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Abstract

Chimeric MS/MS spectra contain fragments from multiple precursor ions and therefore hinder 

compound identification in metabolomics. Historically, deconvolution of these chimeric spectra 

has been challenging and relied upon specific experimental methods that introduce variation 

in the ratios of precursor ions between multiple tandem mass spectrometry (MS/MS) scans. 

DecoID provides a complementary, method-independent approach where database spectra 

are computationally mixed to match an experimentally acquired spectrum by using LASSO 

regression. We validated that DecoID increases the number of identified metabolites in MS/MS 

datasets from both data-independent and data-dependent acquisition without increasing the false 

discovery rate. We applied DecoID to publicly available data from the MetaboLights repository 

and to data from human plasma, where DecoID increased the number of identified metabolites 

from data-dependent acquisition data by over 30% compared to direct spectral matching. DecoID 

is compatible with any user-defined MS/MS database and provides automated searching for some 

of the largest MS/MS databases currently available.

Introduction

Compound identification is generally recognized as the major bottleneck when performing 

untargeted metabolomics with liquid chromatography/mass spectrometry (LC/MS)1,2. An 

important step in the identification process is matching MS/MS data from a feature (defined 

by a unique combination of retention time and m/z values) in the research sample to a 

reference MS/MS spectrum in metabolomic databases. Even small variations in an MS/MS 

spectrum can indicate structural differences in the precursor ions (Supplementary Figure 

1)3,4. This necessitates exact matches of both m/z and intensity for all fragments in the 

research and reference MS/MS spectra. However, reference MS/MS spectra are typically 
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derived from pure chemical standards, while research MS/MS spectra are obtained by 

analyzing much more complex sample matrices that contain many compounds. When more 

than one of these compounds is simultaneously fragmented in the same MS/MS experiment, 

the resulting spectra are said to be “chimeric” (Figure 1a). By definition, chimeric spectra 

do not match reference data from pure chemical standards and therefore hinder compound 

identification when not deconvolved.

Historically, deconvolution of chimeric spectra in metabolomics has relied upon 

experimental variation in the ratios of precursor ions between MS/MS scans. When the 

ratio of two precursor ions varies between MS/MS scans, it leads to proportionate changes in 

the intensity of each precursor’s product ions. The variation in precursor ions can occur due 

to differences in the precursors’ chromatographic elution profiles, differences in precursor 

concentrations between samples, or by shifting the location of the MS/MS isolation window. 

There are several algorithms that make use of these principles to deconvolve chimeric 

spectra in specific experimental workflows for metabolomics3,5–8 and proteomics9–14. 

Notably, however, deconvolution of metabolomic MS/MS spectra on the basis of these 

experimental factors is not always successful3,5. While it is possible to analyze samples 

with different combinations of experimental conditions to improve success, this is low 

throughput and requires designing sample-specific methods. Moreover, it is not compatible 

with analysis of most chimeric data in public repositories such as MetaboLights15 and 

the Metabolomics Workbench16. Thus, we sought to develop a complementary strategy to 

deconvolve metabolomic MS/MS spectra independent of how the spectra were acquired.

When performing metabolomics with data-independent acquisition (DIA), wide MS/MS 

isolation windows are applied (e.g., >20 m/z). The majority of the fragmentation data 

obtained are chimeric and require deconvolution3,17. In contrast, metabolomic workflows 

using data-dependent acquisition (DDA) typically apply a narrow MS/MS isolation window 

(e.g., 1–3 m/z)18. Although DDA workflows aim to only fragment a single precursor 

in each MS/MS experiment, previous studies have suggested that chimeric data are still 

prevalent3,19. We applied a simple metric inspired by Lawson et al.19 to estimate the 

percentage of the MS/MS signal that arises from analytes other than the targeted precursor 

(Methods and Supplementary Figure 2) in a DDA analysis of the NIST 1950 reference 

plasma. We find that, even with a 1 m/z isolation window, more than half of the acquired 

MS/MS spectra have some degree of contamination (Figure 1b). Further, precursors 

whose MS/MS spectra did not return any high-scoring hits after searching mzCloud had 

significantly higher levels of contamination (Figure 1c), suggesting that deconvolution of 

DDA spectra may help improve metabolite identification rates (the number of identified 

features divided by the number of features detected).

To fill the need for acquisition-independent deconvolution of any MS/MS spectrum in 

metabolomics, we have developed DecoID, which builds upon a proteomic method20 to 

perform a database-assisted deconvolution. DecoID is a Python library with a graphical-

user interface to facilitate data processing and visualization (Supplementary Figure 

3). DecoID accepts raw data from any vendor file format that is compatible with 

MSConvert21 and utilizes user-defined MS/MS databases as well as built-in support and 

automated searching of some of the largest MS/MS databases currently available: Human 
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Metabolome Database (HMDB, hmdb.ca)22, Mass Bank of North America (MoNA, https://

mona.fiehnlab.ucdavis.edu/)23, and mzCloud (www.mzcloud.org).

Results

DecoID uses non-negative LASSO regression24 to deconvolve any MS/MS spectrum 

into a linear combination of database spectra. Once deconvolved, the purified spectrum 

corresponding to the precursor of interest can be extracted and scored against the reference 

spectrum to identify the compound and check for redundancies (that is other metabolites in 

the database with highly similar MS/MS patterns, Methods). The workflow of DecoID is 

depicted in Figure 1d and a detailed description of the algorithm is provided in the Methods. 

The goal of DecoID is to be universally applicable to any experimental workflow for both 

MS/MS acquisition (DDA and DIA) and sample introduction (liquid chromatography, flow 

injection, and direct infusion). DecoID can operate on a single spectrum or it can leverage 

an entire dataset through full-scan MS1 information and grouping of MS/MS spectra 

if peak information is provided (Methods). In addition, DecoID can also use retention 

time information from user-provided databases to gain further specificity in metabolite 

identifications and more accurate deconvolutions (Supplementary Figure 4).

Although MS/MS databases are rapidly growing25, there will still be spectra contaminated 

with precursors that are not contained in any MS/MS database. One notable source of 

contamination is what we refer to here as orphan isotopologues. We say that an MS/MS 

spectrum is contaminated by an orphan isotopologue when the MS/MS spectrum contains 

fragments from an M+1 isotopologue of a contaminating compound (but not the parent 

M+0 of this same contaminating compound, Figure 2a). These orphan M+1 isotopologues 

primarily arise from naturally occurring carbon-13 and are challenging to deconvolve 

because only MS/MS data for M+0 isotopologues are typically included in MS/MS 

databases. In our evaluation of human plasma by DDA with 1 m/z isolation windows, 

we estimate that approximately 10–15% of the acquired spectra will be contaminated 

by orphan isotopologues (Methods). To remove this contamination, spectra for orphan 

carbon-13 isotopologues are computationally predicted from the M+0 database spectrum 

by using an approach similar to that of isoMETLIN26 (Figure 2b–c, Supplementary Figure 

5, and Methods) and applied to deconvolve spectra contaminated with orphan isotopologues. 

Additionally, when a non-chimeric MS/MS spectrum is acquired on a precursor whose 

reference spectrum is not contained in any of the MS/MS databases searched, DecoID uses 

this pure spectrum for potential deconvolution. To this end, DecoID creates an “on-the-fly” 

unknown spectral library containing these pure MS/MS data. This enables deconvolution 

of MS/MS spectra within the same dataset that are contaminated by unknown compounds, 

pending their inclusion in the on-the-fly library (Supplementary Figure 6).

