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Stereotypic dendrite arborizations are key morphological features of neuronal identity,
as the size, shape and location of dendritic trees determine the synaptic input fields
and how information is integrated within developed neural circuits. In this review, we
focus on the actions of extrinsic intercellular communication factors and their effects on
intrinsic developmental processes that lead to dendrite patterning. Surrounding neurons
or supporting cells express adhesion receptors and secreted proteins that respectively,
act via direct contact or over short distances to shape, size, and localize dendrites
during specific developmental stages. The different ligand-receptor interactions and
downstream signaling events appear to direct dendrite morphogenesis by converging
on two categorical mechanisms: local cytoskeletal and adhesion modulation and
global transcriptional regulation of key dendritic growth components, such as lipid
synthesis enzymes. Recent work has begun to uncover how the coordinated signaling
of multiple extrinsic factors promotes complexity in dendritic trees and ensures robust
dendritic patterning.

Keywords: dendritic development, ligand-receptor, glomerular targeting, layer-specific targeting, dendritic tiling,
dendritic field size, intercellular communication

INTRODUCTION: DENDRITIC FORMS FOLLOW FUNCTIONS

Neurons form complex yet stereotyped branching dendritic arbors, which receive and process
information from other neurons. The locations of dendritic arbors determine the types of
presynaptic partners and input information that is received and integrated, while the dendritic
shape, size and complexity govern the input number and passive electrotonic properties (London
and Hausser, 2005; Lefebvre et al., 2015). Stereotypical dendrite arborizations are tightly correlated
with neuronal identity and functions. Quantitative analyses of pyramidal and Purkinje cells suggest
that their dendritic morphology maximizes the complexity of potential inputs under the constrain
of total dendritic lengths while theoretical modeling of neocortical neurons suggests that changes
in dendritic morphology are able to alter signal propagation within the neuron (Mainen and
Sejnowski, 1996; Wen et al., 2009). Thus, dendrite shapes and sizes can conceivably affect synaptic
connectivity and neuronal computation. Moreover, failures to establish proper dendritic structures
have been observed in human pathological studies of neurological and neurodevelopmental
disorders (Kulkarni and Firestein, 2012; Forrest et al., 2018).

During brain development, each neuron runs a temporal cell-intrinsic growth program and
also responds to dynamic environmental cues, with interplay between these extrinsic factors
and intrinsic processes ensuring proper dendritic morphogenesis. Dendrite development requires
specific intrinsic factors, such as transcriptional regulators, that facilitate growth of neurons and
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allow the cells to acquire subtype-specific morphologies (Jan
and Jan, 2010; Dong et al., 2015). Additionally, recent genetic
and transcriptomic analyses have revealed that different types
of neurons express distinct cell surface proteins that respond
to external cues in order to guide and shape dendrites (Li
et al., 2017; Kurmangaliyev et al., 2019; Davis et al., 2020; Jain
et al., 2020). This review focuses on the morphological aspects
instructed by secreted and contact-mediated factors and the
mechanisms by which extrinsic cues and key intrinsic regulators
are spatiotemporally coordinated to shape dendritic patterning.
First, we describe current work on different neural architectures,
highlighting notable aspects of dendritic routing related to
each architecture. We then summarize the recently uncovered
mechanisms of action that mediate dendritic patterning in
response to extrinsic factors at various dendritic developmental
stages. Finally, we discuss the coordination of multiple extrinsic
factors in regulating dendritic development.

DENDRITIC PATTERNING IN DIFFERENT
NEURAL ARCHITECTURES

Recent studies using genetics and imaging analysis have greatly
advanced the identification of extrinsic factors and their roles
in dendritic morphogenesis. These studies have focused on
multiple experimental systems with unique neural architectures,
such as Drosophila adult visual neurons (Fischbach and Dittrich,
1989; Ting et al., 2014), Drosophila larval dendritic arborization
(da) sensory neurons (Jan and Jan, 2010), C. elegans PVD
neurons (Inberg et al., 2019), mouse retinal neurons (Sanes
and Zipursky, 2010), pyramidal neurons (Spruston, 2008), and
cerebellar Purkinje cells (Fujishima et al., 2018; Figure 1).
Different types of neural architectures have distinct requirements
for dendritic routing, and consequently, the sources and patterns
of extrinsic factors that guide routing differ between the model
systems. Three major types of neural architectures have been
examined in detail, including layer-column, glomeruli, and 2D-
space tiling.

Routing Dendrites in Layers and
Columns
In the visual systems of vertebrates and invertebrates, neurons
extend dendrites to particular layers of the stratified neuropil
in the retina and brain (Sanes and Zipursky, 2010). In the
vertebrate retina, the laminar arrangement of visual neurons
is separated into three distinct “nuclear” layers (contain cell
bodies but no synapses) interspersed with two “plexiform”
layers (contain synapses but no cell bodies). Axons of ON
bipolar cells (excited by light) terminate in the inner half of
the inner plexiform layer (IPL), where they form synapses with
dendrites of ON retinal ganglion cells (RGCs) and amacrine
cells. Similarly, OFF bipolar axons and OFF RGCs dendrites
form synapses in the outer half of the IPL. The RGC axons
relay visual information and innervate the optic tectum (also
called the superior colliculus), which is also composed of stacked
layers that each encode certain visual features, such as light
polarity or direction-specific motion (Sanes and Zipursky, 2010;

Figures 2A,B). Similar stratified neuropils are also found in
invertebrate visual systems. In the Drosophila optic lobe, the
majority of dendritic branches arise from one or two nodes in
specific layers, with the dendrites extending to different layers.
For example, Tm20 neurons extend most dendrites from the
third medulla layer (M3) to the M1–M3 layers, while Dm8
neurons extend most of their dendrites in the M6 layer (Fischbach
and Dittrich, 1989; Ting et al., 2014; Figure 1A). In addition
to layer-specific targeting, dendrites from medulla neurons also
exhibit type-specific planar directions of projection. For example,
Tm1, Tm2, and Tm9 neurons extend dendrites anteriorly, while
Tm20 neurons project dendrites posteriorly (Ting et al., 2014;
Figure 1A). The development of this grid-like organization of the
visual systems requires matching axonal terminals and dendrites
in layers and controlling dendritic elaboration in columns. The
extrinsic factors that regulate dendritic development are often
provided by the grid-forming afferents. Surface receptors serve as
adhesive or repulsive cues to regulate layer-specific elaboration
of dendrites. The secreted factors often act in short-range to
pattern dendrites and to control the field sizes (Figures 2A,B;
detail molecular signals will be discussed in the below sections).

