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Abstract
Background: Hidden Markov Models (HMMs) are a powerful tool for protein domain identification. The Pfam
database notably provides a large collection of HMMs which are widely used for the annotation of proteins in new
sequenced organisms. In Pfam, each domain family is represented by a curated multiple sequence alignment from
which a profile HMM is built. In spite of their high specificity, HMMs may lack sensitivity when searching for domains in
divergent organisms. This is particularly the case for species with a biased amino-acid composition, such as
P. falciparum, the main causal agent of human malaria. In this context, fitting HMMs to the specificities of the target
proteome can help identify additional domains.
Results: Using P. falciparum as an example, we compare approaches that have been proposed for this problem, and
present two alternative methods. Because previous attempts strongly rely on known domain occurrences in the
target species or its close relatives, they mainly improve the detection of domains which belong to already identified
families. Our methods learn global correction rules that adjust amino-acid distributions associated with the match
states of HMMs. These rules are applied to all match states of the whole HMM library, thus enabling the detection of
domains from previously absent families. Additionally, we propose a procedure to estimate the proportion of false
positives among the newly discovered domains. Starting with the Pfam standard library, we build several new libraries
with the different HMM-fitting approaches. These libraries are first used to detect new domain occurrences with low
E-values. Second, by applying the Co-Occurrence Domain Discovery (CODD) procedure we have recently proposed,
the libraries are further used to identify likely occurrences among potential domains with higher E-values.
Conclusion: We show that the new approaches allow identification of several domain families previously absent in
the P. falciparum proteome and the Apicomplexa phylum, and identify many domains that are not detected by
previous approaches. In terms of the number of new discovered domains, the new approaches outperform the
previous ones when no close species are available or when they are used to identify likely occurrences among
potential domains with high E-values. All predictions on P. falciparum have been integrated into a dedicated website
which pools all known/new annotations of protein domains and functions for this organism. A software implementing
the two proposed approaches is available at the same address: http://www.lirmm.fr/∼terrapon/HMMfit/

Background
Among the annotations that can be attached to a pro-
tein, domains occupy a key position. Protein domains are
sequential and structural motifs that are found indepen-
dently in different proteins, in different combinations. As
such, domains seem to be functional subunits of proteins
above the raw amino acid sequence level [1]. Several
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approaches have been developed to define and identify
protein domains. Some are based on a structural clas-
sification scheme [2], while others are inferred by clus-
tering conserved sub-sequences [3,4]. One of the most
widely used domain schemata is the Pfam database [4].
In Pfam, each domain family is defined using a set of dis-
tinct representative protein sequences which are manually
selected and aligned, and used to learn a Hidden Markov
Model (HMM) [5] of the domain. HMMs are probabilistic
models which use match states to model the conserved

© 2012 Terrapon et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.lirmm.fr/~terrapon/HMMfit/


Terrapon et al. BMC Bioinformatics 2012, 13:67 Page 2 of 14
http://www.biomedcentral.com/1471-2105/13/67

positions of the multiple sequence alignment, and handle
the gaps with specific (insert and delete) states.

The Pfam database (version 23.0) offers a collection of
10 340 HMMs/domains, which cover over 73% of all pro-
teins in the Uniprot database [6]. The InterPro consortium
[3] has functionally annotated a subset of Pfam HMMs
using the Gene Ontology (GO) [7]. According to the Inter-
Pro annotation policy, a domain is annotated with a given
GO term if all proteins where this domain is known also
share this GO term. This stringent rule allows, when a
new domain is detected in a protein, to transfer its annota-
tions to this protein. Enhancing domain detection is thus a
fundamental step for improving structural and functional
annotations of proteins.

When analyzing a new protein sequence, each Pfam
HMM is used to compute a score that measures the sim-
ilarity between the sequence and the domain. If the score
is above a given threshold provided by Pfam (score thresh-
olds differ depending on the HMMs), then the presence
of the domain is asserted in the protein. This threshold
is referred to as the gathering threshold and is manu-
ally curated to ensure few false positives among detected
domains [4] However, when applied to highly divergent
proteins, this strategy may miss numerous domains. This
is the case with Plasmodium falciparum, the main causal
agent of human malaria, which kills nearly 800 000 peo-
ple each year among the 106 malaria-endemic countries
[8]. No Pfam domains are detected in nearly 50% of P. fal-
ciparum proteins, while many domain types seem to be
missing from its repertory. Although this situation may be
explained by the existence of genes that are unique to this
organism, it is further exacerbated by the high evolution-
ary distance between P. falciparum and the classical model
organisms that were used to build the HMMs. Accurately
estimating the number of Pfam domains that remain to
be discovered in P. falciparum is challenging. In classi-
cal model Eukaryotes, the number of Pfam occurrences
per proteins is above 0.8 (for example the coverage of
S. cerevisiae and C. elegans is 0.9 and 0.86, respectively).
Assuming a coverage of 0.8, a total ∼ 4 500 Pfam occur-
rences should be present in the proteome of P. falciparum.
Subtracting the number of currently annotated domains
from the expected 4 500 would suggest that around 1 000
domains are yet to be detected. These “missing” occur-
rences might be explained by the highly atypical genome
of P. falciparum, which is composed of above 80% A+T,
and involves long low-complexity insertions of unknown
function believed to form non-globular domains [9]. This
strongly biases the amino-acid composition of P. falci-
parum proteins, in which six amino acids account for
more than 50% of the protein composition [10]. In this
context, fitting the HMM library to the specificities of the
target proteome may help identify additional domains not
detected by the standard library.

