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OBJECTIVES: To identify differentially expressed genes and networks from the 
airway cells within 72 hours of intubation of children with and without pediatric 
acute respiratory distress syndrome. To test the use of a neutrophil transcription 
reporter assay to identify immunogenic responses to airway fluid from children 
with and without pediatric acute respiratory distress syndrome.

DESIGN: Prospective cohort study.

SETTING: Thirty-six bed academic PICU.

PATIENTS: Fifty-four immunocompetent children, 28 with pediatric acute respira-
tory distress syndrome, who were between 2 days to 18 years old within 72 hours 
of intubation for acute hypoxemic respiratory failure.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: We applied machine learning meth-
ods to a Nanostring transcriptomics on primary airway cells and a neutrophil re-
porter assay to discover gene networks differentiating pediatric acute respiratory 
distress syndrome from no pediatric acute respiratory distress syndrome. An anal-
ysis of moderate or severe pediatric acute respiratory distress syndrome versus no 
or mild pediatric acute respiratory distress syndrome was performed. Pathway net-
work visualization was used to map pathways from 62 genes selected by ElasticNet 
associated with pediatric acute respiratory distress syndrome. The Janus kinase/
signal transducer and activator of transcription pathway emerged. Support vector 
machine performed best for the primary airway cells and the neutrophil reporter 
assay using a leave-one-out cross-validation with an area under the operating 
curve and 95% CI of 0.75 (0.63–0.87) and 0.80 (0.70–1.0), respectively.

CONCLUSIONS: We identified gene networks important to the pediatric acute 
respiratory distress syndrome airway immune response using semitargeted tran-
scriptomics from primary airway cells and a neutrophil reporter assay. These path-
ways will drive mechanistic investigations into pediatric acute respiratory distress 
syndrome. Further studies are needed to validate our findings and to test our models.

KEY WORDS: acute respiratory distress syndrome; gene expression profiling; 
machine learning; mechanical ventilation; neutrophils; pediatric

Pediatric acute respiratory distress syndrome (PARDS) is a heteroge-
neous syndrome with severity of lung injury defined by the degree of 
hypoxemia (1). Although the severity of hypoxemia is associated with 

outcome, it is a poor prognostic tool that does not provide insight into the com-
plex pathobiology of PARDS (2, 3). Transcriptomics is used to explore differen-
tial gene expression patterns to reveal heterogeneity in disease samples (4, 5).  
Machine learning methods applied to transcriptomic data can identify impor-
tant biological pathways in a disease process (6). Although gene expression of 
circulating leukocytes has been measured in PARDS (7–9), the airway-specific 
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gene expression profile has not. Whether the systemic 
gene signature differs from the airway immune re-
sponse in PARDS is unknown.

We tested a transcriptomic reporter assay using 
healthy donor neutrophils to assess airway fluid from 
a subset of intubated children to define a PARDS gene 
expression signature. Transcriptomic reporter assays 
have been used to profile the immune response of 
adults with sepsis, children with systemic onset juve-
nile idiopathic arthritis, and to establish a biomarker 
signature in patients prior to the onset of type 1 diabetes 
mellitus (10–12). Airway fluid is a valuable source of 
potential biomarkers (13–15) and is an attractive alter-
native for profiling molecular changes within the air-
ways of intubated patients when the quantity of airway 
cells obtained from routine endotracheal tube suction-
ing and laboratory sample processing capabilities are 
limiting. The neutrophil transcriptomic reporter assay 
described provides an alternative means to profile 
the immune response to airway fluid from individual 
patients using a potentially high-throughput strategy.

The objective of this study was to explore functional 
gene transcript networks differentially expressed in the 
airway cells of intubated children with and without 
PARDS. We also tested a transcriptomic reporter assay 
using donor neutrophils treated with airway fluid to dis-
tinguish gene networks in children with and without 
PARDS. An analysis comparing the differential gene ex-
pression and pathways in children with moderate or se-
vere PARDS versus no or mild PARDS was performed.