To test the effectiveness of the unknown library, we applied DecoID to a DDA dataset of 526 

metabolite standards from the Mass Spectrometry Metabolite Library (IROA Technologies) 

in a single mixture (the IROA standard mixture, Methods). MS/MS data were acquired with 

a 1 m/z isolation window. The dataset was deconvolved with DecoID and two versions of 

our in-house database: the full in-house database and a partial in-house database in which 

50% of the entries were arbitrarily removed to simulate incomplete database coverage of a 
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sample. When an unknown library was created on-the-fly and then used for deconvolution, 

database similarity scores from the partial database were restored to nearly the same level 

as those from the full database (Supplementary Figure 7). Further details are described 

in the Methods and an example is available in Supplementary Figure 6. We note that 

the on-the-fly deconvolution capability of DecoID benefits from MS/MS methods where 

multiple spectra are acquired on each precursor. As such, performance of the on-the-fly 

deconvolution capability will vary depending on the specific experimental workflow used.

Null Evaluations

To verify that DecoID performs faithful deconvolutions, three null evaluations were 

performed. One of our objectives was to ensure that DecoID does not falsely deconvolve 

noisy, but non-chimeric, MS/MS spectra into several components by using simulated DDA 

and DIA spectra. The simulated spectra were composed of database spectra from MoNA 

with random noise added (Methods). In the first null evaluation, DecoID was used to 

deconvolve the noisy, but non-chimeric, spectra by searching the spectra back against the 

unmodified MoNA database using various LASSO parameter values, which is the primary 

parameter for DecoID’s deconvolution algorithm. For all tested non-zero parameter values, 

DecoID did not find more than a single component, meaning no unfaithful deconvolutions 

were performed (Supplementary Figure 8).

As a second independent null evaluation, the same simulated spectra were again 

deconvolved with DecoID. This time, however, the reference spectra for the compounds 

in the simulated spectra were removed from the MoNA database. Using this partial database, 

DecoID did not falsely combine database spectra to match the non-chimeric spectra that 

were absent from the database. In both of the first two null evaluations, the only case where 

unfaithful deconvolutions were performed was when the LASSO parameter was set to zero. 

A LASSO parameter of zero amounts to a non-negative linear regression, which has been 

successfully utilized to deconvolve proteomic MS/MS spectra20. However, our results show 

that a comparable approach cannot be applied to metabolomic MS/MS spectra without the 

LASSO penalty term (Supplementary Figure 8).

After optimizing the DecoID LASSO parameter (Methods and Supplementary Figure 9) to 

maximize metabolite identification accuracy, which found an optimal value of 5.0 for both 

DIA and DDA datasets, we sought to verify that the optimal parameters enabled faithful 

deconvolutions on chimeric data. To do this, we performed a third null evaluation where we 

analyzed synthetic DDA and DIA datasets formed of reference spectra for the compounds 

used to optimize the DecoID parameters. These reference spectra were mixed according to 

the retention times of each compound to create a chimeric dataset with a known absolute 

ground-truth. With DecoID, we then deconvolved these datasets using mzCloud and a subset 

of mzCloud where the spectra of the mixture compounds were removed from the database, 

creating a partial database. For the DDA dataset, a LASSO parameter of 5.0 was sufficient 

to produce no significant difference between the database similarity scores when the decoy 

database was used with and without DecoID deconvolution. For the DIA dataset, a LASSO 

parameter of 5.0 was insufficient to produce a non-significant result, indicating that DecoID 

was unfaithfully increasing database similarity scores. Using a LASSO parameter of 50.0, 
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on the other hand, was sufficient and the performance in metabolite identification accuracy 

was negligibly different to when a parameter value of 5.0 was used (Supplementary Figure 9 

and Supplementary Figure 10).

Validation with IROA standard mixture

To verify the accuracy and performance of DecoID, we again applied it to the IROA mixture 

dataset of DDA and DIA spectra. For the DDA experiments, isolation windows of 1, 3, 

and 5 m/z were used to create a gradient of contamination in the datasets (Supplementary 

Figure 11). To validate the performance of DecoID across diverse MS/MS databases, the 

DDA standard mixture datasets were searched with and without deconvolution using MoNA, 

HMDB, mzCloud, and our in-house database. Each database covers various portions of the 

IROA standards (Supplementary Table 1). With all databases, similarity scores for correctly 

identified metabolites did not decrease as the degree of contamination increased when using 

DecoID (Figure 3a, Supplementary Figure 12, and Supplementary Figure 13). To verify 

that DecoID actually improves metabolite identification and does not just falsely increase 

database scores, receiver operating characteristic (ROC) curves were drawn from the DDA 

results for all databases using the top three hits of each feature (Methods and Supplementary 

Figure 14). DecoID gives a higher area under the ROC curve (auROC) compared to direct 

database searching when using the in-house database or mzCloud. When using HMDB or 

MoNA, DecoID gives a slightly worse auROC that we speculate is due to the diversity of 

spectra in those databases (QTOF, Orbitrap, and QqQ) compared to the in-house database 

and mzCloud, which are entirely composed of Orbitrap spectra (the experimental spectra 

used in this study are from an Orbitrap instrument). When aggregating the results across all 

databases and examining the false discovery rate (FDR) and true positive rate (TPR) for the 

top hit of each feature, however, DecoID shows the same FDR and a higher TPR relative 

to searching the acquired spectra against the database for nearly all dot product thresholds 

(Figure 3b–c). Further, when using a dot product threshold of 80, DecoID significantly 

increased the TPR without increasing the FDR, thereby improving metabolite identification 

in DDA spectra (Figure 3d).

To validate the utility of DecoID to DIA spectra and to compare its performance to the 

widely used DIA deconvolution software MS-DIAL5, we collected SWATH27 DIA spectra 

(Methods) on the IROA mixture and deconvolved the acquired spectra with both DecoID 

and MS-DIAL. We compared the performance of the software in three scenarios: (1) 

DecoID used alone, (2) MS-DIAL used alone, (3) or both software used in parallel (Methods 

and Supplementary Figure 15) by computing the auROC in each case. To promote a fair 

comparison, the MS-DIAL software was optimized to give the highest auROC (Methods and 

Supplementary Figure 16). When using MoNA and the in-house database, a higher auROC 

was achieved with DecoID compared to MS-DIAL. With HMDB and mzCloud, in contrast, 

the reverse occurred. When using the combined approach, the highest auROC was achieved 

in all databases except HMDB, thereby demonstrating the complementary performance 

of both software (Supplementary Figure 17). MS-DIAL is unable to deconvolve chimeric 

spectra when the precursors have highly similar chromatographic peak shapes, even though 

the precursors may have different m/z values. This limitation allows DecoID to be more 

successful in some cases because DecoID does not use chromatographic information to 
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deconvolve MS/MS spectra. We expect the difference in performance to be particularly 

pronounced in shorter LC methods where peaks are not well separated. Supplementary 

Figure 18 shows an example of a spectrum that DecoID was able to successfully deconvolve 

that MS-DIAL could not. We also compared the FDR and TPR as functions of dot product 

threshold for both DecoID, MS-DIAL, and the combined approach when the top hit was 

considered for each feature. We found that using either DecoID alone or using the combined 

approach resulted in a lower FDR and a higher TPR at all thresholds compared to when 

MS-DIAL was used alone (Figure 3e–f). Importantly, when using a dot product cutoff of 80, 

DecoID was able to significantly improve the TPR while decreasing the FDR compared to 

MS-DIAL. When using the combined approach, an even more pronounced increase in the 

TPR was achieved (Figure 3g). This striking result prompted us to develop a semi-automated 

workflow to use the two algorithms in parallel (Supplementary Figure 15). In this workflow, 

DecoID can read the output of an MS-DIAL deconvolution and automatically combine the 

results from MS-DIAL and DecoID. An example script is available on the DecoID GitHub 

page (https://github.com/e-stan/DecoID/).