To the best of our knowledge, two studies address
this problem. First, an a posteriori correction of domain
scores has been introduced by Coin et al. [11]. This
correction takes the prior probability of each domain
family in the target species into account. Prior probabil-
ities are estimated using asserted domain occurrences in
the closest relatives of the species. A second approach
is to build taxon-specific models by integrating known
domain occurrences from the nearest species into the
multiple sequence alignment. For example, this method
has been successfully applied to fungi by Alam et al. [12]
thanks to the availability of 30 fungal genomes. How-
ever, both approaches have an obvious drawback: they can
only discover new occurrences of domain families already
asserted in the target or its closest relatives.

Here, we propose two new approaches to circumvent
this limitation by correcting the entire HMM library. The
principle of these approaches is to learn overall correc-
tion rules which are applied to the emission probabilities
of the match states of all HMMs. In the first approach,
an amino-acid substitution matrix dedicated to the target
organism is estimated and applied to the emission proba-
bilities of the match states to mimic the evolution toward
the amino-acid composition of the target species. Our sec-
ond approach involves partitioning all match states of the
Pfam library in clusters with similar amino-acid emission
probabilities, and to use the known domain occurrences
in the target species to learn specific correction rules for
each class of match state.

Once a new HMM library has been built, it is used
to detect new domain occurrences with low E-values. As
explained above, the original Pfam library provides, with
each HMM, a manually curated threshold which ensures
very low false positive rates among the detected domains.
However, after HMM correction, these thresholds can
no longer be safely used. We propose a simple approach
to estimate the False Discovery Rate (FDR) of the newly
discovered domains of each corrected library. This proce-
dure enables us to compare the results achieved by each
correction method at equivalent FDR.

In the following, we first review the previously described
approaches to fit an HMM library to a target species.
We describe our own approaches, and present the statis-
tical procedure for FDR estimation. The four correction
methods are used to detect new domain occurrences in
the P. falciparum genome. In these experiments, we dis-
tinguish two cases depending on whether genomes close
to the target organism are available or not. Finally, we
use the corrected libraries to find additional domains
with the Co-Occurrence Domain Discovery (CODD) pro-
cedure we have recently proposed [13]. This procedure
identifies divergent domain occurrences on the basis of
co-occurrence properties, and uses its own procedure to
estimate FDRs associated with the results. All predictions
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achieved with the corrected libraries have been inte-
grated into a dedicated website and can be browsed
at http://www.lirmm.fr/∼terrapon/HMMfit/. A program
implementing the two proposed approaches is available at
the same address.

Method
In the following, the target species is denoted as s. The
known domain occurrences of a species are all domain
occurrences identified with the original Pfam library using
the recommended thresholds.

Previous approaches
To the best of our knowledge, two approaches, summa-
rized below, have been proposed to fit an HMM library to
a target species.

Score adjustment
Coin et al. [11] proposed an a posteriori correction of the
score function of HMMs. In this solution, the correction
does not involve HMMs but rather the function used to
score domain occurrences. This is done by incorporating
information about the specific domain-frequency of the
target organism. The adjusted domain scores (log odds
ratio) are obtained by adding the term log(P(d|s)/P(d)) to
the original score function, where P(d) denotes the prior
probability of domain d (i.e. its probability in Uniprot),
and P(d|s) denotes the corresponding probability in the
target organism. This correction increases the score of
domains that are more likely in the species, and decreases
the score of other domains. P(d|s) is estimated from a
weighted average of the frequency of d in the already
known domains of s and in that of the other sequenced
species of its genus, class, phylum and kingdom. This is
done according to the recursive formula

P(d|Si) = 0.5·n(d, Si)

ntot(Si)
+0.5·P(d|Si+1), for i = m−1 to 0,

(1)

where S0 is the target organism s, Si is the ith parent taxon,
Sm is the kingdom, n(d, Si) is the number of domains d in
taxon Si, and ntot(Si) is the total number of domains in Si.
For i = m we use P(d|Sm) = n(d,Sm)

ntot(Sm)
.

Enriched alignments
A simple approach to fit an HMM to a target species is to
enrich the alignment used to learn the HMM with known
domain occurrences in the species or its close relatives
(see for example Alam et al. [12]). Given an HMM library
and a set of protein sequences from the closest species of
the target organism, the procedure involves:

1. identifying all domain occurrences in the selected
species using the original library with recommended
thresholds,

2. building new multiple sequence alignments by
integrating the identified domains into the original
alignments using the Viterbi algorithm [5],

3. building new HMMs from new alignments using
HMMER software [14].

Two new approaches
Both previous approaches have the same drawback: only
domain families already known in the target or its close
relatives may benefit from detection improvement. We
propose to circumvent this limitation by learning global
correction rules that are applied to match states of all
HMMs, in order to build a new and complete adapted
library. We focus on match states because they model
the conserved positions of the domains and thus bring
most of the information contained in the alignments.
The challenge is to derive rules that simulate the drift
that separates the target organism sequences from the
sequences used to train the HMM, while preserving
as much position-specific information of the HMMs as
possible. We propose two approaches for this, that are
described below. In the following, X denotes the set of all
match states of all HMMs. Each state x ∈ X is described
by a vector (xi)i∈[1..20], where xi is the probability to emit
the amino acid i in state x.