METHODS

Patient Cohort

This is an ongoing, prospective observational cohort 
study approved by the Emory University School of 
Medicine Institutional Review Board (IRB 00034236 and 
IRB 00113035). Informed consent was obtained prior 
to enrollment, and all study procedures were in accord 
with the with relevant guidelines and regulations in the 
Declaration of Helsinki. The study is being conducted at 
the Children’s Healthcare of Atlanta Egleston Hospital 
which is a 36-bed academic hospital that is affiliated with 
the Emory University School of Medicine. Participants 
in this study were enrolled between September 2018 
and March 2020. Children were eligible for enrollment 
if they were admitted to the PICU, greater than 2 days 
of life, and with a corrected gestational age of 40 weeks; 

were less than 18 years old; and were within 72 hours 
of endotracheally intubation. Children were excluded if 
they had perinatal-related lung disease, chronic respira-
tory failure requiring mechanical ventilation via a tra-
cheostomy or RAM cannula (Neotech, Valencia, CA), 
immunodeficiency; were receiving immunosuppression 
from chemotherapy for an oncologic disease; and were 
chronically immunosuppressed as a hematologic or solid 
organ transplant recipient; there was no parent or legal 
guardian to provide inperson written informed consent, 
or the attending physician did not wish the patient to 
participant in the study. Severity of hypoxia was classi-
fied according to the 2015 Pediatric Acute Lung Injury 
Consensus Conference definitions for having PARDS 
(16). Severity of Illness scores were determined using 
the Pediatric Risk of Mortality-III and Pediatric Logistic 
Organ Dysfunction-2 scores within 24 hours of intuba-
tion (17, 18). Duration of mechanical ventilation up to 
28 days was monitored to calculate ventilator-free days.

Tracheal Aspirate Collection and Sample 
Processing

Tracheal aspirate samples were collected within 72 
hours of endotracheal intubation with an inline Ballard 
suction catheter (Halyard, Alpharetta, GA) connected 
to a sterile Lukens trap (Covidien, Walpole, MA) using 
up to 5 mL of sterile saline and processed according to 
published protocols (19, 20). For infants and toddlers, 
1–2 mL of saline is instilled. The Ballard inline suction 
catheter is passed once to obtain a sample. If 50% of the 
instilled volume is not returned, then a repeat passage 
of the Ballard is performed. The Ballard suction cath-
eter (Halyard, Alpharetta, GA)  may be flushed with 
additional saline to move the aspirate into the Lukens 
trap  (Covidien, Walpole, MA). Cell viability was de-
termined with trypan blue exclusion on a Countess 
hemocytometer. Cell purity was assessed by Shandon 
Kwik-Diff (Thermo Scientific, Waltham, MA) stain-
ing of cytospin cell preparations (20). Up to 1 × 106 
cells were stored in RNALater at –80°C until RNA was 
extracted for gene expression analysis.

RNA Preparation

RNA was isolated from airway cells using the 
Nucleospin RNA II kit with on-column genomic 
DNA digestion according to the manufacturer’s pro-
tocol (Takara, Mountain View, CA). RNA sizing 
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quantification and quality control were performed in 
the Emory Integrated Genomics Core on an Agilent 
2100 bioanalyzer using Pico and Nano Agilent kits 
(Agilent Technologies, Santa Clara, CA) and a Tecan 
optical density plate reader (Tecan, Männedorf, 
Switzerland) to measure the concentration of the RNA 
(20). A low input RNA amplification kit was used. Due 
to a high signal from the B2M gene target, attenuation 
of this gene was performed using with synthetic oligos.

Neutrophil Isolation and Cell Culture

Blood was collected from a healthy adult donor in 
EDTA vacutainer tubes and centrifuged at 400× g to 
separate cells from platelet-rich plasma. Pelleted blood 
cells were resuspended in sterile phosphate buffered 
saline (PBS; Fisher Scientific, Waltham, MA) with 
2.5 mM EDTA up to the original whole blood volume. 
Neutrophils were purified by negative selection from 
PBS-EDTA washed whole blood using the EasySep 
Direct Human Neutrophil Isolation kit (StemCell 
Technologies, Cambridge, MA) according to the man-
ufacturer’s protocol. Neutrophils were resuspended 
in a 1:1 vol:vol mixture of airway supernatant (ASN) 
from individual patients in Roswell Park Memorial 
Institute 1,640 medium with L-glutamine (Corning, 
Corning, NY) 10% fetal calf serum supplemented with 
penicillin, streptomycin, and gentamicin. Neutrophils 
were cultured overnight in the ASN:media mixture 
in a humidified 37°C, 5% Co2 incubator. Neutrophils 
were pelleted by centrifugation at 400× g at 4°C for 
15 minutes, resuspended in 500 µL of RNALater, 
and stored at –80 °C until RNA was isolated. A sche-
matic of the tracheal aspirate sample processing 
and neutrophil transcriptomic reporter assay using 
airway fluid is shown in Supplementary Figure 1  
(http://links.lww.com/CCX/A628).