Drosophila embryonic abdomen motorneurons are organized
in an analogous grid-like organization. A set of ∼80 motoneurons
are present in each segment of the ventral nerve cord (VNC)
(Figure 1B), and each motorneuron projects an axon along
a distinct nerve to innervate a peripheral target muscle field
with characteristic dendritic arborization (Landgraf et al.,
1997). The segmental muscular and longitudinal neuronal
structures serve as landmarks for dendrite morphological
analysis. For instance, developing aCC (anterior corner cell)
motor neurons (magenta cell in Figure 1B) can be easily located
and manipulated for studies on the dynamics of dendritic
arbor growth (Tripodi et al., 2008). In addition, stereotypical
dendritogenesis sites on aCC neurons are well suited for
investigating the molecular mechanisms that control selection
of dendritic branch points (Kamiyama et al., 2015). Using
the well-aligned and organized reference architectures in the
above mentioned systems, one can effectively quantify several
different aspects of morphological alterations, including dendritic
initiation, branching, and termination.

Glomerular Targeting
In the Drosophila olfactory system, odorant neurons (ORNs)
relay odorant information to the primary olfactory center
(specialized neuropil structures called glomeruli), in the antennal
lobe/olfactory bulb. Specific types of insect olfactory projection
neurons (PNs) and vertebrate mitral cells precisely target
complex dendrites to discrete glomeruli (Figures 1C, 2C,D),
where they receive olfactory information from specific ORNs.
The axons of these neurons then project to higher brain
processing centers. This system is highly amenable to studies
on dendritic guidance and targeting mechanisms. Previous
studies have shown that glomerular targeting of PN dendrites is
controlled by intrinsic factors related to cell lineage and identity
and further regulated by extrinsic cues (Corty et al., 2009).

Dendritic targeting to discrete glomeruli is likely achieved
by a combination of two mechanisms: gradients of diffusible
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FIGURE 1 | Experimental systems for studying dendritic patterning. (A) Organization of layers and columns in the Drosophila visual system. Schematic illustration
shows the structures of retina, lamina, and medulla. Dendrites of lamina neurons (L1∼L5 in green) received visual information from photoreceptors and organized in
a columnar structure. Transmedulla neurons (Tm2, 9, and 20 in purple) elaborate their dendrites into specific layers and are confined to a single medulla column. The
amacrine-like neuron Dm8 (orange) extends dendrites in the M6 layer where they receive ∼14 R7 inputs. (B) The illustration depicts Drosophila embryonic abdomen
motoneurons that project their dendritic arbors within the ventral nerve cord of the embryonic CNS in partial segments. The aCC neuron is magenta. FasII-positive
longitudinal axon bundles are light yellow. CNS axonal tracts are labeled in gray. Anterior is to the left. (C) Anatomical organization of the Drosophila olfactory system.
The antennal lobe is organized into discrete neuropil compartments, called glomeruli, where matched axonal arbors of olfactory receptor neurons (ORNs) and
dendrites of projection neurons (PNs) are converged precisely. This drawing shows two adjacent glomeruli located at the dorsolateral region of the AL, the
Or67d:DA1 and Or88a:VA1d. Specific types of projection neurons (PNs) project their dendrites to discrete glomeruli within the antennal lobe. In panels (A–C),
dendritic arbors are highlighted in dark color. (D) In third-instar Drosophila larva, the dendrites of a highly branched class IV dendritic arborization (C4da) neurons
achieve almost complete coverage of the body wall. Dendrites from the same cell or from the same class of neurons do not overlap in their territories. Epidermis is
shown as hexagon shapes underneath the C4da neurons. (E) The schematic shows the general organization of Purkinje cells and granule cells in the cerebellar
cortex. Elaborate dendritic trees of adjacent Purkinje cells lie parallel in planes and form synapses with T-shaped parallel fibers (in pink), the axons of granule cells.

morphogens might act in long-range to pattern glomeruli
while contact-dependent adhesive or repulsive cues match PN
dendrites to ORN axons. During development, multiple ligands
are secreted by ORNs and form gradients along dorsolateral-
ventromedial (DL-VM) axis in the antennal lobe (Figure 2D;
Sweeney et al., 2011; Wu et al., 2014; Hing et al., 2020) while
different types of PN dendrites expressing distinct levels of
receptors to generate quantitative signaling to orient PN dendritic
innervations. In addition, class-specific surface proteins or
receptors potentially refine specific glomerular targeting locally
via short-range contact-mediated action (Figure 2C; Hong et al.,
2009, 2012; Ward et al., 2015; Xie et al., 2019). Collectedly,

pre-defined molecular gradients and local interactions suggest a
combinatorial molecular code allowing the precise targeting of
diverse neuron types within the antennal lobe.