Substitution matrix
Substitution matrices (e.g. JTT [15], WAG [16]) are
essential for computing substitution probabilities along
branches in phylogenies, and thus for computing the
likelihood of the data [17]. We distinguish the substi-
tution rate matrix containing the instantaneous rates of
change from any amino acid to another, and the substi-
tution probability matrix which contains the probabilities
of change from one amino acid to another when elapsed
time is t. These matrices are associated with a stationary
distribution of amino acids; when t is large enough, the
probability of any amino acid tends towards its stationary
probability, regardless of the initial probability distribu-
tion. Here, we use this property to move the amino-acid
distribution of match states toward the distribution of
the target species, thus simulating the evolution of con-
served positions under the constraints characteristic of
this species.

Let Q = (qij) be the rate matrix and P(t) = (pij(t)) be
the probability matrix associated with t, where i and j
denote two amino acids and ij the change from i to j.
We use a general time reversible (GTR) model, and thus
Q is composed of two parts: the stationary amino-acid
distribution � = (πi) and the symmetric exchangeabil-
ity matrix R = (rij), using equality: qij = rijπj (i �= j). The
diagonal elements are such that the row sums are all zero.
Q is normalized, that is − ∑

i πiqii = 1, so that an evolu-
tionary time t of 1 corresponds to an expected number of
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substitutions per site equal to 1. Here we use the R matrix
of the LG model [18], which refines previous general
purpose models such as JTT or WAG, and a � distri-
bution computed from P. falciparum proteins (see below
for details). P(t) is obtained by matrix exponentiation:
P(t) = eQt .

The new HMM library (for given t) is built by applying
P(t) to the probability distributions of all match states (of
all Pfam HMMs) using equation: x∗ = x · P(t), where x
is the original distribution vector of the match state, x∗
the new one, and both are row vectors. The evolution-
ary time t has to be carefully chosen: if too large, then all
x∗ distributions tend toward � and are uninformative; if
too small, then x∗ ∼ x and the correction has no effect.
Several values ranging from 0.01 to 0.5 were tested in our
experiments (see below).

Match-state clustering
In profile HMMs, match states model the amino-acid dis-
tribution of conserved positions. This distribution reflects
the physical and chemical constraints associated with the
position. Thus, positions with similar distribution are
likely to undergo similar constraints. The principle of the
second approach is to cluster the match states of HMMs
according to their amino-acid distribution, and then to
learn correction rules for each of the cluster of match state
(see Figure 1). First, the K-means algorithm [19] is applied
on the set X. This algorithm takes as input the number
of clusters (or classes) K , and outputs a partition of X,
i.e. each state x ∈ X is associated with a unique class
cx ∈[ 1 . . . K]. Next, using the known domain occurrences
in the proteins of the target species and its close rela-
tives, the match states of the original HMMs are aligned
on these proteins with the Viterbi algorithm [5]. From
these alignments, we count, for each state class, the num-
ber of times each amino acid is aligned on a state of this
class (see Figure 1 for an example). These counts are used
to compute an amino-acid distribution of the state class,
which reflects how the physical and chemical constraints
of this class translate into the target species. The new
HMM library is built by mixing the original distribution
of each match state with the estimated distribution of its
class, i.e.:

x∗ = x · p + a(cx) · (1 − p), (2)

where p is the mixture proportion, and a(cx) is the amino-
acid distribution associated with class cx. Note that while
other clustering algorithms could be used, the K-means
algorithm provides a fair tradeoff between run time (X
involves around 470 000 states to be clustered) and the
quality of the results.

Estimating the error rate of an HMM library
Evaluating and comparing HMM libraries is a diffi-
cult task. As explained above, the original Pfam library
provides, with each HMM, a manually-curated score-
threshold which ensures few false positives among
the detected domains. One effect of the HMM-fitting
approaches described above (with exception of the score-
adjustment method) is to move the amino-acid compo-
sition of HMMs toward the composition of the target
organism. Globally, this tends to increase the score of
proteins of the organism for any HMM. Hence, the
recommended thresholds cannot be safely used with
the modified libraries. We propose here a simple pro-
cedure to estimate the proportion of false positives
among the new domains identified with a particular
library. D(L, e) denotes the set of new domain occur-
rences identified by the library L under the E-value
threshold e. We want to estimate the FDR associated
with (L, e), i.e. the probability Pr(d = false) for d ∈
D(L, e).

A well known tendency of protein domains is to appear
preferentially with a few other favourite domains within
a protein [20]. We show here how this property can be
used to estimate the FDR associated with (L, e). The first
step is to identify, from the whole set of annotated Uniprot
proteins, domain pairs that are conditionally dependent,
i.e. that are observed in the same proteins a significantly
higher than expected number of times. This is achieved
with the Fisher’s exact test, to cope with potentially small
sample sizes [13]. A p-value is computed for each domain
pair, and the pairs below a given threshold are stored in
a set C of Conditionally Dependent Pairs (CDP). Next,
from the target-species proteins that possess both known
and new domains, we build a list of (known-new) domain
pairs L, by randomly associating each new domain with
one of the already known domains of the same protein.
We denote as (dk , dn) a pair of (known,new) domains
of L. The list L is used to estimate the FDR of (L, e).
We assume that the proportion of false positives among
the new domains dn of L is globally the same as in all
domains of D(L, e). In particular, this assumes that, for a
given E-value threshold, the proportion of false positives
in domains of multi-domain proteins (those that are in
L) is the same as in domains of mono-domain proteins
(that are not in L). Although domains of mono- and multi-
domain proteins are usually different, they globally share
the same amino-acid composition, and there is no reason
to believe that HMMs are more prone to false positives for
either type.