Nanostring Array

The Human Immunology v2 NanoString nCounter 
Gene Expression CodeSet was used (NanoString, 
Seattle, WA). All NanoString-based measurements 
were conducted at the Emory University Integrated 
Genomics Core facility. The Nanostring platform is 
forgiving of low abundant RNA with the use of an am-
plification step applied to all samples and is less prone 
to artifact from fragmented RNA compared with tradi-
tional sequencing approaches (21).

Feature Selection and Class Prediction

Given the limited number of airway samples and high 
number of features, ElasticNet feature selection was 
implemented in Python to reduce the important fea-
tures from 594 to 62 gene markers that strongly differ-
entiated children with versus without PARDS (22). We 
followed our previously develop stability analysis pipe-
line to extract minimal redundant gene markers (23, 24).  
Genes with Pearson correlation coefficient greater 
than 0.8 were removed from the model to minimize 
redundancy between model features. Following re-
cursive feature elimination and adjustment for dem-
ographic data, random forest (RF) (25), eXtreme 
Gradient Boosting (XGBoost) (26, 27), and support 
vector machines (SVMs) (28) were used to develop 
and evaluate binary classifiers for predicting the pres-
ence or absence of PARDS from airway cell samples 
and donor neutrophils treated with airway fluid from 
intubated patients. A flow diagram of the feature se-
lection and modeling analysis pipeline using machine 
learning methods is shown in Supplementary Figure 2  
(http://links.lww.com/CCX/A628).

Pathway Analysis

The R package PAthway NEtwork Visualizer (PANEV) 
uses Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database to map the correlated first- and 
second-level pathways using the genes provided by 
the user (29). The genes resulted from the ElasticNet 
feature selection and the top 10 candidate pathways 
drawn from KEGG database were fed into PANEV. 
The PANEV program searched the KEGG database to 
find second-level pathways that link with the first-level 
pathways and the set of provided genes identified pre-
viously and visualize a comprehensive network of the 
genes. The same pipeline was then applied to the donor 
neutrophils transcriptomic reporter assay NanoString 
gene transcription results and was compared with the 
pathways identified using the NanoString gene tran-
scription results obtained from the primary airway 
cells of patients.

Model Training and Validation

Models were trained using NanoString expression data 
on the 52 primary airway cell samples using the 62 
common genes between the two separate runs of the 
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ElasticNet algorithm. Leave-one-out cross-validation 
(LOOCV) was used to validate the primary airway 
cell model (Model 1). A second model (Model 2) was 
trained on the 18 donor neutrophil samples treated 
with airway fluid from patients with and without 
PARDS and validated using LOOCV. Area under the 
receiver operating characteristic (AUROC) curves 
were constructed using the scikit-learn package (30).

RESULTS

Cohort Description

Of the 52 children enrolled in the study with RNA 
available for analysis, there were 28 children who met 
PARDS criteria, and 24 children who did not meet 
PARDS criteria. Demographics and clinical character-
istics are summarized in Table 1.

Feature Selection, Classification, and Network 
Analysis of Differentially Expressed Genes 
From Primary Airway Cell Samples of Children 
With Versus Without PARDS

We applied ElasticNet to select the most important genes 
involved in distinguishing children with versus without 
PARDS. The ElasticNet model accounts for colline-
arity and selects for the most informative features (22).  
There were 62 genes selected using ElasticNet feature se-
lection, after adjusting for demographic data, that were 
ranked by normalized importance coefficient in the 
heatmap shown in Supplementary Figure 3a (http://
links.lww.com/CCX/A628). These selected genes cor-
responded to the top 10 KEGG pathways shown in 
Figure 1A and were ranked by the number of genes 
involved in the pathway. KEGG pathways included 
cytokine-cytokine receptor interactions, viral protein 
interactions with cytokine and cytokine receptors, 
chemokine signaling, autoimmune disease pathways 
rheumatoid arthritis, systematic lupus erythema-
tosus, inflammatory bowel disease, and infectious pro-
cesses, such as tuberculosis and Staphylococcus aureus. 
Although none of these children were infected with se-
vere acute respiratory syndrome coronavirus 2, genes 
related to the coronavirus disease 2019 (COVID-19)  
pathway were discovered. The KEGG pathway labeled 
coronavirus/COVID-19 pathway (hsa05171) includes 
proinflammatory cytokines such as interleukin (IL)–6, 
tumor necrosis factor (TNF)–α, nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB), 