Tiling on a Two-Dimensional Space
The most striking and characteristic features of the polymodal
sensory da (dendritic arborization) neurons in Drosophila and
the cerebellar Purkinje cells in vertebrates are their large and
highly branched dendritic patterns on a 2D space. Despite
their considerable sizes and complexities, the dendritic arbors
originating from the same cell or different cells, do not cross,
fasciculate or entangle, but together, the arbors maximize
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FIGURE 2 | Different cellular mechanisms regulate dendritic patterning. (A) Sidekick 1 (Sdk1) transmembrane adhesion receptor is concentrated in a distinct set of
IPL sublaminae (S4 and light orange) in vertebrate retina sections. Sdk molecules can bind homophilically and extend dendritic arbors to one or a few restricted IPL
sublaminae. The absence of Sdk1 causes dendrite mistargeting from S4 to other layers. Ectopically expressed Sdk1 (magenta) in Sdk1-non-expressing cells
(outlined in green) redirects dendrites to the S4 layer. Either loss-of-function or gain-of-function for Sdks results in the degradation of cell-type-specific laminar
restriction and leads to impaired motion sensing, due to selective loss of specific synapses (Yamagata and Sanes, 2008, 2018; Krishnaswamy et al., 2015).
(B) Semaphorins and plexins function as repellent cues in control of dendrite targeting (Koropouli and Kolodkin, 2014). Transmembrane Sema6A is selectively
expressed by RGCs and amacrine cells in most ON sublaminae; its receptor, PlexinA2 or PlexinA4, is expressed complementarily in OFF sublaminae of the IPL in the
developing mouse retina. In ligand or receptor mutants, PlexinA2+ or PlexinA4 + amacrine cell dendrites are misrouted to abnormal locations in the ON IPL
(Matsuoka et al., 2011a,b; Sun et al., 2013). INL, Inner nuclear layer; IPL, Inner plexiform layer; GCL, Ganglion cell layer. (C) Two Drosophila Teneurins, Ten-a and
Ten-m, exhibit complementary expression patterns in the AL. Epidermal growth factor-repeat containing transmembrane Tens bind homophilically and act as
attractive cues to recruit the relevant synaptic partners. Reduce expression of Ten-a in PNs redirects partial of their dendrites to glomeruli where presynaptic afferents
express low Ten-a levels (Hong et al., 2012). (D) Repulsive transmembrane protein Semaphorin-1a (Sema-1a) regulates appropriate PN dendritic targeting to
destined glomeruli in the AL. Dendrites of Sema-1a-difficient PNs mistarget and/or innervate into the DA3 glomerulus (Shen et al., 2017). (E) A family of molecular
diversity cell recognition molecules, Pcdhs, is required to mediate dendrite self-avoidance and heteroneuronal interaction during development. Similar to Drosophila
Dscam1, the Pcdhs are required for self-avoidance, with an analogous role for self/non-self-discrimination in mouse retinal starburst amacrine cells (SACs) and
cerebellar Purkinje cells. Expressing a single γ-Pcdh isoform in γ-Pcdh-knockout is sufficient to rescue self-avoidance but reduces heteroneuronal dendrite
interactions in SACs (Lefebvre et al., 2012).

coverage of the 2D space (Figures 1D,E). A prerequisite to
achieve 2D tiling of dendrites is to restrict dendritic growth on a
2D surface where contact-dependent repulsion among dendrites
can exert its effects (Han et al., 2012).

Two related processes that both utilize contact-dependent
repulsion are self-avoidance and tiling (Zipursky and Grueber,
2013; Parrish, 2016; Soba, 2016). Self-avoidance (or isoneuronal
repulsion) requires that dendritic branches emerging from the
same neuron repel one another to prevent the entanglement
of sibling dendrites. Similarly, tiling requires the dendrites
of the same neuronal type avoid one another (Grueber
and Sagasti, 2010), thereby allowing full-field coverage

for complete input sampling but also protecting against
input redundancy. By restricting sensory dendrites to non-
overlapping fields, the tiling patterns of mechanosensory
neurons can provide accurate locational information about
a stimulus. The establishment of such distinct dendrite
territories is thought to involve signals secreted by heterotypic
neighbors or non-neuronal cells (Lefebvre et al., 2015; Parrish,
2016). Moreover, homophilic receptors, such as DSCAM
in Drosophila and the clustered protocadherins (Pcdhs) in
vertebrates, are necessary for the contact-mediated repulsion
that allows dendrites to fill their target territories evenly, without
intersection of sibling dendrites from the same neuron (Lefebvre
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et al., 2012; Figure 2E). Together, self-avoidance and tiling
cooperatively ensure efficient and non-overlapping coverage of
the receptive fields.

EXTRINSIC FACTORS FROM VARIOUS
CELLS IMPINGE ON INTRINSIC
FACTORS AT DIFFERENT
DEVELOPMENTAL STAGES

Studies on C. elegans, Drosophila, Xenopus, and rodents suggest
that dendritic morphogenesis proceeds in stages. In the initial
targeting stage, primary dendrites extend away from the cell
body or axon/dendrite shafts into appropriate target fields,
where they may encounter the axon terminals of presynaptic
partners. In the dendrite elaboration stage, highly dynamic
cytoskeleton rearrangements and plasma membrane expansion
are required for branching, growth and retraction of dendrites.
As dendrites approach an appropriate level of coverage, self-
avoidance and tiling mechanisms become major influences
to prevent dendritic receptive fields from overlapping with
neighbors. Dendrite growth is therefore restrained and stabilized
as the dendrite arbors approach their proper borders. Lastly,
during the dendrite remodeling stage, dendritic pruning can
occur before synapse formation. Many secreted factors and
receptors have been identified as regulators of these dendritic
developmental stages (Table 1).

Dendrite Initiation Targeting Stage
Using hippocampal neuronal cultures as a model, previous
studies revealed that the induction of neuronal polarity and the
generation of single axons and multiple dendrites from the cell
body proceeds in a well-defined temporal sequence (Cheng and
Poo, 2012). Compared to axonogenesis (Arikkath, 2012; Chen
et al., 2017), much less is known about how dendrite initiation
is specified in vivo. For pseudounipolar neurons, dendrites first
branch out at specific positions on the axonal shaft to innervate
a specific target area. The initial targeting of dendrites thus
influences the types of inputs that the neuron can receive.
Recent studies revealed that Wnt(LIN-44)/Frizzled(LIN-17) and
the transmembrane repulsive receptor, Dscam1, respectively,
specify dendrite initiation sites in C. elegans oxygen-sensing PQR
neurons (Kirszenblat et al., 2011) and Drosophila embryonic
CNS neurons (Kamiyama et al., 2015). In vertebrates, the class 3
secreted Semaphorin-3A (Sema3A) and its receptor neuropilin-
1 is involved in dendrite initiation in hippocampal neurons
(Shelly et al., 2011).