Let |L| be the number of pairs in L. Now, we denote as T
the probability that a pair in L belongs to the set of CDPs
C, given that the potential domain is a true positive; sim-
ilarly, F is the probability that a pair in L belongs to C,
given that the potential domain is a false positive. We can



Terrapon et al. BMC Bioinformatics 2012, 13:67 Page 5 of 14
http://www.biomedcentral.com/1471-2105/13/67

Protein x

HMM 1    … HMM N

fitted HMM 1  … fitted HMM N

Protein y

Protein z

Protein x

Protein w

Figure 1 The match-state clustering approach. We start with a library of N HMMs. First, the match states are clustered into K classes according to
their amino-acid distribution. Next, the known domain occurrences of the target species and its close relatives are aligned to the states of the
corresponding HMMs. These alignments are used to compute an amino-acid distribution for each state class. For example, if we suppose that class 2
only involves the second state of HMM 1 and the 5th state of HMM N, the distribution estimated from the represented alignments is 3/6 for T, 1/6 for
S, 1/6 for A, and 0 for all other amino acids. Finally, the new HMM library is built by mixing the original distribution of each match state with the
estimated distribution of its class.

express the expected number of pairs in L that belong to
C as

E [|LC |] = |L| · Pr((dn, dk) ∈ C)

= |L| ·
(

Pr((dn, dk) ∈ C|dn = true)

× Pr(dn = true) + Pr((dn, dk) ∈ C|dn = false)

× Pr(dn = false)
)

= |L| ·
(
T · (1 − FDR) + F · FDR

)
.

Thus, we have

FDR = 1 −
E[|LC |]

|L| − F
T − F . (3)

|L| is known, and E [|LC |] is estimated by the observed
number of pairs in L that belong to C. For F , a list L′ is
created by randomly permuting new domains of the pairs
in L. This is equivalent to randomly permuting the new
domains in the proteins of the target species, and thus
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simulates a situation where almost all new domains are
likely false positives. F is estimated by the proportion of
L′ pairs that are in C. The procedure is repeated several
times and averaged to obtain a better estimate. For T , we
use the known domain occurrences. A list L′′ is created
from all (known,known) domain pairs observed in pro-
teins with at least two known domains. This simulates the
situation where all new domains are true positives, and T
is estimated by the proportion of L′′ pairs that are in C.

One issue with expression (3) is that the estimated value
may depend on the p-value threshold used to build the set
of CDPs. However, in experiments on the P. falciparum
proteome (see below), we do not observe this depen-
dency, and standard thresholds between 10−2 and 10−4

give very similar results (see Additional file 1: Figure S1).
Furthermore, it is important to note that T and F have
very different estimated values. The value of T is above
99%, while that of F lies between 1% and 2%, indepen-
dent of the considered library and E-value threshold (see
Additional file 1: Figure S2). Hence, expression (3) could
be simplified as FDR ∼ 1− E[|LC |]

|L| . Based on this equation,
the FDR is simply equal to the proportion of domain pairs
in L which do not belong to the set C. In other words,
almost every correct new-domain in L is in a pair that is
in the set C, and a new domain from a pair that is not in C
is most likely incorrect. This astonishing fact clearly illus-
trates the strong correlations that exist between domains
in multi-domain proteins. It also reveals that almost all
the correlations between domains can be deduced from
the set of Uniprot proteins, i.e. most domain associations
have already been observed a significantly high number of
times.

Another issue is the statistical error induced by the
sample L in our FDR estimate. We address this issue
with a classical bootstrap procedure [21], in which a
bootstrapped list Lb is build by randomly sampling with
replacement |L| pairs of L. From this list, we com-
pute a new FDR estimate FDRb using the procedure
described above—i.e. we compute a new estimate of F
and E [|LC |]—, and the entire procedure is repeated a large
number of times B (for example, B = 500). We then have
a sample of B independent bootstrap replications of the
FDR estimate, and we use the standard deviation of this
sample as an estimate of the standard error.

Results
We applied the four approaches described above—
i.e. Score adjustment, Enriched alignment, Substitution
matrix and Match-state clustering—to the proteome of
P. falciparum (PlasmoDB release 5.5), using the Pfam
HMM library (version 23.0). There are a total of 5 460
proteins in P. falciparum, 2 900 of which have a known
domain occurrence. In our substitution matrix approach,
we must choose a stationary distribution. We tried two

solutions for this. The first one corresponds to the
average amino-acid distribution of P. falciparum proteins.
However, P. falciparum proteins are known to exhibit
low-complexity inserts with very biased amino-acid dis-
tribution which are responsible for an average increase
of 20% in the total length of the proteins [9]. These low-
complexity segments are usually found between domains,
but may also reside within a domain. Following Pizzi and
Frontali [9], we used the SEG algorithm [22] to remove
low-complexity segments and to compute an amino-acid
distribution of high-complexity regions which is utilized
as an alternative stationary distribution. For the time
parameter t, which represents the mutation probability
at each position, we tried seven values: 0.01, 0.05, 0.1,
0.2, 0.3, 0.4, and 0.5. Finally, for the match-state cluster-
ing approach, different numbers of classes ranging from
K = 50 to K = 500, as well as three mixture proportions
(25%, 50%, 75%) were tested.

For each correction method and parameter value, a new
HMM library is built. Each library is then calibrated with
exception of the score-adjustment method derived library.
Calibration is achieved by fitting the Gumbel distribu-
tions used for E-value computations to the new models
(see HMMER 2.3.2 User’s Guide [14]). After this step,
each library is used to search for new domain occurrences
below a given E-value threshold in P. falciparum proteins.
In the following, we use the modified libraries for two
problems. First, the aim is to identify new domains with
low E-values; Second, the aim is to identify more divergent
domain occurrences (with higher E-values) with the help
of the CODD procedure we have recently proposed [13].