IL-1β, IL-8, and IL-12 signaling through the Janus ki-
nase (JAK)/signal transducer and activator of transcrip-
tion (STAT) pathway. The COVID-19 pathway also 
encompasses viral pathogen recognition pathways such 
as Toll-like receptor signaling through MyD88 and ret-
inoic acid-inducible gene I (RIG-1)/melanoma differ-
entiation-associated protein 5 pathways. Furthermore, 
activation of the antiviral type I interferon (IFN α/β) re-
sponse and the complement cascade are found within the 
COVID-19–labeled pathway (Supplementary Fig. 4,  
http://links.lww.com/CCX/A628). Additional path-
ways included the complement and coagulation cas-
cades, TNF signaling, and T helper 17 (Th17) cell 
differentiation.

We next visualized networks of pathways involved in 
the primary airway cell immune response from children 
with versus without PARDS by imputing the list of genes 
selected using ElasticNet into the PANEV package in R 
(29). PANEV searches the KEGG library to find first-
level pathways that correspond to the imputed genes 
discovered using machine learning methods and maps 
the links to second-level pathways. The top 10 first-
level and second-level pathways and the corresponding 
genes contributing to each pathway are shown in 
Supplementary Figure 3b (http://links.lww.com/CCX/
A628) and are listed in Supplementary File 1, (http://
links.lww.com/CCX/A629) and Supplementary File 2 
(http://links.lww.com/CCX/A630). In addition to the 
primary pathways discussed above, secondary path-
ways included the JAK/STAT pathway, the Toll-like 
receptor signaling pathway, endocytosis, apoptosis, 
natural killer (NK) cell mediated cytotoxicity, B-cell 
receptor signaling pathway, osteoclast differentiation, 
and antigen processing and presentation.

Feature selection, Classification, and Network 
Analysis o Differentially Expressed Genes From 
Primary Airway Cell Samples of Children With 
Moderate/Severe PARDS Versus No/Mild PARDS

We next performed an analysis on the differentially 
expressed genes from the primary airway samples 
comparing children with moderate or severe PARDS to 
those with no or mild PARDS. Differentially expressed 
genes corresponded to the top 10 KEGG pathways 
shown in Figure 1B and were ranked by the number of 
genes involved in the pathway. The top KEGG pathway 
was cytokine-cytokine receptor interaction as in the 
PARDS versus no PARDS analysis, and many viral 

http://links.lww.com/CCX/A628
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TABLE 1. 
Demographic and Clinical Characteristics of Study Participants

 

Characteristics

Pediatric Acute Respiratory Distress Syndrome Status  

pNo, n = 24 (46%) Yes, n = 28 (54%)

Age (yr), median (IQR) 0.75 (0.11–2.46) 0.85 (0.29–2.05) 0.34

Sex, n (%)

  Female/male 11 (46)/13 (54) 12 (43)/16 (57) 0.83

Race, n (%)

  Black 13 (54.1) 11 (39.3) 0.12

  White 9 (37.5) 12 (42.8)

  Unknown 2 (8.4) 1 (3.6)

  Multiple 0 (0) 4 (14.3)

Ethnicity, n (%)   0.46

  Hispanic or Latino 2 (8.3) 1 (3.6)  

  Non-Hispanic or Latino 22 (91.7) 27 (96.4)

Severity of lung injurya, n (%)

  At risk 24 (100) NA NA

  Mild NA 10 (35.7)

  Moderate NA 10 (35.7)

  Severe NA 8 (28.6)

Severity of Illness scores, median (range)

  Pediatric Risk of Mortality III 11.5 (3–23) 14.5 (2–31) 0.19

  Pediatric Logistic Organ Dysfunction 5.5 (0–13) 6 (3–18) 0.14

Ventilator days, median (quartile 1–quartile 3) 3 (2–4) 7 (3.25–11.75) 0.0004

Extracorporeal life support, n (%) 0 (0) 3 (10.7) 0.0491

Length of stay, median (IQR)

  PICU (d) 4 (3–7) 9 (6–14) 0.0002

  Hospital (d) 9 (4–11.75) 13 (8–19) 0.01

28 d mortality, n (%)

  Dead 0 (0) 3 (10.7) 0.0491

Viral respiratory panel, n (%)

  Positive 18 (75) 19 (68) 0.0032

  No virus detected 0 (0) 7 (25)