Validation in different sample matrices

In addition to the strong performance of DecoID on the IROA standard mixture datasets, 

we also sought to verify that DecoID can improve metabolite identification in various 

sample matrices. To accomplish this, we spiked metabolite standards into E. coli, human 

plasma, and P. pastoris metabolite extracts (Methods). We then compared how well DecoID 

identified the spiked-in metabolites compared to directly searching the DDA spectra against 

the databases without deconvolution. We also compared the success of identifying the 

spiked-in metabolites when using a DIA workflow with DecoID alone, MS-DIAL alone, 

or DecoID with MS-DIAL. The auROC was computed for DDA spectra (Supplementary 

Figure 11, Supplementary Figure 19, Supplementary Figure 20, and Supplementary 

Figure 21) and DIA spectra (Supplementary Figure 22, Supplementary Figure 23, and 

Supplementary Figure 24). In eleven of the twelve database/sample matrix pairs, DecoID 

increased the auROC on DDA spectra. In all database/sample matrix pairs, the combined 

usage of DecoID and MS-DIAL outperformed MS-DIAL used individually, and, in eight of 

the twelve cases, it outperformed DecoID used individually.

Application to NIST SRM 1950

To demonstrate that DecoID leads to more identifications compared to conventional 

MS/MS database searching of DDA spectra when analyzing a biological sample, DDA 

HILIC/MS/MS spectra were acquired for the NIST SRM 1950 plasma sample and processed 

with DecoID (Methods). Consistent with a recent LC/MS/MS analysis of human plasma28, 

when searched against HMDB, MoNA, mzCloud, and our in-house database without 

deconvolution, 164 metabolites were identified on the basis of accurate mass and matching 

of experimental MS/MS data to reference spectra in metabolite databases (Level 2a29, 

Methods)30. After deconvolution with DecoID, 215 features were identified. This represents 

a greater than 30% increase in identification rate compared to applying no deconvolution 

(Figure 4a). As an example, after deconvolution, creatinine was correctly identified (Figure 

4b). The identification was confirmed with a pure standard and a retention time match. 

The breakdown of which features were able to be identified in which databases, along 
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with the individual increases in identification rate for each database, is given in Figure 

4c–g. Given the complementary nature of MS/MS databases, we suggest using multiple 

databases to give the best identification rate. DecoID facilitates this approach by allowing 

databases (e.g., HMDB, MoNA, and mzCloud) to be easily switched in the user interface 

(see Supplementary Figure 3). The complete table of identifications made with DecoID is 

available in Supplementary Table 2.

Application of DecoID to a Human Plasma DIA Dataset

To verify that DecoID can also improve the number of identified metabolites in a biological 

DIA dataset, a human plasma DIA dataset was deconvolved by using DecoID alone, MS-

DIAL alone, or the two software packages together. We identified 235 features (level 2a29) 

with MS-DIAL and 183 features with DecoID. When used in parallel, however, 339 features 

(40% more than just using MS-DIAL alone) were able to be identified, highlighting the 

complementary nature of the two deconvolution algorithms and the benefit of using both 

approaches in parallel (Figure 5a–b). As an example, cyclic AMP was able to be identified 

using DecoID (Figure 5c), but not by using MS-DIAL (Figure 5d). The breakdown of 

the three approaches for individual databases shown in Figure 5e–i. The complete list of 

identifications using the combined approach can be found in Supplementary Table 3.

Improved Identification in MetaboLights Dataset

The acquisition-independent workflow of DecoID enables deconvolution of publicly 

available datasets to be processed with DecoID to improve metabolite identification and 

gain new insights from prior studies. We note that most of the metabolomic datasets in 

public repositories were not acquired with methods that are amenable to experimental 

deconvolution by existing strategies such as MS-DIAL, highlighting a benefit of DecoID. 

As an example, a reversed-phase liquid chromatography (RPLC)/MS/MS DDA study 

investigating the effect of a ketogenic diet on mouse xenograft tumor models31 found 

on the MetaboLights15 online repository was analyzed with DecoID (Methods). After 

deconvolution with DecoID, 71 additional features, including citrate, were able to be 

identified (Level 2a29) by searching MoNA, HMDB, mzCloud, and our in-house database, 

representing a greater than 20% improvement in identification rate compared to searching 

the acquired spectra directly (Figure 6a–b). By examining the breakdown of which features 

were able to be identified using which databases, we again see the complimentary nature 

of the reference databases (Figure 6c). The performance with the individual databases is 

given in Figure 6d–g. The complete list of identifications from all databases is available in 

Supplementary Table 4. A detailed summary of the important statistics, metrics, and relevant 

figures for all the datasets analyzed in this study is provided in Supplementary Table 5.

Discussion

DecoID is an acquisition-independent method to deconvolve metabolomic MS/MS spectra. 

We have shown that DecoID successfully and faithfully deconvolves DDA and DIA spectra 

from various sample matrices and increases the number of identified features in both 

workflows. The complementary nature of DecoID to the commonly used deconvolution 

algorithm MS-DIAL enables large improvements in metabolite identification in DIA studies 
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when both algorithms are employed in parallel. Further, DecoID is backwards compatible 

with all MS/MS data that have been deposited in public repositories such as MetaboLights 

and the Metabolomics Workbench, whereas other existing deconvolution software tools such 

as MS-DIAL are not. DecoID is open source and freely available on the Patti Lab website 

(http://pattilab.wustl.edu/software/DecoID).

Methods

Standards, chemicals and samples

Acetonitrile, methanol, and water (all LC/MS grade) were purchased from Fisher 

Scientific or Millipore Sigma. Ammonium bicarbonate, ammonium hydroxide, and 

methylenediphosphonic (medronic) acid were ordered as eluent additives for LC/MS from 

Millipore Sigma. The Mass Spectrometry Metabolite Library (IROA Technologies) was 

purchased from Sigma-Aldrich (St. Louis, MO). The metabolite standards of plates 1–6 

were reconstituted according to the protocol from IROA. An aliquot of each well was 

taken to prepare a pool. After drying in a vacuum concentrator, the standard mixture was 

reconstituted in 50% acetonitrile, 50% water to yield a final concentration of approximately 

5–10 μM (dependent on the molecular weight). The list of IROA metabolites detected in 

both polarities, along with their retention times, is available in Supplementary Table 6. 

The NIST SRM 1950 (frozen human plasma) was ordered from the National Institute of 

Standards and Technology. It was extracted with 80% ethanol (1:10 dilution), kept at −20 

°C for 1 h, and centrifuged (14,000 g, 10 min, 4 °C). The supernatant was directly used for 

LC/MS analysis.

