with the surfaces
(Figure 1b), thus, it was able to pick up the friction sound. The digitalization of the audio
signal was done by a PJRC Teensy 4.0 microcontroller (32 bit 600 MHz ARM Cortex-M7
processor, using an NXP iMXRT1062 chip, PJRC.com, LLC, Sherwood, OR, USA). As the
initial tests of the microphone-textures interaction showed that the friction-originated audio
signal for the different textures was below 3 kHz, the microphone signal was sampled at
6 kHz with 16-bit resolution. The processing of the microphone signal and extraction of the
signal features that depicted characteristic vibrational/audio responses during the tactile
exploration was done in real-time by Teensy.

The extracted signal features were sent to a custom-made electrical stimulator ca-
pable of producing biphasic charge-balanced cathodic-first current-controlled pulses of
amplitudes in the range from 0.1 mA to 10 mA (steps of 0.1 mA), and frequencies of 1 to
100 Hz. The DC/DC boost switching regulator was used to generate stimulation voltage
which was maximally 38 V (depending on the skin impedance and the stimulation current).
The stimulation control was done by an onboard PIC18F25K22 microcontroller (Microchip
Technology, Chandler, AZ, USA). The microcontroller managed generation of the stimula-
tion patterns and communicated with both, the Teensy microcontroller and PC, enabling
alteration of stimulation parameters in real-time. The electrical stimulation was delivered
to the participants through self-adhesive Pals electrodes (Axelgaard Manufacturing Co.,
Lystrup, Denmark), placed on the skin over the median nerve so the sensations following
stimulation, were associated with the median nerve innervated fingers (thumb, index,
and the middle finger) and palm area. An overview of the system can be seen in Figure 2.
The PC included in the setup had a non-essential role as it was used just to initiate the
protocol and visualize stimulation frequency in real-time during the experiments.

Figure 2. System overview. The manual stroking was performed by the experimenter with an omnidirectional electret
microphone with the integrated amplifier. The audio signal was digitized by a Teensy 4.0 microcontroller for further signal
processing and signal features extraction. The calculated median frequency was then sent to the custom-made electrical
stimulator through a Universal Asynchronous Receiver/Transmitter (UART) connection. The electrical stimulation was
then delivered through self-adhesive Pals electrodes attached to the participant’s forearm skin over the median nerve. Both,
Teensy and the stimulator were communicating with a PC using their UART connections.

2.3. Algorithm

The formulation of the algorithm presented in this paper was based on several empiri-
cal pre-tests (the algorithm evaluation stage) that were used to characterize friction-based
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interaction between the microphone and selected textures. These pre-tests identified the
audio frequency range resulting from friction with selected textures and the behavior
of several signal features, such as total signal power, peak frequency, mean frequency,
and median frequency, during manual stroking.

The first step of the algorithm that was designed and implemented, as a part of this
study, was the calculation of the frequency content of the microphone signal. The FFT
calculation was performed on 2048 samples of the digitalized audio signal using a modified
version of the Arduino library (http://github.com/kosme/arduinoFFT, accessed on 11
November 2020). The FFT was updated after every 128 samples, corresponding to a ∼50 Hz
update rate with the sampling rate of 6 kHz. In the next step, the spectral components at
50 Hz and below 20 Hz were removed from the FFT spectrum.

The feature of the microphone signal that was heuristically chosen, was the median
frequency of the audio spectrum. Besides this feature, several other well-known features,
such as the mean frequency and the audio signal envelope, were tested in a small sample
trial, but the median frequency showed the best results in discriminating different textures.
In the next step, the median frequency was linearly translated into stimulation frequency.
The rationale for devising the transfer function was to shift the median frequencies of
the audio signal to the range of stimulation frequencies that are commonly used for
sensory/neural stimulation [35,36]. The devised transfer function equation was:

stim = (median f − lowerB)/scaling + 5, (1)