Dendrite Elaboration Stage
In the elaboration stage, dendrites undergo numerous extension
and branching events to reach or cover appropriate target
regions. Both dendritic extension and branching require
substantial plasma membrane expansion and cytoskeletal
reorganization (Menon and Gupton, 2018). Plasma membrane
expansion in dendrites is fueled by membrane material transport
via exocytosis and lipogenesis machinery (Peng et al., 2015;

Meltzer et al., 2017; Ziegler et al., 2017; Urbina et al., 2018).
Local and directed reorganization of the actin-cytoskeleton is
also essential for dendritic extension and branching; the loss
of cytoskeletal regulators generally leads to drastic alterations
of dendritic structures (Coles and Bradke, 2015; Kapitein and
Hoogenraad, 2015). In dendritic filopodia, linear and branched
actin remodeling are thought to be tightly regulated by the
Ena/VASP and WRC (WAVE Regulatory Complex) proteins,
respectively. Furthermore, a recent study revealed that the
Arp2/3 (actin-related protein 2/3) complex, under the control
of the WAVE protein, serves as the major actin nucleator for
branching initiation (Stürner et al., 2019).

Dendrite Remodeling Stage
The remodeling or pruning process removes exuberant and
excessive dendritic arbors as the nervous system matures
(Riccomagno and Kolodkin, 2015). During Drosophila
metamorphosis, dramatic remodeling/pruning of dendrites
occurs in response to hormonal signaling by ecdysone. For
instance, larval class IV dendritic arborization (C4da) neurons
eliminate of all their dendritic branches, without affecting
axons, before engaging the adult regrowth program (Kuo
et al., 2005; Williams and Truman, 2005). In both insect and
mammalian neurons, local activation of caspases is required for
the elimination of dendritic branches and spines (Williams et al.,
2006; Ertürk et al., 2014). The L1-type cell adhesion molecule,
Neuroglian (Nrg), inhibits dendrite pruning in Drosophila
ddaC sensory neurons, which depends on Rab5-dependent
endocytosis-mediated degradation of surface Nrg (Zhang et al.,
2014; Kanamori et al., 2015). While Nrg functions only in
dendrites, the ephrin receptor, EphB3, has been implicated in
both axon and dendrite pruning (Xu and Henkemeyer, 2009;
Xu et al., 2011). Sema3A also regulates dendritic remodeling in
an activity-dependent fashion in cultured hippocampal neurons
in vitro (Cheadle and Biederer, 2014).

EXTRINSIC FACTORS INFLUENCE
INTRINSIC PROCESS VIA LOCAL
ACTIN-CYTOSKELETON AND GLOBAL
TRANSCRIPTIONAL REGULATORS

Dendritic morphogenesis depends on local modulation
of cytoskeletal machinery and plasma membrane
addition/expansion, which are crucial for dendrite extension
and branching. Extracellular factors acting on cognate receptors
are known to modulate these processes directly or indirectly to
affect dendritic morphogenesis. Recent studies have identified
two major mechanisms by which extrinsic factors drive dendritic
morphogenesis: local modulation of adhesion or cytoskeletal
components and global transcriptional regulation of key
dendritic growth components.

Transcription-Independent Mechanism
Dendritogenesis largely depends on modulation of the actin
and microtubule cytoskeleton. Live-imaging analysis shows that
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TABLE 1 | Extrinsic factors regulate dendritic morphogenesis at different stages.

Extrinsic factor/receptor Signal source Effectors System Reference

Initiation of dendritic outgrowth (Initiation stage)

Wnt (LIN-44)/Frizzled (LIN-17) Posterior cell C. elegans PQR neuron Kirszenblat et al., 2011

Dscam1/Dscam1 Afferents Dock/Pak/Cdc42 Fly embryonic CNS Kamiyama et al., 2015

Semaphorin 3A (Sema3A)/Neuropilin-1 (Nrp-1) Mouse hippocampal neurons Shelly et al., 2011

Dendritic branching and growth (Elaborating stage)

SAX-7, MNR-1/DMA1 Epidermis Rac-WRC-Arp2/3 C. elegans PVD neuron Zou et al., 2018

?/BAI1 (aGPCR) RhoA Rodent hippocampal neuron Duman et al., 2019

?/BAI3 (aGPCR) ELMO1/Dock1 Mouse Purkinje neuron Lanoue et al., 2013

AMIGO2 Mouse SACs and RBCs Soto et al., 2019

Wnt5a/Drl (Ryk) Epidermis Trio/RhoA Fly ventral abdomen neuron Yasunaga et al., 2015

TGF-β (Activin)/Babo Afferents dSmad2 Fly optic lobe Ting et al., 2014

TGF-β/TGF-βR Smad4/CRMP2 Mouse hippocampal neuron
Human iPSC-derived neuron

Nakashima et al., 2018

GDNF/GFRα NCAM1 Hippocampal pyramidal neurons
dentate gyrus neurons

Irala et al., 2016;
Bonafina et al., 2019

TGF-β (maverick)/Ret Epidermis Fly larval da neuron Hoyer et al., 2018

FGF/FGFR1/2/3 Mouse somatosensory cortex Huang et al., 2017

Insulin/InR Afferents PI3K/Tor/SREBP Fly optic lobe Luo et al., 2020

HSPGs (Dally and Sdc)/Ptp69D Epidermis Fly larval C4da neuron Poe et al., 2017

L1CAM Human ES induced neuron (iN) Patzke et al., 2016

Nrg167/Nrg180 (L1CAM) Epidermis Fly larval C4da neuron Yang et al., 2019

Dscam2/Dscam2 Afferents Fly optic lobe (lamina) Kerwin et al., 2018

Dscam1 Fly motoneuron Hutchinson et al., 2014

Nectin-1 mouse olfactory mitral cell Fujiwara et al., 2015

Sema3A/Nrp1-PlexinA4 FARP2/Rac1
CRMP2
CRMP4

Mouse cortical pyramidal neuron
mouse CA1 pyramidal neuron
mouse CA1 pyramidal neuron

Danelon et al., 2020; Niisato et al.,
2013; Niisato et al., 2012

Axon-dendrite fasciculation

SAX-3 (Robo)/SAX-7 (L1-CAM) Afferents C. elegans PVD neuron Chen et al., 2019

Dendritic guidance and targeting (Targeting stage)

Sema-2a/2b/Sema-1a Afferents Fly olfactory glomeruli Sweeney et al., 2011; Shen et al.,
2017