Results for low E-value occurrences
The new libraries were first used to find new domains
at low E-value (from 10−3 to 10−1). For each library, the
FDR associated with the newly identified domains was
estimated with the procedure described above.

In a first experiment, we used all known domains
of available Alveolata proteins to fit the HMMs. This
includes domains from 13 completly sequenced Apicom-
plexa species—six Plasmodium, three Cryptosporidium,
two Theileria, Babesia bovis and T. gondii—, the ciliate
Paramecium tetraurelia, and numerous translated ORFs
of isolated Alveolata sequences. For the score-adjustment
approach, the six Plasmodium species are in the genus
(denoted S1 in formula (1)), the two Theileria species and
Babesia bovis are in the Aconoidasida class (S2), the three
Cryptosporidium species and T. gondii are in the Apicom-
plexa phylum (S3), and the kindom (Sm) incorporates all
eukaryotes.

The Additional file 1: Figure S3 shows the results
achieved by the substitution matrices and match-
state clustering approaches for different parameter
values. For the substitution-matrices approach, removing
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low-complexity regions before computing the stationary
distribution increases the number of new domains, at
equivalent error rate. As for the time parameter, the best
results are achieved with t = 0.1. For match-state clus-
tering, the curves suggest that 75% is the best mixture
proportion. At low FDRs, the differences between the
performance achieved by the different values of K are
small, but K = 100 seems to be the best. The inves-
tigated parameter values were chosen to span relatively
large and a priori sound intervals. However, a more sys-
tematic exploration of the parameter space—especially
for the time parameters t and the mixture proportion
p—may slightly improve the results. However, we have
chosen not to embark further on the parameter space
exploration, as expected improvements are likely mod-
erate, and as this allows for a fair comparison with the
score-adjustment and enriched-alignment methods which
both lack parameters. Figure 2 compares the best results
achieved by the four approaches when using the known
domains of Alveolata species. For comparison, we also
show the results achieved with the original Pfam library
at the same E-value thresholds (i.e. from 10−3 to 10−1).
All methods discover several additional domains not iden-
tified with the standard library. The enriched alignment
approach (blue curve) achieves the best results. Even if
this approach cannot reconstruct all HMMs, the recon-
structed models correspond to the most frequent families
in the taxon. The match-state clustering approach (green
curve) and substitution matrices (yellow curve) also iden-
tify additional domains. The weaker results obtained by
the latter method may be due to the standard substitu-
tion schema that was employed. Indeed, exchangeability
matrices model “universal” evolutionary mechanics, while

P. falciparum is constrained by more extreme evolutionary
circumstances. Moreover, this is the only approach that
does not use information from close species. Finally, the
score correction approach also discovers some domains
not identified with the original Pfam library with the
standard scoring function.

We also estimated the standard error of the FDR esti-
mate using the bootstrap procedure previously described.
Figure 3 illustrates the FDR standard-error with respect
to the number of newly identified domains for the dif-
ferent libraries. It shows that when the number of new
domains is above 200 (i.e. for all points in Figure 2), the
standard error ranges from 3% (for the largest sets) to
5% (for the smallest ones). However, when the number of
new domains is smaller, the FDR standard-error increases,
and the FDR estimate become unreliable. To understand
this sudden increase in standard error, one must recall
that the FDR is estimated on the basis of a subset of
the new domains—those that are in a protein where a
domain is already known. Hence, when the number of new
domains is around 200, the number of domains actually
used in the FDR estimate is between 55 and 60 depend-
ing on the library. Figure 4 summarizes the predictions
achieved with the enriched alignment, match-state clus-
tering and Pfam standard library approaches at 10% FDR.
We observe that the corrected libraries include most of
the domains also identified with the standard Pfam library
when relaxing the E-value thresholds. On the contrary,
the domains solely identified by the corrected libraries
are more diverse, and many new predicted occurrences
are specific to one of the approaches. All results obtained
with the different libraries at 10% FDR are summarized
in Table 1 (see Additional file 1: Table S1 in for results at
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Figure 2 Sensitivity and accuracy of the four correction approaches, using the known domains of all available Alveolata. Number of new
domains (y-axis) identified for a given FDR (x-axis).
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Figure 3 FDR standard error of the four correction approaches. FDR standard error (y-axis) estimated for a given number of new domains (x-axis).

20% FDR). The results suggest that although the enriched-
alignment approach identifies the largest number of new
domain occurrences, the match-state clustering approach
provides close results in terms of domain diversities (243
vs. 283 at 10% FDR), and identifies slightly more domain
families that were previously unknown in the Apicom-
plexa phylum (40 vs. 15).

To further assess the newly discovered domains, we next
looked at the other InterPro domains that do not belong
to the Pfam database. The InterPro database incorporates

several domain databases (PROSITE, PRINTS, ProDom,
SMART, TIGRFAMs, PIRSF, SUPERFAMILY, Gene3D,
PANTHER and Pfam) into a single resource. This meta-
database organizes entries in InterPro families that pool
all representations of the same domain [3]. The different
databases behind InterPro use their own domain defini-
tion and representation, and thus present a heterogeneous
view of protein domains. Taken altogether, predictions of
these different databases are more sensitive than that of
the Pfam database only, but they may also be less accurate.

Figure 4 Number of new domains identified at 10% FDR. Number of new domains identified by the Pfam standard library when relaxing the
E-value threshold (red), the match-state clustering approach (green), and the enriched alignment approach (blue).
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Table 1 New domains in P. falciparum at 10% FDR

Dom. Fam. Abs. P.f. Abs. Alv.