An additional standard mix containing 81 metabolites was prepared for the spike-in 

experiments (Supplementary Table 7). Dried unlabeled metabolite yeast extract from P. 
pastoris was purchased from Cambridge Isotope Laboratories. It was reconstituted in 1 mL 

water and diluted at a ratio of 1:20 in 50% acetonitrile. Dried unlabeled E. coli extract was 

obtained as part of the credentialed E. coli kit from CIL. It was reconstituted in 100 μL 

of 50% acetonitrile. Pooled human plasma was purchased from Innovative Research, Inc 

(Novi, MI, USA), extracted with 80% methanol, and incubated at −20 °C for one hour. All 

three extracts were then centrifuged (14,000 g, 10 min, 4 °C) and spiked with the metabolite 

standard mix to yield a final concentration of 10 μM (1:10 dilution) before to analysis. Only 

the portion of the spiked-in standards not designated for parameter optimization were used 

to evaluate performance in the spike-in datasets.

Liquid chromatography/mass spectrometry

Liquid chromatography was performed with a SeQuant® ZIC®-pHILIC column (100 × 

2.1 mm, 5 μm, polymer, including a guard column 20×2.1 mm, 5 μm, polymer, Merck-

Millipore). Mobile phase A was 95% water, 5% acetonitrile with 20 mM ammonium 

bicarbonate, 0.1% ammonium hydroxide (25% ammonia in water) and 2.5 μM medronic 

acid. Mobile phase B was 95% acetonitrile, 5% water (vol/vol) with 2.5 μM medronic 

acid. Medronic acid and/or phosphate alone has been shown to improve peak shapes32. A 

Vanquish Horizon UHPLC system (Thermo Fisher Scientific) was used at a flow rate of 

0.250 mL min−1 and 40 °C. The following linear gradient was applied: 0–1 min 90% B, 
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1–14 min decrease to 25% B, 14–14.5 min 25% B, and 90% B for re-equilibration until 

22 min. The flow rate was increased to 0.400 mL min−1 from 15.5–20 min. The samples 

were kept at 6 °C in the autosampler, and the injection volume was 2 μL. The LC system 

was coupled to an Orbitrap ID-X Tribrid mass spectrometer (Thermo Fisher Scientific) 

via electrospray ionization in positive and negative mode with a spray voltage of 3.5 and 

2.8 kV, respectively. The RF lens value was 60%. Data were acquired in data-dependent 

acquisition (DDA) mode and data-independent acquisition (DIA) mode with a mass range 

of 67–900 m/z. For DDA, an inclusion list with the m/z values ([M+H]+ for positive mode, 

[M-H]- for negative mode) for the standard mixture compounds was used. MS1 scans were 

acquired at a resolution of 120K with an automatic gain control (AGC) target of 2e5 and 

a maximum injection time of 200 ms. Different isolation windows of 1, 3, and 5 m/z were 

used. A normalized collision energy of 40% was used. Data were acquired with a resolution 

of 15,000, an AGC target of 2.5e4, and a maximum injection time of 50 ms. For DIA, 

full scans with 60K resolution, an AGC target of 2e5, and a maximum injection time of 

100 ms were acquired. The isolation window for fragmentation was 20 m/z, the normalized 

collision energy 40%, the resolution was 15,000, the AGC target 4e5, and the maximum 

injection time was 22 ms. All isolation windows used for the datasets analyzed can be found 

in Supplementary Table 5.

MS/MS Database Preparation

Three publicly available MS/MS databases were tested with DecoID: Mass Bank 

of North America (MoNA), Human Metabolome Database (HMDB), and mzCloud. 

MoNA experimental spectra were downloaded from the MoNA web interface (https://

mona.fiehnlab.ucdavis.edu/downloads) as NIST libraries (.MSP format). MSP formatted 

files are directly compatible with DecoID. DecoID processes the MSP file in a spectrum-by-

spectrum fashion, keeping those that have entries for the “ExactMass” or “PrecursorMZ” 

field as well as “Ion_mode” and “DB”. If the InChIKey33 is provided in the MSP file, that 

is used as the compound identifier. If not, the compound name is used as the compound 

identifier. After this filtration, ~125,000 experimental spectra were loaded in DecoID for use 

with deconvolution.

HMDB does not have a direct MSP download format available on the HMDB website. To 

allow for DecoID compatibility, the downloaded XML (Extensible Markup Language) file 

for all experimental MS/MS spectra (https://hmdb.ca/downloads) was parsed and converted 

to MSP. The Jupyter notebook “DecoID/housekeeping/HMDB_xml_to_MSP.ipynb” handles 

this conversion. The same requirements as with MoNA were applied (non-empty “database-

id”, “ionization-mode”, “spectra-type”, and “instrument-type”). Metabolite information 

(name, InChIKey, mass, and formula) were extracted from the All Metabolites XML file 

available for download at HMDB. After processing, ~3,000 experimental spectra were 

available for deconvolution. After processing the MSP files downloaded for MoNA and 

built for HMDB, DecoID predicts all carbon-13 M+1 isotopologue spectra and adds them 

to the database before writing binary versions of these databases for faster loading on 

future usages. Additionally, for MSP formatted database files, if the “retention time:” 

field exists for a spectrum, it will be recorded for optional retention time constrained 

deconvolutions. We note that, in general, retention times in reference databases are not 
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applicable unless the exact same analytical conditions are used. However, researchers may 

have predicted retention times or have in-house databases with retention times that can be 

used to improve metabolite identification accuracy and confidence. This can be especially 

helpful in distinguishing between isomeric compounds. In the case of the IROA compounds, 

about 60% of the compounds with an isomer in the IROA library were separated by more 

than 30 seconds in retention time.

Interfacing with mzCloud was completed with usage of the proprietary mzCloud application 

programming interface. Support for the application programming interface is included 

with DecoID, however, usage requires an access key granted by Thermo Fisher Scientific. 

Recalibrated MS/MS spectra from the reference database were used for deconvolution.

Generating Reference Data for Our In-House Database

In addition to the publicly available MS/MS databases, we wished to obtain MS/MS data 

and retention times for each metabolite in our IROA standard mixture when using the same 

chromatography as applied above to the research samples. To establish ground truth, we 

created non-isobaric mixtures containing approximately twenty metabolite standards each. 

The non-isobaric mixtures were then individually evaluated by HILIC/MS to determine 

reference retention times. Retention time bounds were calculated and manually inspected 

by using Skyline (v20.0.1). Reference MS/MS spectra for the IROA metabolites were 

obtained by using flow-injection analysis to evaluate each individual standard in a separate 

experiment. The reference retention times and the MS/MS spectra from flow injection 

analysis were then combined for all metabolites into a single MSP file that can be read by 

DecoID.

DecoID Algorithm

Input: The first step of the DecoID workflow is MS/MS data import. DecoID accepts 

vendor formatted files that are compatible with MS-Convert21. DecoID uses MS-Convert21 

to automatically perform vendor data centroiding and conversion of raw data (both MS1 

and MS/MS) into mzML. It is also possible to directly provide a .mzML file to DecoID 

that has already been centroided. The performance of DecoID on profile data has not been 

evaluated. The user can supply an optional intensity threshold where all detected MS/MS 

fragments below this absolute intensity will be removed from downstream analysis. This can 

prevent overfitting to low intensity fragments that are likely noise. The user can also import 

a peak table that provides the m/z values and retention time bounds for unknown features 

of interest. These peak definitions can be found through many means such as XCMS34 or 

any other peak detection platform such as Compound Discoverer (Thermo-fisher Scientific) 

or MassHunter Profinder (Agilent Technologies). If peak information is provided, only those 

MS/MS spectra corresponding to one of the input peaks is deconvolved. Peak information is 

required for DIA MS/MS data. For DDA, if no peak information is provided, each MS/MS 

spectrum is treated as a unique feature for identification.