where stim denotes the stimulation frequency (in Hz) that was sent to the stimulator, medianf
denotes the median frequency signal feature, lowerB denotes the lowest median frequency
that was empirically chosen as relevant, and scaling denotes the linear scaling factor used
to constrain the possible median frequencies of the microphone signal into the range of
stimulation frequencies produced by the stimulator. In the current study, the lowerB and
scaling constants were empirically set to 50 and 10, respectively. The addition of 5 Hz was
done to constrain the lower dynamics of the stimulation as extremely low frequencies
would significantly reduce the information bandwidth delivered to the participant. In other
words, sending a low stimulus frequency (e.g., below 1 Hz) would mean that the next
stimulation pulse, and also the change of stimulation frequency, would have to wait for
a long time (more than 1 s in the case of <1 Hz stimulation). This is the result of the
electronic stimulator protocol which accepts updates only after producing a stimulation
pulse specified by the last command. In addition, the stimulation frequency resulting from
Equation (1) was constrained to 80 Hz, thus frequencies calculated as higher than 80 Hz
were set to 80 Hz. The total processing time of the system is calculated to be 220 ms, which
includes the communication delay (UART) of 20.6 ms, and due to the waiting until the last
desired pulse is generated (max 200 ms in the case of 5 Hz stimulation). The processing
time is considered to be fast enough to be considered “real-time” and should not affect the
results as the reaction time to sensory stimuli is 50–300 ms [37].

Apart from the calculation of the stimulation frequency, the algorithm extracted the
total signal energy from the microphone signal over the last 2048 samples, by summing the
spectral components from 1 to sampling_frequency/2, which was used to enable/disable
the stimulation. The stimulation was activated in the case of the magnitude exceeding
the empirically chosen threshold, in this case, 300 mV. The threshold was set so that the
stimulation was active only while the microphone was in contact with a surface.

The medians of the audio signal can be seen in Figure 3, with an error which is set
to lower and upper quartiles of 25% and 75% respectively. As seen in the figure, there
is some overlap between median frequency patterns resulting from stroking different
textures. The silicone has a median frequency which gradually ramps up in frequency
during the stroke, sponge and felt had a median frequency of approximately 200 Hz
and 50 Hz, respectively while the mesh has a varying median frequency. The frequency
responses presented in Figure 3 were obtained during the evaluation stages of the algorithm
when the experimenter stroked the textures in an unobstructed (without any disturbances

http://github.com/kosme/arduinoFFT
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between stroking) and paced manner (the visual cue for executing strokes was given
every 10 s). In the experiments with participants, the experimenter had to wait between
consecutive strokes until the participant responded, which reduced repeatability leading
to inconsistent stroke duration and dynamics. Another important difference between the
algorithm evaluation stage and the study was that the median frequency update interval
in the case of the evaluation stage was constant (∼50 Hz) while during the experiment the
update was constrained by the latest stimulation frequency, thus ranging from 50 Hz to
5 Hz. This limitation was particularly noticeable when the median frequency of the audio
signal was low, e.g., while the sponge or mesh was being stroked, and during the initial
part of the stroke in the case of silicone rubber.

(a) (b)

Figure 3. Consistency-test for the four textures. A total of 20 strokes were applied on each texture. (a) Median frequency
error, set with lower and upper quartile (25% and 75%). There was a better consistency for felt and sponge, but the error is
bigger for the silicone rubber and mesh. (b) The time consistency during the strokes.

2.4. Protocol

The experiment consisted of three phases: (1) Training phase, (2) feedback phase,
and (3) without feedback phase. All phases were performed with participants sitting down
in a quiet room. The initial step of the protocol was the placement of the stimulation
electrodes. The anode (rectangular 7 × 10 cm Pals electrode) was placed on the ventral side
of the forearm, while the cathode (round 2.5 cm in diameter Pals electrode) was placed over
the median nerve, just proximal to the wrist as shown in Figure 1c. In this area, the median
nerve is located between the tendon of the flexor carpi radialis longus muscle and the
tendon of the palmaris longus muscle. Next, a stimulation at 50 Hz, with a duration of
2 s was applied to identify a sensory threshold, pain threshold, and the presence of the
somatotopic sensation due to the nerve stimulation. After finding the sensory threshold
with the resolution of 0.1 mA, the current intensity was increased in steps of 1 mA until
reaching a painful level of stimulation. As the current output of the electronic stimulator
was limited to 10 mA, the pain threshold was also capped at 10 mA. The amplitude of the
current pulses that were used in the experiment was set to level = 3 (on a scale between
0 = no-sensation and 10 = maximum pain level), where the sensory threshold is level = 1
and the pain threshold level = 8. Level = 3 is considered to provide a distinct stimulation
without evoking any pain. The stimulation amplitude for each participant can be seen in
Table 1. At the current amplitude selected for the experiment, each participant was asked
to inform the examiner about where he/she perceived the stimulation. If the stimulation
was perceived in median nerve innervated skin areas, such as the thumb, index finger,
middle finger, and part of the ring finger, but not at the electrode location, the stimulation
was considered somatotopic. In the case of non-somatotopic sensation, the cathode was
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slightly relocated, and the previous steps were repeated until an electrode location leading
to somatotopic sensations in median nerve innervated fingers were found.