  Not assessed 6 (25) 2 (7)

Respiratory culture, n (%)

  No growth 6 (25) 3 (11) 0.0284

  Bacterial growth 13 (54) 20 (71)

    Bacterial growth only 0 (0) 6 (21)

    Virus + bacterial coinfection 13 (54) 14 (50)

  Not assessed 5 (21) 5 (18)

IQR = interquartile range, NA = not applicable.
aSeverity of lung injury is defined using oxygenation index or O2 saturation index using the Pediatric Acute Lung Injury Consensus  
Conference definitions (16).
Comparisons were made with a Mann-Whitney U test for continuous variables or a χ2 for categorical variables.
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infection and autoimmune pathways were the same 
(compare Fig. 1A with Fig. 1B). Genes were ranked 
by a normalized importance coefficient as shown in 
the heatmap in Supplementary Figure 5a (http://
links.lww.com/CCX/A628). Network analysis with 
PANEV is shown in Supplementary Figure 5b (http://
links.lww.com/CCX/A628). The top 10 genes linked 
to the primary and secondary pathways are listed in 
Supplementary File 3 (http://links.lww.com/CCX/
A631) and Supplementary File 4 (http://links.lww.
com/CCX/A632). The secondary network links related 
to endocytosis, apoptosis, cell adhesion molecules, an-
tigen processing and presentation, Toll-like receptor 
signaling, JAK-STAT signaling, NK-mediated cytotox-
icity, B-cell receptor signaling, and TNF signaling in 
children with moderate or severe PARDS versus no or 
mild PARDS were the same as those found in the anal-
ysis of children with versus without PARDS. Additional 
secondary network links in moderate or severe PARDS 
compared with no or mild PARDS included signal-
ing pathways involving calcium, 3',5'-cyclic adenosine 
monophosphate, NF-kB, hypoxia inducible factor 1, 
phosphoinositide 3-kinase/protein kinase B, neutro-
phil extracellular trap formation, complement and co-
agulation cascades, platelet activation, vascular smooth 
muscle contraction, leukocyte transendothelial migra-
tion, and Fc gamma receptor–mediated phagocytosis.

PARDS Severity Markers Identified Using an 
Airway Fluid-Exposed Neutrophil Reporter Assay

We next used a neutrophil reporter assay to test whether 
healthy donor neutrophils would mount a similar tran-
scriptional response when exposed to airway fluid from 
children with versus without PARDS. A schematic of 
the donor neutrophil reporter assay is illustrated in 
Supplementary Figure 1 (http://links.lww.com/CCX/
A628). As in the primary airway cell analysis, features 
were selected using ElasticNet, and genes were ranked 
by a normalized importance coefficient as shown in the 
heatmap in Supplementary Figure 6a (http://links.lww.
com/CCX/A628). The top 10 KEGG pathways of impor-
tance were explored and ranked by number of genes in 
each pathway as shown in Figure 1C. Although there 
were only seven genes shared between the primary 
airway and neutrophil reporter assay analysis, the top 
three pathways were the same (compare Fig. 1A with 
Fig. 1C). Other shared pathways included the immune 
response to tuberculosis, genes of the hematopoietic cell 

lineage, and coronavirus disease—COVID-19 networks. 
Network analysis with the PANEV package identified the 
cell adhesion and JAK/STAT pathways as primary lev-
els in the neutrophil reporter assay that were identified 
as secondary levels in the primary airway cell analysis 
(Supplementary Figure 6b, http://links.lww.com/CCX/
A628, compare with Supplementary Fig. 3b, http://links.
lww.com/CCX/A628). The complement and coagula-
tion cascades and the TNF signaling pathway that were 
identified as primary level pathways in the airway cells 
were also identified as a secondary level in the neutro-
phil reporter assay (Supplementary Fig. 6b, http://links.
lww.com/CCX/A628, compare with Supplementary 
Figure 3b, http://links.lww.com/CCX/A628). Finally, the 
Toll-like receptor signaling and B-cell receptor signaling 
pathways were identified as secondary level in both the 
transcriptomics profiles of the airway cells and the neu-
trophil reporter assay experiments. Other secondary level 
pathways identified in the neutrophil reporter assay in-
cluded the mitogen-activated protein kinase signaling 
pathway, calcium signaling, NF-kB signaling, extracel-
lular membrane-receptor interactions, platelet activation, 
nucleotide-binding oligomerization domain-like receptor 
signaling, RIG-1-like receptor signaling, cytosolic DNA-
sensing, T-cell receptor signaling, leukocyte transendo-
thelial migration, and regulator of actin cytoskeleton. The 
top 10 first-level and second-level pathways and the corre-
sponding genes contributing to each pathway for the neu-
trophil reporter assay are listed in Supplementary File 5 
(http://links.lww.com/CCX/A633) and Supplementary 
File 6 (http://links.lww.com/CCX/A634).