Candidate spectra selection

To deconvolve an MS/MS spectrum, DecoID assumes a linear model of the fragmentation 

process where an observed MS/MS spectrum (a vector), y, can be thought of as the product 

Stancliffe et al. Page 10

Nat Methods. Author manuscript; available in PMC 2022 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of a matrix of MS/MS spectra, X, of individual precursors multiplied by a vector of 

precursor abundances, β (Equation 1). An MS/MS spectrum can easily be converted into 

a real valued vector by binning MS/MS fragments based on their m/z values. DecoID uses 

a bin size of 0.01 m/z and a maximum m/z of 5,000 to bin the spectra, serving as a balance 

between resolution and computational cost. The matrix, X, is formed by concatenating the 

column vectors of database MS/MS spectra into a matrix.

y = Xβ (1)

Before X can be formed, the spectra to consider for deconvolution must be selected. DecoID 

makes this selection based on the isolation window size used. If the M +/− H adduct of 

a database compound with an MS/MS spectrum in the relevant polarity has an m/z value 

that falls within the isolation window, it is considered for use in the deconvolution. The 

distribution of the number of candidate compounds considered to deconvolve DIA and DDA 

spectra acquired from a human plasma sample can be seen in Supplementary Figure 25. 

In larger spectral databases, there may be several spectra for a single compound. In this 

case, DecoID compares the similarity of the query MS/MS spectrum to each spectrum 

for the compound in the database and selects the spectrum with the greatest similarity. 

For all spectral similarity assessments, DecoID uses the normalized dot product. Several 

other metrics exist for the scoring of similarity35, but for its ease of interpretation and 

robust performance in many applications, we chose the normalized dot product (Equation 

2). DecoID can be reconfigured to use any other simple scoring metric. The deconvolution 

operates independently from the similarity metric, which is only used for selecting spectra 

before the deconvolution and scoring the MS/MS hits after deconvolution.

similarity(s1, s2) = s1 ⋅ s2
s1 2 s2 2

(2)

If desired, the MS/MS database can be expanded by predicting the MS/MS spectrum for the 

carbon-13 M+1 isotopologue for each compound in the database. This enables removal 

of contamination arising from orphan isotopologues (Orphan isotopologue spectrum 

prediction). Further, pure spectra collected during acquisition can be used to deconvolve 

chimeric spectra contained in the same dataset (On-the-fly unknown library). To prevent 

spurious deconvolution, candidate spectra were only used for deconvolution if, in the nearest 

MS1 scan, there was a peak of less than a ppm tolerance, Δppm, away from the database 

compound’s m/z. Δppm values should be set based on the mass accuracy of the instrument. 

For carbon-13 M+1 isotopologues, there must be a peak for the M+0 and the M+1 ions. If 

no full scan data are contained in the raw data file, this filtration step is skipped. Full scan 

data are required to use the M+1 isotopologue prediction and the on-the-fly unknown library. 

If retention times are available for database spectra and retention time filtration is selected, 

candidate spectra are further filtered based on the database retention times and the retention 

time of the MS/MS spectrum.
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Deconvolution

Once the matrix of database spectra, X, is assembled, a non-negative LASSO24 regression 

problem is formed (Equation 3) that enables determination of the contribution of each 

precursor spectra of X to the observed spectrum, y. For DDA MS/MS data, λ = 5.0 is used. 

For DIA MS/MS data, λ = 50.0 is used. λ is a hyperparameter for LASSO regression that 

regularizes the system to favor a sparse solution36. See Parameter optimization for details on 

how λ is set.

minβ Xβ − y 2
2 + λ β 1, subject to β ≥ 0 (3)

The non-negative LASSO problem is solved using coordinate descent with the Scikit-learn37 

Python package.

Feature Identification

To average the output of the deconvolution for all acquired spectra of a particular feature, 

the spectra, yi, and abundance vector, βi, for all acquired spectra within the retention time 

bounds of the feature are collected. The averaged reconstructed spectrum is computed by 

taking the vector sum of each reconstructed spectrum. The averaged observed spectrum is 

computed by taking the vector sum of all acquired spectra for a feature.

The residual noise, ϵ, that remains after the deconvolution is given by subtracting the 

averaged reconstructed spectrum from the averaged observed spectrum and dividing by the 

number of non-zero abundance elements, n, in the summed abundance vector, ∑βi (Equation 

4).

ϵ = 1
n ∑yi − Xβi (4)

Each purified component, wj, used to reconstruct the acquired spectrum is defined by adding 

the residual noise to the library spectrum (column j of the matrix X) multiplied by its 

coefficient (element j of the vector β) as given in Equation 5. Because it is possible that, 

after this summation, an element of wj may be negative, all negative elements are set to zero 

before scoring similarity.

wj = (βjXj
T)T + ϵ (5)

Each component found for a feature that had a precursor m/z value that is more than Δppm 
away from the feature of interest’s m/z value is discarded. Additionally, the database spectra 

that constituted X are also discarded if their precursor’s m/z value is more than Δppm 

away from the feature of interest’s m/z, value regardless of their coefficient in the LASSO 

regression. The remaining database spectra and pure components are then subjected to a 

redundancy check (details are given below). The score for each database hit is taken to be 

the maximum similarity it has amongst the remaining components, the original averaged 

spectrum, and the residual noise. An identification is made based on the accurate mass and 
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MS/MS similarity amounting to a Level 2a29 identification. The coefficients themselves 

cannot directly be used for feature identification due to the non-uniqueness of MS/MS 

spectra to a particular metabolite. For example, isomeric compounds often have highly 

similar MS/MS spectra (Supplementary Figure 1). As such, these coefficients should not be 

used as a measure of the relative abundance of the precursors in the MS/MS spectrum.

Output

After deconvolution and feature identification, three files are generated to summarize the 

results. The first of these files gives all hits for each feature in the dataset. This includes 

the mass error and dot product similarity along with the compound name, formula, database 

ID, and the spectrum ID for the exact spectral match. The component of the deconvolution 

where the match occurred is also listed by the compound ID of the spectrum used in the 

deconvolution. The information on each component that contributed to the deconvolution, 

along with the purified spectrum for that component, can be found in the second output 

file. Lastly, a binary DecoID is generated that contains details on each hit that enables 

the visualization of features through the user interface (Supplementary Figure 3). The 

user interface was implemented with the Python tkinter package. In addition to showing 

the metabolite hits, the reconstructed MS/MS spectrum is also shown using the solution 

to Equation 3. Further, the MS1 spectrum is also reconstructed by taking the precursor 

m/z values of each component found in the deconvolution and summing the regression 

coefficients at each m/z value to give an MS1 spectrum.