Table 1. Participants in the study and the individually-set levels of stimulation amplitude (mA)
where the stimulation frequency was 50 Hz and with a pulse duration on 250 µs. The perception
threshold (Level 1) is the just-noticeable stimulation amplitude. The pain threshold (Level 8) is
when the amplitude is too high for the participant to endure. The stimulation amplitude chosen for
this study (Level 3) is the amplitude that was considered to provide the participant with a distinct
stimulation that was also comfortable for prolonged exposure.

Participants Perception Threshold Stimulation Pain Threshold
(Level 1) (Level 3) (Level 8)

M1 3.2 5.1 10.0
M2 2.2 3.9 8.0
M3 2.8 3.4 5.0
F1 3.0 5.0 10.0
M4 3.1 5.1 10.0
F2 2.1 3.8 8.0
M5 1.3 2.1 4.0
M6 2.3 4.2 9.0
M7 2.3 3.4 6.0
M8 1.7 3.8 9.0
M9 2.0 4.0 9.0
M10 3.5 4.8 8.0

Upon establishing the stimulation amplitude, the training phase of the experiment was
initiated. In this phase, the experimenter sequentially stroked each texture for 20 cycles (in
total 80 strokes) with an estimated speed of 14–25 mm/s. During this phase, the participant
got to watch the strokes and at the same time receive the electrotactile feedback.

After finishing 20 cycles, the participant was blindfolded and acoustically insulated
using headphones, and the stimulation with the feedback phase was initiated. During this
phase, the experimenter stroked the different textures in a proximal to the distal direction in
a randomly predefined sequence, while the participant was instructed to verbally identify
the texture. Up to two additional repetitions of the same texture were allowed, if requested
by the participant. Upon receiving a response from the participant, the experimenter
provided verbal feedback consisting of true/false statements and the information regarding
the stroked texture (in the case of false response by the participant). This phase consisted
of 20 repetitions of each texture (80 in total). Upon completing the phase, a short break was
taken (approximately 5 min).

The final phase also comprised 20 repetitions of each texture in a new randomized or-
der, but without feedback from the experimenter. As in the previous phase, two additional
repetitions of the same texture were allowed for the participant.

It should be noted that all of the strokes were subjected to variability due to the
manual execution by the experimenter. Specifically, with sticky or rough surfaces, such as
silicone rubber, the vibrations resulting from the friction were unpredictable. In the case of
smoother surfaces, the speed and consistency of the strokes were also directly mirrored in
the frequency of the stimulation.

2.5. Data and Analysis

Two separation analysis was done in this study, one to analyze the consistency data
and one on the following experimental data.

A custom-made LabVIEW program (Labview 2018, National Instruments, Austin, TX,
USA) was used to record data during the evaluation stages of the algorithm development.
These tests comprised stroking of each texture pseudorandomly by the experimenter
and were used for further investigation of the consistency of the stroking. Two factors
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were explored; the consistency of the time of each stroke and the consistency of the
frequency. The data analysis was performed in Python with several libraries, such as
Scikit-learn (https://scikit-learn.org/, accessed on 11 November 2020) and SciPy (https:
//www.scipy.org/, accessed on 11 November 2020).

A Generalized Linear Mixed Effects model was fitted to the the data using jamovi [38–40].
The dependent variable was the accuracy of the responses of the subjects per phase and rod.
A Poisson distribution using a log link function was used as this fits the type of data. Phase
(with feedback and without feedback) and stimulus type (mesh, felt, sponge, and silicon
rubber) were the factors and levels of the experiment. The participant was considered a
random effect. Subsequent post-hoc comparisons for the different textures within each
phase using Z-tests were corrected using Holm’s sequential Bonferroni procedure.