Wnt5/Drl-Vang Afferents Fly olfactory glomeruli Wu et al., 2014; Hing et al., 2020

Ten-a and Ten-m Afferents Fly olfactory glomeruli Hong et al., 2012

Fish-lips (Fili) Afferents Fly olfactory glomeruli Xie et al., 2019

Toll-6 and Toll-7 Afferents Fly olfactory glomeruli Ward et al., 2015

Capricious Afferents Fly olfactory glomeruli
fly optic lobe

Hong et al., 2009; Shinza-Kameda
et al., 2006

Dscam2 and Dscam4 Afferents Fly optic lobe Tadros et al., 2016

Sidekicks, Dscams, and Contactins Afferents Mouse RGC Krishnaswamy et al., 2015;
Yamagata and Sanes, 2008;
Yamagata and Sanes, 2018

Semaphorins/plexins Mouse RGC Koropouli and Kolodkin, 2014;
Matsuoka et al., 2011a,b; Sun
et al., 2013

Dendritic self-avoidance and tiling

Dscam1 Isoneurons Fly larval da neuron Hughes et al., 2007; Matthews
et al., 2007; Matthews and
Grueber, 2011; Soba et al., 2007

DSCAM Mouse RGC Fuerst et al., 2009

Pcdhs Isoneurons Mouse SACs and Purkinje cells Lefebvre et al., 2012

Sema6A/PlexA2 Mouse SACs Sun et al., 2013

Slit2/Robo2 Mouse Purkinje cells Gibson et al., 2014

UNC-6 (Netrin)/UNC-40/DCC C. elegans PVD neuron Smith et al., 2012

Dendritic pruning (Remodeling stage)

Neuroglian (Nrg) Fly ddaC sensory neuron Zhang et al., 2014;
Kanamori et al., 2015

EphBs/Ephrin-B3 Grb4/Dock180/PAK
Pick1/syntenin

Mouse hippocampal CA1 neuron Xu and Henkemeyer, 2009; Xu
et al., 2011
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clusters of dynamic F-actin called “actin blobs” are recruited
at branch initiation sites along dendritic shafts in Drosophila
C4da neurons (Nithianandam and Chien, 2018), suggesting
that at such branch initiation sites, actin-associated complexes
facilitate dendritic branching. Many cell surface receptors
and adhesion molecules associate directly with cytoskeletal
machinery, thereby providing a means of directly translating
environmental signals to local dendritic morphogenesis. One
of the major convergence points is the WAVE regulatory
complex (WRC), which binds and activates the Arp2/3 complex
to drive actin polymerization at distinct membrane sites.
WRC associates with diverse cell surface receptors, such as
protocadherins, ROBOs and netrin receptors, in order to
regulate dendritic morphogenesis (Chen et al., 2014). The
most thoroughly examined example of this process comes
from worm PVD neurons, in which the dendrite branching
receptor, DMA1, and the claudin protein, HPO-30, form
a signal-sensing complex with the RacGEF, TIAM-1, and
WRC. In response to the epidermis-derived co-ligand complex,
SAX-7/MNR-1/LECT-2, this system locally activates the Rac-
WRC-Arp2/3 signaling pathway to promote F-actin assembly,
which drives high-order dendritic branching (Zou et al.,
2018; Figure 3A).

Sema3A, a secreted semaphorin highly expressed in cortical
plate, patterns both dendrites and axons of cortical pyramidal
neurons during development. Previous studies have shown that
Sema3A signals through its receptor Neuropilin-1/PlexinAs to
promote dendritic growth and branching in vitro and in vivo
(Fenstermaker et al., 2004; Tran et al., 2009; Mlechkovich
et al., 2014; Yamashita et al., 2016; Danelon et al., 2020). In
this signaling complex, PlexinAs serve as signal-transducing
subunits to bridge the extrinsic factor Sema3A and their
downstream effectors that regulate cytoskeleton reorganization
(see review Goshima et al., 2016). Tran and colleagues first
demonstrated that Plexin-A4’s KRK motif which associate
with the RhoGEF FARP2 is specifically required for dendritic
branching but not growth cone collapse in vitro (Mlechkovich
et al., 2014). Recently, they generated a Plexin-A4KRK−AAA

knock-in mice and showed that activated Sema3A signaling
initiates a novel Sema3A-Neuropilin-1/Plexin-A4/FARP2/Rac1
signaling pathway to mediate dendrite morphogenesis of layer-
5 cortical neurons in vitro and in vivo (Danelon et al., 2020).
Another downstream signaling pathway for Sema3A is the
collapsin response mediator protein (CRMP) family, which
is also linked to cytoskeletal modulation. CRMP2 appears
to promote hippocampal pyramidal neuron apical dendrite
branching (Niisato et al., 2013). In contrast, CRMP4 might be
involved in pruning apical dendrites of olfactory mitral cells,
as CRMP4 knockout mice have enhanced growth of mitral cell
dendrites (Tsutiya et al., 2016).

Wnts are secreted glycoproteins that engage diverse
signaling pathways on regulating different aspects of
neuronal development. In contrast to its transcriptional
role in neurogenesis and differentiation via the β-catenin-
dependent pathway, Wnts function as instructive extrinsic
signals and provide spatial information for regulating of F-actin
assembly in axon/dendrite morphogenesis (He et al., 2018).

In adult Drosophila, the boundary of the dendritic field in the
ventral abdomen is controlled by repulsive Wnt signals from the
underlying epidermal tissues. Wnt5a-Drl (Ryk in mammalian)
interactions act through Trio, a Rho GTPase exchange factor
to promote dendritic termination through the activation of
RhoA, a regulator of actin-cytoskeletal dynamics (Yasunaga
et al., 2015). Loss of Ryk, a non-canonical Wnt receptor, in
mouse hippocampal and cortical neurons promotes dendrite
growth and branching in vitro, whereas overexpression of
wild type Ryk restricts these processes (Clark et al., 2014;
Lanoue et al., 2017). Human patients of Williams syndrome,
a genetic neurodevelopmental disorder, identified a mutation
in a Wnt receptor, the frizzled9 gene. It has been shown the
downregulation of Wnt signaling increased total dendrite length
in mutant neurons generated from patient-derived induced
pluripotent stem cells (iPSCs) (Chailangkarn et al., 2016). These
observations highlight an evolutionary conserved role of Wnt
signaling in dendritic patterning.