Orphan Isotopologue Spectrum Prediction

To predict the carbon-13 M+1 isotopologue MS/MS spectrum, the formula of the precursor 

ion and the database M+0 spectrum are used. The first step of the prediction is to 

enumerate all possible subformula of the precursor ion. For example, for the precursor 

molecule C8H8NO4, there are (8+1)x(8+1)x(1+1)x(4+1) = 810 possible subformulas, given 

no constraints on the chemical composition of the subformulas. Next, the theoretical m/z 
value of each subformula is computed and candidate formulas are assigned to the M+0 

database spectrum’s fragments based on the computed m/z value of the subformula and 

the user-defined mass tolerance, which should be set based on the mass accuracy within 

the database spectra. For the M+1 spectra predicted in this study, a mass tolerance of 15 

ppm was used. We note that, in some cases, multiple subformulas are possible for a single 

fragment. However, this will only affect the intensities of the fragment ions in the predicted 

spectra, not their m/z values. Moreover, only the number of carbons in the fragment is 

important for the prediction, and we found fragments with high variance in the number 

of possible carbon atoms to be infrequent. After fragments are assigned subformulas, the 

mean number of carbon atoms in each fragment is computed. If no subformula matches an 

observed fragment’s m/z value, then that fragment is removed from further consideration 

as it is most likely a noise peak or a fragment ion from a contaminating precursor. After 

the mean number of carbons is computed for each fragment, the intensities of the M+0 

spectrum’s fragments are distributed according to the number of carbons in the precursor 

and the number of carbons in the fragment. For example, for an eight-carbon precursor and 

a seven-carbon fragment, the intensity of the fragment will be distributed with 7/8 of the 

original fragment’s intensity going to a new fragment shifted +1.003 m/z and the original 
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fragment being 1/8 as intense as it was in the M+0 spectrum. This process is depicted in 

Figure 2.

On-the-Fly Unknown Library

Over the course of a DDA MS/MS experiment, it is possible that two isobaric features 

will partially co-elute. If, during this co-elution, an MS/MS spectrum is acquired, a 

chimeric spectrum will be produced. However, it is possible that a non-chimeric spectrum 

of one of the precursors might be acquired earlier or later. If this is the case, even if 

this compound is not in the MS/MS database, it can still be used to deconvolve this 

second chimeric spectrum (Supplementary Figure 6). DecoID implements this framework 

by first identifying non-contaminated MS/MS spectra in the input data and running them 

through the DecoID deconvolution and identification workflow. Spectra are classified as 

non-contaminated if their contamination is less than 10% and the total ion current is greater 

than 1e4 (Quantifying MS/MS contamination). These parameters can be modified by the 

user to better fit specific instrumentation. If no identification is returned with a similarity 

greater than 80, the acquired MS/MS spectrum is used to deconvolve other spectra that were 

acquired within the retention time bounds of the feature. This workflow is only applicable to 

DDA MS/MS data.

Redundancy Check

MS/MS spectra are not unique to a single metabolite. In the case of isomeric compounds, 

approximately 25% of spectra for compounds with an isomer have a similarity greater than 

90 to at least one isomeric spectrum. In the case of isobaric (but not isomeric) compounds, 

it is much less (Supplementary Figure 1). However, approximately 40% of all compounds in 

HMDB have an isomeric compound in the database. This necessitates that the uniqueness of 

the DecoID deconvolution be assessed by a redundancy check, which searches each purified 

component against all database spectra (filtered by the exact mass of the component). If 

another database spectrum has a dot product similarity between the database spectrum 

and the component that is greater than 90% (user-defined threshold) of the dot product 

similarity between the database spectrum for the component and the component itself, 

then the component fails the redundancy check and any match to that component will be 

reported as redundant. We note that a failed redundancy check does not affect the quality 

of the deconvolution, merely its uniqueness. This check is meant to flag cases where an 

inconclusive identification is likely.

Parameter Optimization

The primary parameter for the DecoID deconvolution is the LASSO penalty term. To 

fit this parameter, we tested five different values on two separate metabolite standard 

mixture datasets consisting of 81 metabolite standards (one DIA and one DDA) acquired 

in both positive and negative mode. These 81 metabolites were the same as what were 

spiked into the biological matrices. About 50% of the metabolites that are detected in 

each polarity were used for parameter optimization, and the other 50% were used for 

performance evaluation in the spike-in datasets. Supplementary Table 7 annotates which 

compounds were used for optimization and evaluation. Receiver operating characteristic 

(ROC) curves were constructed and the area under the ROC (auROC) curve was computed 
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for each parameter value (Supplementary Figure 9) using the top three hits for each of the 

optimization metabolites in the mixture. After combining the results across the four tested 

databases, a LASSO parameter of 5.0 was found to be optimal for both DIA and DDA. 

For the DIA dataset, this parameter was too weak to prevent unfaithful deconvolutions in 

the null evaluations, so a LASSO parameter of 50.0 was used for DIA data. To optimize 

MS-DIAL, the “sigma” deconvolution parameter was tuned by trying ten values within 

the MS-DIAL recommended range (0.1–1.0) on the same DIA dataset used to optimize 

the DecoID LASSO parameter. The auROC was computed at each parameter value and a 

parameter value of 0.9 was selected as optimal (Supplementary Figure 16).

Simulated Spectra for Null Evaluations

The simulated DDA (1 m/z isolation window) and DIA (20 m/z isolation window) spectra 

were generated by randomly selecting 500 positive mode spectra. Then, for each spectrum, 

the number of noise fragments to add was selected by sampling from a uniform distribution 

ranging between ten and one hundred. The m/z values of the fragments were determined 

by sampling from the empirical distribution of fragment masses within MoNA. The noise 

peaks were scaled to represent 0%, 25%, 50%, 75%, or 100% of the signal in the simulated 

spectra.

Quantifying MS/MS Contamination

MS/MS contamination is quantified in a method similar to MSPurity19. The nearest 

MS1 scan to the MS/MS spectrum of interest was selected, and the fraction of the 

signal coming from co-isolated analytes other than the targeted precursor was calculated 

(Supplementary Figure 2). The frequency with which orphan isotopologues contribute to 

MS/MS contamination was determined through analysis of the NIST SRM 1950 plasma 

sample. We predicted orphan isotopologue contamination of an MS/MS spectrum based on 

the assumption that each feature found on a de-isotoped peak list (for details on the peak 

list see below) will produce an M+1 ion. We then cross referenced our predicted M+1 peak 

list against the retention time and isolation window of each acquired MS/MS spectrum to 

estimate the frequency of contamination.

DecoID Performance Evaluation

To evaluate the performance of DecoID compared to directly searching the acquired DDA 

MS/MS spectra, the DecoID workflow was applied identically except without the LASSO 

regression (the returned abundance vector is the zero vector). This ensures all scoring and 

spectral processing remains exactly the same. Manually inspected peak boundaries were 

provided for the standard mixture metabolites that were detected in at least one polarity. 

These peak boundaries were given as input to DecoID and used to establish the ground-truth 

identifications for the standard mixtures. For each feature, the maximum scoring hit using 

a Δppm of 10 (used for all analyses) was considered. If the maximum hit had a spectral 

similarity of greater than 80 (as assessed with the dot product similarity), it was considered 

identified. The true positive rate (TPR) was calculated by taking the number of correct 

identifications divided by the sum of the true positive identifications and the false negative 

identifications. Correct identifications were assigned on the basis of InChIKey33 for HMDB 

and MoNA. Correct identifications were assigned by using compound ID for mzCloud. 
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The false discovery rate (FDR) was calculated by taking the number of false positives and 

dividing by the sum of the false positives and true positives. Confidence intervals for the 

FDR and TPR were calculated via a bootstrapping procedure in which the complete dataset 

was resampled with replacement 10,000 times and the FDR and TPR were calculated at each 

iteration. Empirical p-values for the probability of identical FDRs and TPRs were calculated 

based on the frequency of resampled datasets that resulted in higher or lower values between 

two methods (DecoID, no deconvolution, MS-DIAL, and combined). The 2.5 and 97.5 

percentiles of the FDR and TPR were used as the empirical 95% confidence interval. 