Model Performance of Airway Markers 
Predicting PARDS

To illustrate the performance of the identified mark-
ers from primary airway cells of children with versus 
without PARDS, we built prediction models RF, 
XGBoost, and SVM algorithms (25–28). The training 
model characteristics predicting PARDS are shown in 
the top third of Table 2. A multivariable logistic regres-
sion model using the base ElasticNet selected genes 
showed poor performance (AUROC, 0.357; 95% CI, 
0.229–0.506). Application of three machine learning 
algorithms improved model performance. Both the 
XGBoost and SVM models performed equally well with 
AUROC curves of 0.74 (95% CIs, 0.61–0.86) and 0.75  
(95% CI, 0.63–0.87) in the primary airway cell transcrip-
tomics assay. We then trained the models on the neutrophil 

http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A631
http://links.lww.com/CCX/A631
http://links.lww.com/CCX/A632
http://links.lww.com/CCX/A632
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A628
http://links.lww.com/CCX/A633
http://links.lww.com/CCX/A634


Observational Study

Critical Care Explorations	 www.ccejournal.org          7

reporter assay data and achieved the 
AUROC performance for all three mod-
els as shown in Supplementary Table 1 
(http://links.lww.com/CCX/A627). The 
SVM model performed the best in the 
neutrophil donor reporter assay with an 
AUROC of 0.89 (95% CI, 0.7–1.0).

DISCUSSION

We used targeted immune transcrip-
tomics and machine learning meth-
ods to discover immune pathways 
involved in the airway immune re-
sponse of children with PARDS within 
72 hours of endotracheal intubation. 
We identified gene networks involved 
in cytokine and chemokine signaling, 
the antiviral response, the complement 
and coagulation cascades, S. aureus in-
fection, autoimmunity, and the Th17 
response. We performed an analysis 
separating children with moderate or 
severe PARDS from those with no or 
mild PARDS and identified similar 
gene networks as in the PARDS versus 
no PARDS analysis; however, more 
of the genes differentially regulated 
were immune checkpoint pathways 
and wound healing/fibrosis pathways. 
We also report the use of a neutrophil 
transcription reporter assay to inves-
tigate the immunogenicity of PARDS 
airway fluid. We found similar and 
related pathway activation from pri-
mary airway cells and donor neutro-
phils treated with airway fluid from 
children with versus without PARDS. 
We trained and tested several machine 
learning models to predict PARDS. 
Our results are hypothesis generating 
and support further investigation into 
the pathways involved in PARDS.

Clinical and biological heteroge-
neity are characteristic features of 
PARDS. In adults machine learning 
algorithms applied to large datasets 
of well-phenotyped acute respiratory 

A

B

C

Figure 1. Selected genes from the top 10 KEGG pathways ranked by the number of 
genes involved in the pathway. A, Bar graph of the top 10 KEGG pathways identified 
in primary airway cells with the highest number of genes from the ElasticNet feature 
selection for children with versus without pediatric acute respiratory distress syndrome 
(PARDS). B, Bar graph of the top 10 KEGG pathways identified in primary airway cells 
with the highest number of genes from the ElasticNet feature selection for children with 
moderate/severe PARDS versus no/mild PARDS. C, Bar graph of the top 10 KEGG 
pathways identified in the neutrophil reporter assay with the highest number of genes 
from the ElasticNet feature selection for children with versus without PARDS. COVID-19 
= coronavirus disease 2019, IgA = immunoglobulin A, JAK = Janus kinase, KEGG = 
Kyoto Encyclopedia of Genes and Genomes, PI3k-AKT = phosphoinositide 3-kinase/
protein kinase B, STAT = signal transducer and activator of transcription, Th17 = T 
helper 17, TNF = tumor necrosis factor.

http://links.lww.com/CCX/A627
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distress syndrome (ARDS) patients enrolled in ran-
domized control trials have described two ARDS 
endotypes with differential responses to interven-
tions (31–36). Whole blood transcriptomics of chil-
dren enrolled for blood sampling within 24 hours of 
meeting PARDS criteria revealed three subpheno-
types using unsupervised clustering methods (9).  
Despite differences in blood versus airway cell sam-
pling, immunocompromised status, and analytical 
techniques, whole blood transcriptomics and airway 
Nanostring experiments identified common pathways 
such as autoimmune thyroid disease, cytokines and in-
flammatory response, S. aureus infection, complement 
and coagulation cascades, T-cell receptor signaling, 
and Th17 cell differentiation (9). Although endotyping 
was not the aim of this study, we envision endotyping 
of children with PARDS a future goal.