3. Results

The accuracy of all 12 participants in identifying four different textures are shown in
Figure 4a. It should be noted from this figure that the variance of accuracy for different par-
ticipants is relatively large. Three of the participants had an accuracy higher than 90% in the
experimental phase with verbal feedback, while this number increased to six participants
during the last phase when no feedback was provided to participants. As the accuracy is
not normally distributed, the total accuracy was calculated as the median of individual
accuracy. The total median accuracy for all participants and textures was 85% (IQR 70–95%).
The participants needed an average of 1.54, 1.24, 1.44, and 1.40 repetitions for each texture
(silicone rubber, felt, sponge, and mesh) before responding to the stimulus generated by the
different textures. The overall performance for each texture can be seen in Figure 4b. There
was a statistically significant difference in terms of phase (with feedback, without feedback,
p = 0.034) and texture (p < 0.001). The multiple comparisons test performed on textures per
phase revealed there was a statistically significant difference between some of the textures,
namely felt vs. silicone rubber in the with feedback condition (p < 0.001), mesh vs. silicone
rubber in both feedback conditions (p = 0.016 (w/ FB), p = 0.0086 (w/o FB)), and sponge
vs. silicone rubber in the no feedback condition (p = 0.043). For the other combinations
there were no statistically significant differences.

(a) (b)

***
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*
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Figure 4. (a) The median accuracy for each participant where three participants were over 90% during the first phase (with
feedback) and six participants during the second phase (without feedback). (b) The box plot shows the performance of the
12 participants on each texture. The x-axis also shows the average attempt the participants had for each texture.

The experimental results can be seen in the stimuli-response confusion matrix in
Figure 5. During the final phase (without feedback) the median performance for each
texture: Silicone rubber, felt, sponge, and the mesh was 77.5% (IQR 62.50–96.25), 90% (IQR
68.75–100.00), 97.5% (IQR 73.75–100.00), and 92.5% (IQR 85.00–100.00), respectively.

https://scikit-learn.org/
https://www.scipy.org/
https://www.scipy.org/
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During the second phase (stimulation with feedback), felt was often mentioned, by the
participants, as being the easiest to distinguish (85.4%) because of its higher median fre-
quency. However, it was sometimes confused with silicone rubber (12.9%), since silicone
rubber, on some occasions, gave inconsistent stimulation because of its sticky characteristics
in the texture. This made the participants, on some occasions, hesitate if the stimulation
stemmed from silicone rubber. Vice versa, silicone rubber was in 15% of strokes misidenti-
fied as felt. As mentioned, silicone rubber gave a low frequency at the beginning, which
increases during the stroke, however, during manual stroking on few occasions the audio
signal did not have this characteristic and instead was confused with the felt 15% of the
time and 12.5% of the time it was misinterpreted as the sponge. In the final phase (stimula-
tion without feedback), the performance improved for mesh, sponge, and silicone (+7.1%,
+6.7%, and +5.9% respectively) while the ability to detect felt decreased slightly (−4.2%).

(a) (b)

Figure 5. Confusion matrix for the identification of the different textures during the two phases. (a) Phase with feedback,
where felt had the highest accuracy (85.4%). The lowest accuracy was when discriminating silicone rubber (70.8%), which
was occasionally misinterpreted as felt (15.0%) and as sponge (9.6%). (b) Phase without feedback, where mesh had the
highest accuracy (89.2%). In general the performance increased for all textures except felt in the phase without feedback.
Mesh is easiest to discriminate (89.2%), sponge has also a high accuracy (87.1%). There was also a small improvement for
the silicone texture (76.7% vs. 70.8%).

4. Discussion

The presented study was designed to assess the feasibility of developing a compu-
tational method for the direct conversion of the sound detected by a microphone, when
stroking a texture, into an electrotactile stimulation pattern that could be used to distin-
guish between different textures. However, the microphone and the audio amplifier used
in this study were regular, off-the-shelf components, not chosen for the specific purpose of
measuring contact vibrations. It should also be noted that the experimental conditions in
this study were designed to resemble conditions that would be expected in a real-world
application of a feedback system in a hand prosthesis. Mainly, the sound was translated
into the frequency of the electrical stimulation continuously, permitting variability of the
feedback, in accordance with the natural variability in stroking velocity and pressure seen
in a hand exploring an object.

The results of the study are encouraging since, after just a brief familiarization period
comprising 20 strokes of each texture which lasted approximately 5 min in total, participants
were able to achieve a relatively high overall median accuracy (85%). It should be pointed
out that only two participants had any previous experience with electrical nerve stimulation
which makes the familiarization of only 5 min even more rigorous in the case of naive
participants. These participants had to get accustomed to both, the new sensation in general
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and the variation of stimulation frequency due to the interaction with different textures. It
should be emphasized that the experiment was designed such that the participants had
their vision and hearing occluded while in a real-life exploration of textures, the vision and
tactile perception plays an equal role in identifying textures [41]. The same would apply to
the auditory cues. When exploring a texture the sound of the stroking of textures can also
help to perceive a texture’s roughness [42]. It has also been shown that auditory cues could
be more beneficial than visual and tactile cues to detect a material’s stickiness [43].