Features for which MS/MS data were collected, but for which no hits were returned, were 

not used in the calculation of the FDR and TPR. Receiver operating characteristic (ROC) 

curves were drawn by considering the top three hits for each feature to create balanced 

positive and negative classes. The maximum ID rates (the fraction of compounds in the 

dataset with reference spectra in a particular database) for all ground-truth datasets are 

available in Supplementary Table 5. ROC thresholds and the resulting false positive rates 

and true positive rates were computed with the Python package Scikit-learn37. The area 

under the ROC curve (auROC) was computed using numerical integration. All comparisons 

between DecoID and directly searching the acquired spectra for DDA only used features that 

DecoID separated into more than one component (the remaining features will have the exact 

same results as direct database searching). Comparisons to MS-DIAL were only made on 

features detected by MS-DIAL.

MS-DIAL Usage

Comparison to MS-DIAL5 was performed by first converting the DIA .raw files to .mzML 

files with MS-Convert21 using vendor peak picking to centroid the data. Files were 

then converted to .abf with Reifycs ABF converter (http://www.reifycs.com/AbfConverter/

index.html) for compatibility with MS-DIAL. MS-DIAL version 4.12 was used to 

deconvolve the DIA spectra for both positive and negative mode. Mass accuracy was set 

to 0.005 Da for “MS1 tolerance” and 0.01 for “MS2 tolerance”. Peak detection used a 

minimum peak height of 1000 and a mass slice width of 0.1. The “sigma” parameter for 

the “MS2Dec” was set to 0.9 after optimization (Parameter optimization and Supplementary 

Figure 16). All other parameters were left at their default values. After deconvolution, the 

deconvoluted spectra were exported to a .txt file. The spectra in this file were fed into 

DecoID for identification, with deconvolution disabled by using the MS-DIAL linkage built 

into DecoID. We note that it would be possible to enable deconvolution with DecoID of 

the already deconvolved spectra exported from MS-DIAL. However, the effectiveness of this 

joint approach has not been evaluated.

Comparing Performance on Biological Datasets

The NIST SRM 1950 plasma sample was searched against mzCloud without deconvolution 

as described above. The peak lists for the plasma sample were extracted from the 

AcquireX38 inclusion lists (Thermo Fisher Scientific). Inclusion lists were formed on the 

basis of peak detection, de-isotoping, annotation of M +/− H ions, and annotation of 

background signals (peaks that are not at least three times more intense than in the extraction 

blank). Peaks that were unable to be identified with the thresholds outlined above, where 
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MS/MS data were acquired, had significantly more contamination than those that were able 

to be identified based on a Kolmogorov–Smirnov two-sample, two-sided test.

The publicly available RPLC/MS/MS dataset31 of a mouse xenograft was downloaded from 

the MetaboLights15 repository as .mzML files. Files were centroided with MS-Convert 

and peak picking was performed by using the centWave39 algorithm within XCMS34. 

Peak correspondence was also performance within XCMS. A feature was considered 

identified if an MS/MS match with a dot product similarity greater than 80 was found. 

Deconvolution and identification were carried out with the experimental MoNA database, 

HMDB, mzCloud, and the in-house database.

The DIA plasma dataset was the same dataset used for the spike-in evaluation. However, the 

peak list consisted of the features detected by MS-DIAL, not just the spiked-in metabolites. 

The peak boundaries used were also from MS-DIAL. The MS-DIAL deconvoluted spectra 

were searched against MoNA, HMDB, mzCloud, and the in-house database using the 

DecoID linkage for MS-DIAL. A dot-product similarity of greater than 80 was considered 

an identification for both the MS-DIAL and DecoID results.

The identification rate is the number of features that were able to be identified divided by 

the number of features detected. After deconvolution and identification with DecoID, the 

improvement in identification rate was assessed by using a bootstrapping procedure where 

the identification/no identification status of each feature was resampled 10,000 times and the 

identification rate was calculated at each iteration. The 2.5th and 97.5th percentiles of the 

identification rate were used as the empirical 95% confidence interval. Empirical p-values 

for the probability of identical identification rates were calculated based on the frequency of 

resampled datasets that resulted in lower identification rates between two methods (DecoID, 

no deconvolution, MS-DIAL, and combined).

Data availability

All MS/MS data used in the evaluation of DecoID has been uploaded to the 

MetaboLights repository as study MTBLS2207 and is also available on the DecoID 

GitHub release (https://github.com/e-stan/DecoID/releases/). The publicly available dataset 

analyzed is available on MetaboLights as study MTBLS1066 (all reversed-phase 

negative mode datafiles were used). The MS/MS databases applied can be obtained 

at the curators’ websites (https://mona.fiehnlab.ucdavis.edu, https://www.mzcloud.org, 

and https://hmdb.ca). The in-house IROA metabolite database is available within 

the DecoID release on GitHub (https://github.com/e-stan/DecoID/releases/), and the 

reference spectra have been uploaded to MoNA (submitter: Ethan Stancliffe, origin file: 

IROA_DB_for_mona_filtered_exported_addedInfo.msp).

Code availability

Source code is available on Zenodo40 and GitHub (https://github.com/e-stan/DecoID). 

Included is an example dataset along with documentation for both the DecoID Python 

package and user interface. A standalone executable built for Windows can alternatively be 

downloaded from the Patti Lab website (http://pattilab.wustl.edu/software/DecoID).
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Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Deconvolution with DecoID to identify metabolites with chimeric MS/MS spectra.
(a) Schematic of a chimeric (bottom) and non-chimeric (top) MS/MS spectrum. Each color 

represents a unique precursor ion. Smaller circles indicate fragments. When searched in 

MS/MS databases, chimeric spectra do not lead to identifications (or, even worse, they 

lead to incorrect identifications). (b) Histogram showing the percentage contamination of 

MS/MS spectra from the analysis of NIST SRM 1950 human plasma with DDA and a 1 

m/z isolation window. Despite using a narrow isolation window, greater than 50% of the 

acquired spectra have more than 10% contamination. (c) MS/MS spectra that were not able 

to be identified with spectral matching to mzCloud had significantly higher levels of MS/MS 

contamination (two-sided two-sample Kolmogorov–Smirnov test) than those spectra that 

were able to be identified. Horizontal lines on top and bottom of violin plot represent the 

maximum and minimum values. (d) Diagram of the DecoID search algorithm. A library of 

reference MS/MS spectra is assembled from metabolomic databases, predicted isotopologue 

spectra, and pure unknowns. This library of reference MS/MS spectra is filtered on the 

basis of MS1 information, the size of the MS/MS isolation window, and retention time 

(if available) for each experimentally observed MS/MS pattern in the user’s data. The 

experimentally observed MS/MS spectrum is then reconstructed by using the filtered library 

spectra and non-negative LASSO regression. All components used in the deconvolution 

are scored against the library spectra on the basis of accurate mass and spectral similarity. 