Pfam 192 132 60 17

Score adjustment 239 159 67 20

Enriched alignment 486 283 101 15

Substitution matrix 228 147 54 18

Match-state clustering 375 243 103 40

Number of new domains (Dom.), domain families of the new domains (Fam.),
domain families previously thought to be absent in P. falciparum (Abs. P.f.), and
domain families previously thought to be absent in all Alveolata (Abs. Alv.),
identified by the correction approaches and the standard Pfam library at 10%
FDR.

Table 2 reports the number and proportion of newly
identified Pfam domains (at 10% FDR) that belong to an
already known InterPro family in the same protein. For
comparison purpose, we also computed the proportion of
matches achieved on random domains, by randomly per-
muting the new domains across proteins (and repeating
the procedure 1000 times to obtain accurate estimates).
For every HMM-fitting procedure, around 50% of new
domains match with a known InterPro entry of the pro-
tein. This is a high proportion compared with what is
expected on random domains (around 2%), which indi-
cates that this 50% domains are likely true positives.
Moreover, although the entire InterPro database is more
complete than the Pfam database only, it is far from
being exhaustive. Hence, this result does not imply that
the remaining ∼50% new domains that do not belong to
a known InterPro family in the same protein are false
positives.

Apart from the substitution-matrix method, all
approaches make use of the already known domains of
P. falciparum and of the other available Alveolata species.
To compare the performance of the methods depending
on whether species close to the target were available or
not, we conducted a second series of experiments using
only known Pfam domains of the P. falciparum genome
to fit the libraries (see Figure 5). For the score-adjustment
approach, this involves using only two levels: S0 for

Table 2 InterPro coverage of new domains at 10% FDR

InterPro Cov. InterPro Cov. H0

Pfam 103 (53.9%) 3.34%

Score Adjustment 129 (54.2%) 2.85%

Enriched Alignment 230 (47.9%) 1.70%

Substitution Matrix 121 (53.5%) 3.06%

Match-state Clustering 191 (52.2%) 1.84%

InterPro Cov.: Number and proportion (in parenthesis) of new domains
belonging to an InterPro family previously known for the protein, for the
different correction approaches and the standard Pfam library, at 10% FDR;
InterPro Cov. H0: proportion of matches on random domains.

P. falciparum, and S1 for the kingdom (all eukaryotes).
In these conditions, the results strongly differ from the
previous ones. The number of new domains identified
by the enriched alignment approach drops off, and even
passes below the number of domains identified by the
original Pfam library at low FDR. On the contrary, the
match-state clustering approach still provides numer-
ous additional domains. With the substitution-matrix
approach, it appears to be the best approach when no
close species are available. While for P. falciparum the
practical interest is limited, this illustrates the potential
of such approaches for all genome sequencing projects
of organisms from poorly known phyla, with no already
sequenced close-species.

Results for more divergent occurrences
We next investigated the performance of the modified
libraries for identifying divergent domain occurrences
using the CODD procedure we have recently proposed
[13]. CODD improves the sensitivity of HMM domain
detection by directly exploiting the co-occurrence domain
tendency used in the FDR estimation method described
above. Given a set of new domain occurrences below a
permissive E-value threshold (and thus with a high num-
ber of false positives), CODD selects those that form,
together with another domain of the same protein, a pair
previously identified as being conditionally dependent (i.e.
a pair of the CDP set). The domains selected this way
are said to be certified. The certification can be done on
the basis of the already known Pfam domains of the pro-
tein, but also on the basis of the other known InterPro
(non Pfam) domains, or even on the basis of the other
new Pfam domains that are below the E-value threshold.
Moreover, CODD uses a shuffling procedure to provide
its own estimate of the FDR associated with the certi-
fied domains [13]. Because domain co-occurrence is a
strong indicator of real occurrence, CODD can certify the
presence of a domain with low FDR even for very high
E-values. In the following, it is used to certify the pres-
ence of domains with E-values up to ten, far higher than
the highest E-values considered in the previous section
(10−1). As CODD also certifies the presence of domains
with low E-values, part of the certified domains are already
considered in the previous section. However, note that
CODD is obviously limited to the certification of domains
from multi-domain proteins, and thus that a large part of
the previously considered domains (around 75%) cannot
be certified. Moreover, it is worth noting that, contrary
to the previous FDR, which involves all domains below
a given E-value threshold, the FDR estimated by CODD
only concerns the certified domains.

Figure 6 summarizes the results achieved by CODD
with the original and modified libraries. E-value thresh-
old were varied from 10−1 to 10, and the already known
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Figure 5 Sensitivity and accuracy of the four correction using only known domains of P. falciparum. Number of new domains (y-axis)
identified for a given FDR (x-axis).

Pfam domains were used for the certification. In this
experiment, the score adjustment, enriched alignment
and match-state clustering approaches make use of the
known domain occurrences of all Alveolata. The results
differ somewhat from those achieved at low E-value in
the same conditions. The enriched alignment and match-
state clustering approaches now achieve similar sensitiv-
ity, while the score-adjustment approach does not detect
more new domains than the standard Pfam library. This
can be explained by the fact that the high E-value domains
identified by co-occurrence are often uncommon among
the already known domains of the species [13,23]. This

likely affects the performance of methods that strongly
rely on known domain occurrences.

As with low e-value thresholds, the substitution-matrix
approach outperforms the original Pfam library, but does
not achieve as good results as the match-state clustering
approach. It is worth noting that the stationary distri-
bution used in these experiments—i.e. the one obtained
when removing low-complexity regions from P. falci-
parum proteins—is closer to the classical equilibrium
amino-acid frequencies (used in WAG for example [16])
than the global P. falciparum distribution is. Thus, for
comparison, we also built different HMM libraries using
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Figure 6 Sensitivity and accuracy of CODD on the four corrected libraries. Number of new domains (y-axis) identified by CODD for a given FDR
(x-axis), using the already known Pfam domains for the certification.