Jamali and Sammut [22] used PVDFs to detect vibrations from materials for the
classification of seven different surface textures based on three and five Fourier coefficients
and with 50 learning samples per each. The stroking was done by a robot ensuring high
repeatability of strokes. Furthermore, the results of Jamali et al. are intended for machine-
based classification only, without involving human participants as recipients of the feedback
information. The prediction accuracy for their algorithm, using a naive Bayes learner, was
78% when three Fourier coefficients were used and 83.5% when five coefficients were used.
Compared to our study, the median accuracy of a human of 85% is a promising result for
providing continuous feedback to participants. The same group [23] presented another
method based on the learned classifier, resulting in a higher accuracy of 95% ± 4% on the
unseen data. The setup consisted of an artificial robotic finger with implemented sensors
that respond to stretch (strain gauges) and vibration (piezoelectric sensors). However,
having a robotic finger with set pressure and velocity, the stroking of the material will
be highly consistent, thus it could be debated if a learned classifier used in a controlled
laboratory environment would perform as well in real-life manual stroking. Hughes and
Corell [33] did consider the inconsistency in a human operator in their study, by stroking
the textures by hand to include the variability in speed and pressure of the stroking. They
implemented a network of sensor nodes, using omnidirectional microphones, embedded
in silicone rubber for texture recognition showing that the skin prototype was able to
identify 15 different textures with an accuracy of 71.7%. It should be noted that all of the
aforementioned studies referenced within this paragraph present results on the ability
of machine learning algorithms to discriminate between textures. It has not been shown
if a human participant could match such performance in a real-time feedback setup (as
presented in our study).

The present study could also be considered as the worst-case scenario as the feedback
is directly proportional to the texture stroking dynamics which was completely governed
by the experimenter, while the participant did not have any complementary information.
Thus, we hypothesize that implementation of the concept of the proposed system, using a
microphone as a sensor and electrical stimulation as a feedback mechanism, to provide
information about a texture would significantly improve the accuracy of identifying a
texture. The results support this hypothesis, where the accuracy is significantly improved
between the second phase (with feedback) and final phase (without feedback) which was
done in a short-term controlled experiment. Considering that the system will be used
long-term and during activities of daily living, the user then would also use their natural
feedback modalities, such as audio, visual, proprioceptive, or force, at his/her disposal.
The user would then be able to incorporate his/her natural feedback modalities to further
strengthen the internal models of interaction with different textures. Furthermore, with the
continuous use of the proposed electrical feedback system, texture recognition would likely
gradually improve because in our data there is a significant improvement in performance
even between two consecutive tests. Hence, it could be argued that during long-term
passive learning, the overall accuracy could be improved for the proposed system [44].
In addition, prolonged use accompanied with the spacing effect, where learning is spread
over time [45], could also enhance overall accuracy.

One of the major sources of errors identified by the experimenters and participants
was the inconsistency of the stimulation pattern dynamics for some of the textures. Manual
stroking is prone to variations in applied force, stroking velocity, and velocity profile, all
of which affect friction sound, and consequently electrical stimulation. However, all of
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these parameters are also subject to variation in the normal use of hands. The accuracy
during the tests (which were between 70% and 89%) are the consequence of the high
variability in median frequency of the audio signal resulting in the partial overlap between
friction responses of other textures (see Figure 3a). In addition, the acoustic signals for
the different materials might also deviate for each participant depending on where on the
fabric/textures the strokes were applied. These deviations in signal were mainly noticeable
for the non-smooth textures, such as mesh and silicone rubber. This can be seen in the
results, showing a statistical significance in accuracy between silicone rubber and the other
smoother textures (felt (w/ FB) and sponge (w/o FB)) supporting the discussion that a
possible explanation for lower accuracy in discriminating silicone rubber due to its stroking
inconsistency. There was also a significant difference in accuracy between silicone rubber
and mesh indicating that despite the non-smooth texture mesh was easier discriminating
compared to silicone rubber, whilst there were no significant difference between mesh and
the other textures (felt and sponge), hence it can not be concluded that smoothness is crucial
in being able to discriminate the textures. In the case of mesh texture, the distance between
knots of the fabric was not constant, but upon rhythmic, consistent stroking this texture
could resemble the sponge which was characterized by a low median frequency. In the case
of silicone rubber, the sticky texture often resulted in the median frequency ramping-up (as
shown in Figure 3a), but due to inconsistencies in applied force, this characteristic signal
feature was sometimes missing, making it difficult to distinguish silicone rubber from felt
or sponge. Both of these issues are the consequence of separation/partitioning between
movement and sensation (the movement was performed by one person and the sensation is
experienced by another person). This would be minimized in a real-world scenario where
the same person does the movement and receives the sensory feedback, thus employing an
internal forward model of hand movement and experiencing movement dynamics with
complementary senses, such as proprioception, force, and vibration feedback (natural or
externally generated). It can also be noted that the stimulation frequency increases with the
stroking speed, and this applies also to the human hand where Manfredi et al. [30] recorded
the skin vibrations during exploration of textures. The recordings showed an increase
in frequency with increasing speed, and this applies both to non-periodic and periodic
textures. Thus, having the same person performing texture exploring and perceiving
the sensation, proprioceptive information will aid the central nervous system (CSN) to
determine the velocity of the moving limb [46], in this case, the information of the stroking
speed. Hence, the felt stimulation frequency could be associated with the stroking speed.