Lastly, all reference library spectra used for the deconvolution undergo a redundancy check 

to determine whether an equally good deconvolution could have been achieved by using a 

different set of library spectra. Potentially redundant components are flagged in the report 

provided to the user.
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Figure 2. Orphan isotopologue contamination and MS/MS spectrum prediction.
(a) An orphan carbon-13 isotopologue can cause MS/MS contamination if the M+0 parent 

of a contaminating compound (red) is excluded from the isolation window (gray) but 

the M+1 carbon-13 peak is not. Such chimeric MS/MS spectra cannot be deconvolved 

by considering only database spectra and will severely impact the ability to identify the 

targeted precursor (blue). (b-c) Schematic of predicting the MS/MS spectrum of an M+1 

isotopologue arising from naturally occurring carbon-13. (b) First, based on the chemical 

formula of the precursor ion, all possible subformulas are enumerated, and the m/z of 

each subformula is computed. Then, for each observed fragment, the possible subformulas 

are assigned and the mean number of carbon atoms for all possible subformulas of each 

fragment are computed. (c) Using the computed number of carbons in each fragment, the 

intensity of each fragment in the M+1 spectrum is computed by distributing the intensity of 

the M+0 fragment ions according to the number of carbons in each fragment. All carbon 

atoms are equally likely to be carbon-13, thus for a seven-carbon fragment and an eight-

carbon precursor, there is a 7/8 probability that the carbon-13 is retained in the fragment and 

a 1/8 probability that it is removed as a neutral loss. Carbon atoms are represented by gray 

and red circles for carbon-12 and carbon-13, respectively.
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Figure 3. DecoID improves metabolite identification in the DDA and DIA IROA datasets.
(a) Without deconvolution, dot product similarity to a database spectrum decreased as the 

MS/MS isolation window increased (producing more contaminated spectra) in the negative 

mode IROA DDA dataset. After deconvolving with DecoID, no decrease in similarity 

occurred. The horizontal lines on the violin plots represent the mean, maximum, and 

minimum similarity values. (b-c) The FDR (b) and TPR (C) are plotted as a function of dot 

product threshold for DecoID and directly searching the acquired spectra (no deconvolution) 

from the IROA DDA dataset. At all thresholds, DecoID had nearly the same FDR as when 

no deconvolution was performed and a higher TPR. (d) Using DecoID and a dot product 

threshold of 80, there was no significant increase in FDR, but there was a significant 

increase in TPR. (e-f) When DecoID was used alone or when the combined approach 

was used, the FDR (e) was intrinsically lower and the TPR (f) was higher than when MS-

DIAL was used alone on the IROA DIA dataset. (g) DecoID and the combined approach 

significantly increased the TPR relative to MS-DIAL when using a dot product threshold 

of 80. Results shown in b-g are from the top MS/MS match for each metabolite in the 

positive-mode and negative-mode data. Results are aggregated from the in-house database, 

mzCloud, HMDB, and MoNA. Data shown in (d) and (g) represent mean FDR/TPR +/− 

95% empirical confidence interval derived from bootstrap resampling (n=10,000) the IROA 
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DDA and DIA dataset and calculating the FDR and TPR on each independently resampled 

dataset (see Methods). Statistical significance in (a) was assessed using the two-sided 

two-sample Kolmogorov–Smirnov test. Statistical significance in (d) and (g) was assessed 

through 2-sided comparison of the bootstrapped FDR and TPR distributions (Methods).
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Figure 4. DecoID improves identification rates in NIST SRM 1950.
(a) Analysis of NIST SRM 1950 human plasma in a DDA experiment with a 1 m/z 
isolation window led to a greater than 30% increase in identification rate when using 

DecoID and aggregating results from HMDB, MoNA, mzCloud, and our in-house database. 

(b) Example identification from the NIST SRM 1950 plasma dataset would not have been 

possible without DecoID. The MS/MS similarity to the reference spectrum increased after 

deconvolution with DecoID compared to no deconvolution. Identification was confirmed 

with a retention-time match. (c) Venn diagram showing which features were able to be 

identified when the different databases were used. The breakdown shows that MS/MS 

databases can offer complementary identifications that boost the identification rate. (d-g) 

When using the four databases MoNA (d) mzCloud (e), our in-house database (f), and 

HMDB (g), DecoID increases the identification rate when compared to no deconvolution. 

Data shown in in (a) and (d-g) represent mean identification rate +/− 95% empirical 

confidence interval found from bootstrap resampling (n=10,000) the NIST SRM 1950 

Stancliffe et al. Page 25

Nat Methods. Author manuscript; available in PMC 2022 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dataset and calculating the identification rate on each independently resampled dataset 

(Methods). Statistical significance in (a) and (d-g) was assessed through 1-sided comparison 

of the bootstrapped identification rate distributions (Methods).
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Figure 5. DecoID increases the identification rate in a human plasma DIA dataset.
DecoID and MS-DIAL were applied to a plasma DIA dataset. All features detected by 

MS-DIAL were deconvolved with both DecoID and MS-DIAL. The deconvolved spectra 

were searched against HMDB, MoNA, the in-house database, and mzCloud. The results 

from MS-DIAL and DecoID were combined by taking the best hit for each feature amongst 

the results from MS-DIAL and DecoID (combined). (a) when combining the results for 

all databases, this parallel approach yielded greater identification rates compared to using 

either method alone. (b) Venn diagram showing the overlap in features that are identified 

using either DecoID or MS-DIAL. (c-d) Example identification from the negative mode 

DIA dataset that was found after deconvolution with DecoID (c) but that would not have 

been possible when using MS-DIAL (d). Identification was confirmed with a retention time 

match. (e-h) Identification rates of DecoID, MS-DIAL, and the combined approach when 

applied to the plasma DIA dataset with HMDB (e), MoNA (f), our in-house database (g), 

and mzCloud (h). (i) Venn diagram showing which features were able to be identified from 

which database after combining the results of MS-DIAL and DecoID. Data shown in (a) and 

(e-h) represent mean identification rate +/− 95% empirical confidence interval derived from 
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bootstrap resampling (n=10,000) the plasma DIA dataset and calculating the identification 

rate on each independently resampled dataset (Methods). Statistical significance in (a) 

and (e-h) was assessed through 1-sided comparison of the bootstrapped identification rate 

distributions (Methods).
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Figure 6. DecoID increases the identification rate of metabolites from a publicly available mouse 
xenograft RPLC/MS/MS dataset.
DecoID was applied to a published RPLC/MS/MS dataset31 uploaded to the MetaboLights 

repository. (a) DecoID increased the number of identifications made when aggregating 

the results from MoNA, mzCloud, the our in-house database, and HMDB. (b) Example 

deconvolution from the mzCloud database that led to the identification of citrate (bottom) 

that was not possible without deconvolution (top). (c) Using multiple databases provide 

complementary identifications. The Venn diagram shows which features were able to 

be identified from which databases after deconvolution. (d-g) Identification rates when 

using DecoID and no deconvolution to identify metabolites in the RPLC/MS/MS dataset 

with MoNA (d), mzCloud (e), in-house databse (f), and HMDB (g). With all databases, 

DecoID increased the identification rate compared to no deconvolution. Data shown in 

(a) and (d-g) represent the mean identification rate +/− 95% empirical confidence interval 

derived from bootstrap resampling (n=10,000) the RPLC/MS/MS dataset and calculating 

the identification rate on each independently resampled dataset (Methods). Statistical 
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significance in (a) and (d-g) was assessed through 1-sided comparison of the bootstrapped 

identification rate distributions (Methods).
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