Terrapon et al. BMC Bioinformatics 2012, 13:67 Page 11 of 14
http://www.biomedcentral.com/1471-2105/13/67

the WAG equilibrium frequencies as stationary distribu-
tion. The results achieved with different time parame-
ter values are in Additional file 1: Figure S4. Although
the WAG equilibrium frequencies never achieved results
as good as the P. falciparum distribution without low-
complexity regions, it also outperforms the standard Pfam
library. This seems to indicate that simply smoothing the
match-state distribution of the HMMs is an adequate
strategy for increasing the number of discovered domains
in divergent organisms like P. falciparum.

We also applied a bootstrap procedure similar to that
described above to estimate the standard error associ-
ated with the CODD FDR. Irrespective of the library, the
standard error remains quite low, ranging from 0.5% for
the highest FDRs to 1.5% for the smallest ones (data not
shown). Table 3 reports the results achieved by CODD on
the different libraries at 10% (see Additional file 1: Table
S2 for results at 20% FDR). Note that contrary to Figure 6
which only reports the number of domains certified with
the known Pfam domain occurrences, this table combines
the certifications achieved with all known domain occur-
rences (i.e. Pfam and non-Pfam) as well as with the other
new domain occurrences below the considered threshold.

Annotation of P. falciparum proteins
Any item or feature that would help assigning a function
to a gene is precious for biologists. We thus investi-
gated GO annotations that could be deduced from all
newly identified domains. As described in the introduc-
tion, some domains have been associated with specific
GO terms by the InterPro consortium. The policy is
to associate, with a given domain, annotations shared
by all annotated proteins possessing this domain. More-
over, by extending this policy to domain combinations (as
described in [24]), several additional GO terms can be
deduced from the combination of two or more domains.

Table 3 New CODD domains in P. falciparum at 10% FDR

Dom. Fam. Abs. P.f. Abs. Alv.

Pfam 404 (330) 228 (169) 85 (66) 26 (24)

Score
Adjustment

427 (332) 226 (151) 82 (63) 24 (22)

Enriched
Alignment

529 (312) 274 (131) 93 (55) 21 (18)

Substitution
Matrix

474 (379) 266 (197) 99 (85) 32 (31)

Match-state
Clustering

516 (358) 288 (180) 111 (81) 39 (34)

Number of new domains (Dom.), domain families of the new domains (Fam.),
domain families previously thought to be absent in P. falciparum (Abs. P.f.), and
domain families previously thought to be absent in all Alveolata (Abs. Alv.),
identified by CODD with the different libraries at 10% FDR. Numbers in
parenthesis refer to domains/families that are new compared to Table 1 for the
same library.

To this end, we enumerated all Pfam domain combina-
tions in the proteins of Swiss-Prot, and identified, for
each combination, the GO terms shared by all annotated
proteins where the combination is present (only combi-
nations observed in at least ten annotated proteins were
considered). We found 2 235 Pfam domain combinations
associated with at least one specific GO annotation: 2 115
domain pairs, 119 domain triplets and 1 quartet. All asso-
ciations between domain combinations and GO terms
are available at http://www.lirmm.fr/∼terrapon/HMMfit/.
Altogether, single domains and domain combinations
improve the annotations of several P. falciparum proteins.
Table 4 gives the number of new annotations brought by
the new domains identified at low E-values or with the
help of the CODD procedure at 10% FDR (see Additional
file 1: Table S3 for results at 20% FDR). For example, the
new domains identified with the match-state clustering
library leads to the discovery of 355 new GO annotations,
i.e. ∼ 6% of the 5 791 already known GO annotations of
this organism. All predictions on P. falciparum achieved
using the Alveolata species have been integrated into a
dedicated website which gathers all known and newly dis-
covered domains and GO annotations for the proteins
of this organism. The site provides details on E-values,
FDRs and alignments, and includes useful links to Pfam,
InterPro and PlasmoDB websites. Moreover, when a new
domain has been certified with CODD, this information,
along with details of the certification process, are included
on the website.

Although the expected number of false positives in pre-
dictions with 10% FDR is low, it is not equal to zero.
Hence, an expert examination of the predictions is rec-
ommended to identify the 10% false positives. This can
be done in several ways: by looking at the predictions
shared with the other corrected libraries, by checking if
a prediction agrees with known protein annotations (i.e.
known domains, known functional annotations, protein
attributes, etc.), and by carefully looking at the protein
alignments.

Among the predictions, several putative domains have
attracted our attention as they might provide insights
into important biological functions essential to under-
stand the biology of the parasite, including the control
of gene expression, the mechanisms of cell proliferation,
the biogenesis of intracellular organelles and the para-
sitic metabolism. Hereafter, we give a few examples that
have been identified using the CODD procedure on the
modified libraries.