Due to the omnidirectional feature of the microphone, it picks up sound with equal
gain in all directions, making it susceptible to background noises which is a limitation
associated with the study. However, the experiment was performed in a quiet room which
eliminated most of the background noises. If the currently described system was to be
used for a prosthetic hand, background noise could be removed by using a noise-canceling
sub-system where an additional microphone could detect only background noise.

Having in mind that other feedback modalities, such as force or hand aperture, would
be prioritized in a prosthetic hand as they are coupled with the basic prosthetic hand
functionality (grasping), the goal of this study was to evaluate the feasibility of using
appropriate electrical stimulation for texture discrimination feedback using a microphone
to pick up friction sounds of textures. As the feedback related to different sensors, such as
force sensors, encoders, and microphones, would be combined within the same feedback
interface (same electrical stimulator and electrodes), it was decided to dedicate only a single
controllable stimulation parameter (frequency) out of many, such as, stimulation amplitude,
frequency, pattern, and location, to texture exploration. Thus, frequency modulation of the
electrical stimulation delivered to one cathode was chosen as a minimalistic setup, leaving
other parameters available for other potential feedback modalities.

The presented system is designed to be portable. The hardware components compris-
ing sensor and actuator sub-systems are based on two microcontrollers, ARM Cortex M7
and PIC18F25K22. The former processor handles audio signal sampling and execution
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of the algorithms presented in the paper, while the later processor is responsible only
for executing electrical stimulation in a time-crucial manner. Additional circuitry related
to the stimulator analog output stage, consisting of the step-up converter and discrete
components, has a relatively small footprint (less than 4 cm2 in the current version) and
power consumption. Therefore, this hardware setup could be implemented within com-
mon hand prostheses by (1) integrating one or several miniature microphones on the
prosthesis fingertips within a silicone glove, (2) placing at least one pair of electrodes
over one of the major hand nerves, and (3) embedding all necessary electronics (including
the prosthesis control part) on a single printed circuit board. As the presented system is
self-contained, it could be integrated with existing and future powered hand prostheses or
even in cosmetic prostheses.

5. Conclusions

This study presented an electrotactile feedback system with a microphone as a sen-
sor, making it possible to pick up friction sounds from textures. In addition, a simple
computational method to convert the signal transduced by the microphone into electrical
stimulation was developed. The median frequency was calculated on the transmitted sig-
nal, since this feature had the best results in discriminating textures. The system provided
the participant with somatotopic electrical stimulation from the processed microphone
signal, which resulted in the participants being able to identify differences in textures.
To the best of our knowledge, this concept is novel and there are no similar studies with
the proposed system reported in the literature. The goal of this research was to devise an
algorithm and self-contained hardware capable of supplying continuous feedback during
texture exploration, and with future improvements, it would be interesting to investigate
the performance during long-term use by a prosthesis user. The presented paradigm offers
a unique feedback modality as there are no constraints regarding the number of detectable
textures or their properties while the particular stimulation patterns resulting from stroking
different textures could be learned by a user over time. In addition, the learning curve was
steep, illustrated by the accuracy of 85% in participants (who had no prior knowledge of
electrical stimulation) identifying different textures already after 20 repetitions.
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