The top regulated gene in the primary airway cell 
transcriptomics assay is IL-17A, a key cytokine for the 
recruitment, activation, and migration of neutrophils 
to inflamed characteristic of ARDS (37). The Th17 
response is characterized by a cytokine milieu that 
includes IL-6, transforming growth factor beta, IL-21, 
IL-1b, and IL-23. However, Th17 cells also have plasticity 
and can deviate toward a Th1 phenotype which is useful 

for host defense against infections and recruitment of 
cytotoxic lymphocytes, natural killer (NK) cells, NK T 
cells, and macrophages via the chemokines chemokine 
(C-X-C motif) ligand (CXCL)9 and CXCL10 (37, 38).  
Downstream signaling for Th17 differentiation depends 
on activation of the transcription factor STAT3 (39). 
The Th17 response may be amplified and dysregulated 
in PARDS. For example, elevated plasma and bron-
choalveolar lavage fluid levels of IL-17A are found in 
adults with ARDS and are associated with increased 
percentages of neutrophils, alveolar permeability, and 
extrapulmonary organ dysfunction (40). An elevated 
ratio of Th17/regulatory T cells in adults with ARDS 
also predicts 28-day mortality (41). Whether these 
findings are also relevant to children with PARDS is 
unclear and warrants further study.

The transcriptomic reporter assay is grounded in 
the idea that metabolites, pattern-associated molec-
ular patterns, damage-associated molecular patterns, 
chemokines, cytokines, and inflammatory mediators 
within the airway fluid will elicit an immune response 
in a genetically homogeneous pool of donor neutro-
phils. Neutrophils were chosen because they are the 
predominant innate immune cell recruited and recov-
ered from tracheal aspirate lavage of the airways of 

TABLE 2. 
Test Characteristics of Pediatric Acute Respiratory Distress Syndrome Models Using 
Leave-One-Out Cross-Validation on Primary Airway Samples (n = 54, 28 Pediatric Acute 
Respiratory Distress Syndrome)

Model
eXtreme Gradient  

Boosting Random Forest
Support Vector  

Machine

Variables Values 95% CI Values 95% CI Values 95% CI

True negatives 15 — 18 — 17 —

False positives 9 — 6 — 7 —

True positives 24 — 21 — 23 —

False negatives 4 — 7 — 5 —

Sensitivity 0.85 0.54–0.86 0.75 0.57–0.91 0.82 0.57–0.89

Specificity 0.62 0.53–0.93 0.75 0.50–0.87 0.7 0.54–0.91

Positive predictive value 0.72 0.66–0.95 0.77 0.54–0.88 0.76 0.62–0.93

Negative predictive value 0.78 0.40–0.80 0.72 0.53–0.83 0.77 0.49–0.86

Positive likelihood ratio 2.28 1.41–8.45 3 1.43–5.37 2.81 1.52–7.47

Negative likelihood ratio 0.22 0.19–0.61 0.33 0.14–0.64 0.25 0.15–0.59

Area under the receiver operating  
characteristic curve

0.74 0.61–0.86 0.7 0.56–0.82 0.75 0.63–0.87

Em dashes (—) indicate variables that do not have 95% CIs.
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children with PARDS (19, 20, 42, 43). Neutrophils have 
the greatest differential gene expression response com-
pared with monocytes and monocyte-derived dendritic 
cells in response to the plasma of septic adults (10).  
Although few genes were shared between the primary 
airway cell and neutrophil reporter assay analysis, 
there was overlap in the pathways that emerged.