The Drosophila embryonic aCC motoneuron serves as
an especially illustrative example of how dendritogenesis
sites are specified by coupling homophilic interactions to
actin-cytoskeleton remodeling. Drosophila embryonic aCC
motoneurons initiate dendritogenesis at sites of contact with the
axons of MP1 neurons. In the aCC neuron, Dscam1-mediated
homophilic interactions act via the Dock adaptor protein to
localize the Cdc42 effector, Pak1, to the dendrite initiation
site, thereby spatially restricting cytoskeletal remodeling
(Kamiyama et al., 2015).

In another example from Drosophila, the attachment of
dendrites to the extracellular matrix (ECM) confine da neuron
dendrites to a 2D space, facilitating dendritic avoidance and
tiling. The dendrite-ECM adhesion is mediated by interactions
between dendritic integrins and epidermis-secreted laminins
(Han et al., 2012). The semaphorin ligand, Sema-2b, is secreted by
the epidermis and acts on the neuronal PlexB receptor to promote
dendrite-ECM attachment (Meltzer et al., 2016). The Sema-
2b/PlexB complex physically associates (and genetically interacts)
with Mys, a β-subunit of integrin, and its downstream effectors,
the TOR2 (target of rapamycin) complex and Tricornered (Trc)
kinase. How Sema-2b/PlexB complexes activate Trc and/or
modulate integrin activity to promote dendrite-ECM adhesion
requires further investigation.

Contact-mediated extrinsic cues, such as intercellular
recognition, establish dendritic patterning during development
(Prigge and Kay, 2018). Adhesive molecules that regulate cell-cell
recognition can lead to generation of a repellent signal or
an adhesive interaction for establishing synaptic partnership
(Sanes and Zipursky, 2020). Examples of trans-cellular binding-
mediated adhesion are the Sidekicks and Teneurins, which
function in specific laminar targeting of a subset of RGC
dendrites in the vertebrate IPL (Figure 2A, Yamagata and
Sanes, 2008, 2018; Krishnaswamy et al., 2015) and instruct
dendritic targeting in Drosophila (Figure 2C; Hong et al.,
2012), respectively. In both systems, either loss-of-function
or gain-of-function result in the impairment of dendritic
targeting. For repulsive interaction, the semaphorins and plexin
signaling receptors are known as repellent signals for their roles
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FIGURE 3 | Extracellular factors govern dendritic morphogenesis via convergent signaling. (A) Model showing a multicomponent receptor-ligand complex regulating
C. elegans PVD dendrite arborization. During the initiation of tertiary and quaternary PVD dendrite branches, membrane-associated protein, SAX-7/L1CAM, is
expressed in a striped pattern in the underlying epidermis that correlates with the positions of dendrite branches. Surface expression of DMA-1 of PVD neuron
receives extracellular signals via interactions with epidermal SAX-7/L1CAM and MNR-1, and the soluble ligand LECT-2 to function with HPO-30 and downstream
effectors, TIAM-1 and the WRC (WAVE Regulatory Complex), that promote F-actin assembly, thereby resulting in dendritic branching at precise localization (Zou
et al., 2018). (B) Two afferent-derived factors, Activin and DILP2, regulate Dm8 dendritic field size antagonistically. During the early pupal stage, insulin-like protein
DILP2 derived locally from L5 neurons activates Insulin receptor (InR) and its canonical PI3K/AKT/TOR signaling pathway in Dm8 dendrites. Subsequent SREBP
activation induces lipogenesis and stimulates Dm8 dendrite expansion. In the late pupal stage, InR expression declines, followed by the expression of Activin, which
is derived from R7s. Activin acts on its receptor, Baboon, in Dm8 dendrites to restrict the expansion of the dendritic field. This temporal antagonistic regulation is
accomplished by multiple afferent-derived morphogens and contributes to the robust and stereotyped control of Dm8 dendritic tree size (Luo et al., 2020).

in setting up laminar and cellular specificity. In the mouse
retina, the transmembrane protein Sema6A and its receptors
PlexinA2 or A4 are localized in specific sublaminae of the
IPL. Loss of Sema6A severely disorganized lamina-specific
arborization of RGCs and amacrine cells (Figure 2B; Matsuoka
et al., 2011a,b; Sun et al., 2013). Similarly, loss of repellent
effects of semaphorins also results in dendritic mistargeting
in Drosophila olfactory system (Figure 2D; Shen et al., 2017).
Recently, a study found that membrane leucine-rich repeat
family member Fish-lips (Fili) acts as a non-homotypic repellent

in ORNs signals to PNs, and in PNs signals to ORNs, to prevent
invasion of neurites into inappropriate target region. Yet, the
Fili receptor for this phenomenon is not known at this moment
(Xie et al., 2019).

Transcription-Dependent Mechanism
Transcriptional control, especially of membrane synthesis
and cytoskeletal components/regulators, has emerged as a
major mechanism for extrinsic factors to modulate global
dendritogenesis. Growth of large and highly branched dendrites

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 January 2021 | Volume 14 | Article 622808

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-14-622808 January 2, 2021 Time: 15:9 # 9

Lin et al. Cellular Communication Instructing Dendritic Development

requires a continuous supply of membrane constituents, which is
generated by de novo lipid synthesis. Sterol regulatory element
binding protein (SREBP) is a key transcription factor for
lipogenic gene expression, and silencing of SREBP was found
to reduce dendrite branching and length in Drosophila da
neurons (Meltzer et al., 2017; Ziegler et al., 2017). A recent
study on Drosophila Dm8 dendritic development provides a link
between extrinsic factors and SREBP-dependent transcription
regulation (Luo et al., 2020). In response to the afferent-
derived insulin-like peptide, Dilp2, Dm8s activate the canonical
InR/PI3K/TOR1 pathway, which activates SREBP to promote
dendritic growth (Figure 3B). Whether SREBP activity is
regulated by insulin or other extrinsic factors in Drosophila da
neurons remains unknown.