Regarding the control of gene expression, it is now
established that an important general process in this
parasite involves the control of chromatin condensation
via chemical modifications of histones and/or of DNA
bases [25]. PFD0840w encodes a conserved hypothetical
protein in which we have detected, with the match-state

http://www.lirmm.fr/~terrapon/HMMfit/
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Table 4 New GO annotations of P. falciparum proteins at 10% FDR

Pfam Score Enriched Substitution Match-state
correction Alignments matrices clustering

New GO 268 268 348 307 355

Unan. prot. 32 36 48 35 51

Number of new GO annotations brought by the different correction methods and by the original Pfam library at 10% FDR. “New GO” is the total number of GO
annotations, and “Unan. prot.” is the number of proteins without known annotation for which an annotation has been proposed.

clustering library, a DNA binding and a DNA methyla-
tion domain that would make this protein an important
actor in the control of the genetic expression in Plasmod-
ium. In the same context, the putative role of PFB0290c
in the control of gene transcription is further consolidated
by the detection of domains functionally associated with
DNA binding and transcription from RNA polymerase
III promoters (identified by match-state clustering and
substitution-matrix libraries).

The paucity of genes involved in important metabolic
pathways has also been highlighted in a series of in silico
analyses of the malaria genome (see for example [26])
and expectations in the reannotation with respect to the
discovery of missing or novel metabolic enzymes are
high. A striking feature is the apparent lack of glycosyl-
transferases (only eight recorded in the CAZy database
[27]), suggesting that this eukaryote would only catalyze
eight hexosyl-transfer reactions and only one glycosyl-
hydrolase. This lends support to the notion that a parasitic
lifestyle does not require the utilization of exogenous
linked sugar sources. Here, we identified domains in the
MAL13P1.66 protein sequence that suggest a possible
interaction with carbohydrates, including the transport of
sugars and/or the catalysis of a glycosyl-transfer similar
to that catalyzed by enzymes of the glycosyltransferase
family 1 of the CAZy classification (identified by match-
state clustering and substitution-matrix libraries). Future
experimental studies of the corresponding gene and pro-
teins should be conducted as MAL13P1.66 may prove to
be an important protein in the carbohydrate metabolism
of P. falciparum.

Regarding the biogenesis of intracellular organelles,
the vital importance of the apicoplast has stimulated
numerous studies geared at functionally dissecting the
import and maturation of nuclear encoded proteins (for
review see [28]). PF14 0249, which encodes a hypo-
thetical protein of the apicoplast previously reported
as possibly associated with the organelle membrane,
is suspected to harbour a peptidyl-prolyl cis-trans iso-
merase activity by the occurrence of domains Trigger C
(PF05698) and FKBP C (PF00254) (match-state cluster-
ing and substitution-matrix libraries). It could therefore
play an important role in the accurate folding of imported
proteins when they reach stroma of the apicoplast. These
examples illustrate how the detection of novel domains

might be helpful for further studies of this essential, yet
poorly understood, parasite proteome.

Discussion and Conclusions
We have proposed two new methods to fit an HMM
library to a target organism. These methods have been
implemented in a software freely available at http://www.
lirmm.fr/∼terrapon/HMMfit/. Our methods learn global
correction rules that are applied to match states of the
entire library, thus enabling the discovery of domains that
were previously unknown in a given organism. The two
methods concentrate on modification of the amino-acid
distribution of match states. This is because match-states
model conserved positions of the proteins, and thus likely
contain most of the information of the sequence align-
ments. However, several other solutions can be explored,
such as modifying the number of states, the probabilities
of between-state transitions, the amino-acid distributions
associated with insertion states, or the null model used for
computing scores and E-values.

Additionally, we have presented a simple procedure to
estimate the proportion of false positives in a set of newly
identified domains. Using P. falciparum as a case study,
we assessed the performances of our methods and of
two previous approaches that rely on a specific adjust-
ment of the score function, or on the enrichment of
sequence alignments. Note that several other approaches
address related issues. For example, Kumar and Cowen
[29] propose to augment the sequence alignments with
artificial sequences generated by simulated evolution.
Similarly, several studies propose to improve the train-
ing of profile HMMs and the scoring of sequences using
negative examples (e.g. see [30-32]). However, the aim
of these methods differs from ours. Instead of fitting
HMMs to a particular species, their goal is to distinguish
the different sub-families within a large protein family.
Consequently, we have not considered these studies fur-
ther in the presented work.

In P. falciparum, our experiments show that when
several close genomes are available, the approach which
integrates known domain occurrences into the sequence
alignments provides the best results in terms of number
of new occurrences. Although our approach based on
match-state clustering identifies fewer new domains, it
provides similar results in terms of domain diversity, and

http://www.lirmm.fr/~terrapon/HMMfit/
http://www.lirmm.fr/~terrapon/HMMfit/


Terrapon et al. BMC Bioinformatics 2012, 13:67 Page 13 of 14
http://www.biomedcentral.com/1471-2105/13/67

discovers slightly more new domain families. Moreover,
when there is no closely related species available, our
two approaches outperform the other methods in terms
of occurrence number, domain diversity and number of
previously unknown families. This is also the case when
the modified libraries are used to detect divergent domain
occurrences with the help of the CODD procedure.

In summary, the fitted libraries identify in P. falci-
parum several hundred domains that are not identified
with the original Pfam library. At low E-value thresholds,
the Pfam standard library identifies 192 new domains at
10% FDR, while the enriched alignment and match-state
clustering libraries identify 486 and 375 new domains,
respectively, at the same FDR. With the help of the
CODD procedure, the original library identifies 404 new
domains at 10% FDR, while the enriched alignment and
match-state clustering libraries identify 529 and 516 new
domains, respectively. Additionally, the newly identified
domains often provide new GO annotations for P. fal-
ciparum proteins. For example, the enriched alignment
and match-state clustering libraries lead to an additional
348 and 355 new GO annotations, respectively. All new
domains discovered on P. falciparum have been integrated
into a dedicated website which pools all known/new
annotations of protein domains and functions for this
organism.
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contains four supplementary figures, and three supplementary tables.
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