The top regulated gene was early growth response 
(Egr)–1, an immediate-early response transcrip-
tion factor with a key role in inflammation, extracel-
lular matrix formation, thrombosis, apoptosis, and 
fibrosis, that are involved in acute lung injury (44–
46). For example, suppression of Egr-1 following 
immune complex-induced acute lung inflammation 
in mice with the peroxisome proliferator-activated 
receptor-γ agonist rosiglitazone reduced proinflam-
matory cytokine expression (47). Inhibition of the 
mitogen-activated protein kinase kinase/extracel-
lular signal-regulated kinase/early growth response 
protein 1 pathway decreased lung edema, inflamma-
tion, and neutrophil migration in a lipopolysaccha-
ride-induced mouse model of acute lung injury (48).  
There are several other notable genes in the moderate/
severe PARDS groups that are implicated in acute lung 
injury including CTLA4, ICOS, CD27 which are im-
portant in immune checkpoint molecules that regulate 
T-cell behavior (49, 50), Abl-1 a tyrosine kinase which 
regulates vascular leak in sepsis-triggered ARDS, and 
arginase 1 an enzyme that metabolizes arginine and 
may contribute to pulmonary capillary vascular leak, 
T-cell modulation by neutrophils secreting arginase 1, 
and collagen deposition leading to fibrosis (51–56).

The top up-regulated gene identified in the neu-
trophil reporter assay is NT5E, also known as 
cluster of differentiation 73 (CD73), which is an en-
zyme that converts danger signals such as aden-
osine triphosphate, adenosine diphosphate, and 
adenosine monophosphate to adenosine (57). 
Adenosine is an anti-inflammatory metabolite that 
regulates immune tolerance through immunosuppres-
sive regulatory T cells and anergic CD4 T cells (58).  
Adenosine limits the inflammatory response of neu-
trophils through a negative feedback mechanism with 
adenosine receptors expressed on neutrophils (59).  
In preclinical models of ARDS, up-regulation of CD73 
on epithelial and endothelial cells by IFN β-1a can 
prevent vascular leakage and inhibit leukocyte re-
cruitment (60–64). Unfortunately, a recent phase III 

randomized control trial of IFN β-1a showed no dif-
ference in a composite outcome of death or ventilator-
free days over 28 days in adults with moderate to severe 
ARDS (57). Nevertheless, the finding of CD73 in the 
neutrophil reporter assay of PARDS samples supports 
the relevance of this finding in our study.

Machine learning algorithms are becoming more rou-
tinely used to analyze differential gene expression in het- 
erogeneous conditions such as sepsis and ARDS (31, 32).  
Due to high dimensionality of the dataset, we applied 
the ElasticNet feature selection method to select ro-
bust features, while minimizing collinearity. This 
resulted in a reduction to a set of 49 important genes 
that differentiated the two cohorts. Among our classi-
fiers, XGBoosst and SVM were equally robust in pre-
dicting PARDS using airway samples, with the SVM 
model particularly outperforming when applied to 
neutrophil donor dataset. XGBoost, as a scalable gra-
dient tree boosting algorithm (26), gradually creates 
a model by optimizing a random differentiable loss 
function (27). SVM enhances the geometric character-
istics of the training data to find the exact hyperplane 
that separates the two classes (28). Several studies have 
demonstrated the robustness of SVM models to out-
perform more sophisticated training algorithms when 
evaluated again high-dimensional data (65), consistent 
with our observations in this study.

Our study is limited by enrollment of children from 
a single-center, which may limit generalizability. Our 
limited sample size did not enable us to model for 
important clinical outcomes such as new functional 
disability, ventilator-free days, or mortality. We only 
collected a single sample within a 72-hour collection 
window following intubation using nonstandardized 
collection volumes in the clinical course and there-
fore cannot correlate clinical trajectory with changes 
in airway immune response. By excluding known im-
munocompromised children from our study, we can-
not comment on how an immunocompromised state 
effects the airway immune response in PARDS. Despite 
our limited sample size, we attempted to determine 
differences in gene expression among children with no 
detected infectious trigger without PARDS and those 
with a viral or any infectious trigger (bacterial, viral, 
or both) with PARDS, but we did not find any differen-
tial genes selected using ElasticNet. Validation of our 
results with an external cohort is needed to assess re-
producibility of the PARDS airway immune response 
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reported. Larger well-phenotyped pediatric cohorts 
are needed to identify subclasses of children who 
may differentially respond to targeted therapies and 
interventions.

In conclusion, we report an airway immune re-
sponse gene expression signature in intubated children 
with PARDS using a Nanostring platform and machine 
learning algorithms. Nanostring airway immune re-
sponse profiling may provide a clinically useful strategy 
to understand the complex heterogeneity of the immune 
response of PARDS and to endotype patients for prog-
nostic and predictive enrichment in PARDS trials.
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