In contrast, Smad-mediated transcriptional control
negatively regulates dendritic growth and branching. In
mouse hippocampal neurons and human iPSC-derived neurons,
activated Smad interacts with the transcriptional repressor,
TG-interacting factor (TGIF), to silence the expression of
the CRMP2, a cytoskeleton regulator involving in dendrite
elongation (Nakashima et al., 2018). By antagonizing the
growth-promoting effects of the InR/PI3K/TOR1 pathway,
TGF-β/Activin signaling restricts dendritic arborization of
Dm8 and Tm20 medulla neurons, also through Smad-mediated
transcriptional regulation (Ting et al., 2014; Figure 3B). Activin
derived from afferent R7s and R8s acts specifically on the
Baboon receptors, respectively, expressed by Dm8 and Tm20
neurons to activate the Smad2 transcription factor. While
Smad2 appears to affect dendritic termination frequency, the
transcriptional targets of Smad2 in Dm8 and Tm20 neurons have
yet to be identified.

COMBINATORIAL EXTRINSIC FACTORS
COORDINATE DENDRITIC
DEVELOPMENT

It has been suggested that combinatorial molecular codes is
the common principle of brain wiring for overcoming limited
numbers of molecules as compared to the complexity of
the nervous systems. Unlike axon guidance which employs
multiple guidance receptors (Richardson and Shen, 2019), less
is known about the combinatorial codes of extrinsic factors
in dendritogenesis. The dendrite morphogenesis of the worm
PVD neurons employees a unique combinatorial coding strategy
of multi-ligand-receptor assembly. Proper dendritic patterning,
especially dendritic branching, is driven by a penta-partite ligand-
receptor complex formed by two dendritic receptors (DMA-1
and HPO-30), two epidermis transmembrane ligands (SAX-7 and
MNR-1) and the muscle-secreted ligand LECT-2 (Zou et al., 2018;
Figure 3A). In Drosophila class III da neurons, the Dscam1-
mediated self-repulsive mechanism works cooperatively with
the Netrin/frazzled guidance cue to guide sensory dendrites to
their targets while uniformly filling the target field (Matthews
and Grueber, 2011). Below we discuss a number of examples
of multiple signaling pathways converging intracellularly to
generate unique dendritic patterns.

Combinatorial Codes for Glomerulus
Targeting
Recent studies have focused on the cues that mediate early
dendritic targeting of olfactory projection neurons (PNs) to
glomeruli of the Drosophila antennal lobe (AL). One such
study revealed that the transmembrane cell surface receptor,
Semaphorin-1a (Sema-1a), displays a graded expression pattern
in the AL, with the highest protein level in PN dendrites
at the dorsolateral corner (Komiyama et al., 2007). Based on
loss-of-function experiments in several PN types, Sema-1a was
initially proposed to instruct coarse PN dendritic targeting
along the dorsolateral-ventromedial (DL-VM) axis by its action
as a receptor for an opposing gradient of repulsive guidance
cues (secreted ligands, Sema-2a/2b) from axons of degenerating
larval olfactory receptor neurons (ORNs) (Sweeney et al.,
2011). However, a more comprehensive analysis of Sema-1a
mutants in many PN types suggested that Sema-1a functions
locally to prevent PN dendrites from mis-targeting to select
AL regions. The dendritic mis-targeting in multiple Sema-1a
mutant PN types was inconsistent with the predictions of the
original semaphorin gradient model (Figure 2C; Shen et al.,
2017), challenging the idea that Sema-1a globally controls PN
dendritic targeting along the DL-VM axis of the AL. Since
PNs precisely project dendrites to unique AL glomeruli in
wild-type animals, these Sema-1a studies raise the possibility
that combinatorial molecular codes incorporate Sema-1a to
ensure the generation of discrete dendritic patterns among
distinct PN types. Molecules with graded expression, other
than Sema-1a, may then be responsible for globally directing
PN dendritic targeting within the AL. An excellent candidate
is the repulsive guidance cue Wnt5 which forms a DL-
high to VM-low gradient that orients specific PN dendrites.
Moreover, an ORN axon-derived transmembrane planar cell
polarity (PCP) protein, Van Gogh (Vang), serves as a mediator
of Wnt5 repulsion in the context of PN dendritic targeting.
Interestingly, PN dendrites express different levels of Drl (a
Wnt5 receptor) to antagonize the Wnt5-Vang repulsion and
direct appropriate localization to glomerular positions (Wu
et al., 2014; Hing et al., 2020). By utilizing combinatorial
molecular codes both locally and globally, proper dendritic
patterns can be established among distinct PN types, permitting
appropriate synapse formation with partner ORNs to create an
accurate olfactory map.

Matching Pre/Post-synaptic Partners via
Ig Superfamily Adhesive Code
An additional example of a known molecular combinatorial
code is related to the Ig-containing adhesive receptor Dscams
in fly visual laminar neurons (Zipursky and Grueber, 2013;
He et al., 2014; Lah et al., 2014; Tadros et al., 2016). In
each photoreceptor synapse, there is a tetrad of postsynaptic
elements that invariably incorporates paired dendrites of laminar
neurons, L1 and L2. Reportedly, L1 and L2 cells express
different sets of Dscam1 and Dscam2 proteins (L1 expresses
the Dscam2B isoform; L2 express Dscam2A) (Lah et al., 2014).
Loss of either Dscam1 or Dscam2 produces mild pairing
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defects, and both Dscam1 and Dscam2 are required for correct
postsynaptic pairing with a photoreceptor in single cartridge.
When two dendrites from the same cell encounter each
other, Dscam1 and Dscam2 stimulate homophilic repulsion
to promote self-avoidance, preventing L1/L1 or L2/L2 pairs
from incorporating into the same tetrad (Millard et al., 2010).
These findings suggest that pairing of L1 and L2 may require
other adhesive molecules, and together, they illustrate an
extrinsic molecular combinatorial code that ensures proper
dendritic morphogenesis.

Robust Dendrite Size Control by Two
Afferent-Derived Secreted Factors
The multi-ligand combinatorial control of dendritic patterning is
exemplified by a recent study characterizing dendritic size control
of Drosophila Dm8 amacrine neurons (Luo et al., 2020), which
ramify large dendritic arborizations to receive ∼14 inputs from
R7 neurons (Gao et al., 2008). An earlier study showed that
R7s secrete the TGF-β superfamily ligand, Activin, to restrict
expansion of the Dm8 dendritic field (Ting et al., 2014). The work
by Luo et al. then revealed a counteracting mechanism, in which
the insulin ligand/receptor system promotes Dm8 dendritic arbor
growth. Upon removal of L5 lamina neuron-derived Insulin-
like Peptide 2 (DILP2) or disruption of insulin/Tor signaling
in Dm8s, the dendritic arbors of Dm8 neurons are reduced
and synapse with fewer photoreceptors (Figure 3B). A single-
cell experiment further revealed that insulin signaling is under
spatiotemporal control in Dm8s. As such, Dm8 neurons exhibit
transient insulin receptor expression at early pupal stages, a time
at which the cells have just begun to expand their dendritic
arbors. Thus, Dm8s appear to receive both positive (insulin) and
negative (Activin) signals to regulate their dendritic field size.
Despite the antagonistic actions of Activin and DILP2, both are
derived from afferents transmitting in a circuit-specific manner
and acting on Dm8 dendrites at close range. Both morphogens
are also generated by other adjacent afferents (DILP2 from L3
neurons and Activin from R7s), however, morphogens produced
by those more distant sources are not necessary for normal
Dm8 dendrite development. These observations suggest a precise
spatial regulation in this context and support the general idea
that afferent-derived cues tend to function at short range
during distinct developmental stages. Observations from genetic
interaction experiments further suggested that Activin signaling
acts in parallel with insulin signaling through TOR and SREBP
to control Dm8 dendrite elaboration. Interestingly, removing
both signaling events causes Dm8 neurons to exhibit a normal
average but highly variable dendritic field size, suggesting the
antagonistic regulation by multiple afferent-derived morphogens
is required for robust control of Dm8 dendritic tree size
(Luo et al., 2020).

Previous theoretical studies using modeling and simulations
have shown that the dendritic kinetic parameters, such as
branching and terminating frequency, can determine the size
and complexity of a dendritic tree (Cuntz et al., 2010;
van Elburg, 2011; Lin et al., 2018; Luo et al., 2020); high
branching and low terminating frequencies favor dendritic

growth and result in large and complex dendritic trees,
and vice versa. Interestingly, the robustness of dendritic tree
sizes can be correlated with the ratio of terminating and
branching frequencies. As such, high branching frequency
that approximates the terminating frequency produces large
but highly variable dendritic trees. Monte Carlo simulations
further suggest the elaboration of both large and consistent
dendritic trees can be achieved by temporal regulation of these
two parameters. For example, large consistent dendritic trees
can be generated by favoring growth in the early stage and
increasing terminating frequency at later stages of development.
In the Dm8 system, growth-promoting insulin signaling is
normally restricted to early developmental stages, and ectopically
extending the expression of insulin receptors resulted in highly
variable dendritic field sizes (Luo et al., 2020), supporting the
temporal regulation model.

CONCLUSION AND FUTURE
CHALLENGES

To form stereotypic dendritic arbors, neurons endowed
with specific intrinsic properties, such as cell-type-specific
transcription programs, must respond appropriately to extrinsic
factors (environmental cues) to properly execute dendritic
morphogenesis during development. Studies over the past
decades have uncovered a broad range of extrinsic factors,
including morphogens, growth factors and adhesive receptors,
that are provided by afferents or surrounding cells to affect
various aspects of dendritic growth and patterning. These
extrinsic factors act on cognate receptors to regulate global
transcription or modulate local cytoskeletal organization and
adhesion, in order to size, shape, and localize dendrites. Many
of the identified extrinsic factors, receptors and downstream
effectors are utilized in shaping dendrites across different systems.
However, depending on the specific neural architectures, such as
glomerular or layer-column structures (and hence the patterns of
extrinsic factor expression), the effects of the machinery on final
dendritic patterning are translated into glomerular targeting,
layer-specific targeting, or receptive field establishment that meet
the needs of the specific neurons.

One major challenge that lies ahead is to decipher the logic
and potential hierarchy of combinatorial codes of intrinsic
and extrinsic factors. Open questions remain as to how
multiple extrinsic factors coordinate in a spatiotemporal fashion
to shape dendrites and how combinations of cell-specific
intrinsic factors and environmental cues give rise to cell-
specific dendritic patterns and connectivity. Recent advances in
single-cell transcriptomics might provide a means to identify
and decipher the combinatorial molecular codes that generate
complex and cell-type-specific dendritic patterns (Li et al.,
2017; Kurmangaliyev et al., 2019; Davis et al., 2020). Stage-
dependent gene expression, as revealed by developmental single-
cell transcriptomics, has hinted at the importance of temporal
regulation of extrinsic factors and receptors (Jain et al., 2020;
Kurmangaliyev et al., 2020; Özel et al., 2020). One study suggested
that the temporal regulation of receptors and antagonistic
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regulation are required for robust control of dendritic sizes
(Luo et al., 2020), while other mechanisms of spatiotemporal
regulation and combinatorial codes are being uncovered.
However, it would be difficult to derive a comprehensive
understanding of these processes without direct examination
of the dynamic processes of dendritic patterning in developing
brains (Sheng et al., 2018).

Dendritic morphological defects have been found in patients
with various neuropsychiatric disorders of developmental origin.
While understanding how dendritic patterning defects cause
connectivity and functional deficits is an important goal in
its own right, such studies may also reveal how crucial
aspects of dendritic development are constrained by functional
requirements. Current connectome studies provide critical
reference maps, and future advances might allow for complete
analysis of synaptic circuits in mutant brains. Nonetheless,
recent studies using light microscopic techniques, including the
activity-dependent GRASP (GFP reconstitution across synaptic
partners) method, have already begun to uncover connectivity
abnormalities associated with dendritic patterning defects, and
functional studies using electrophysiology or functional imaging
will likely follow suit. “Form ever follows functions,” the dictum
of the famous architect, Louis Sullivan, provides a useful
perspective for studying dendritic morphogenesis. By linking
genes to connectivity and to functions, studies of dendritic

development in the brain might reveal the logic of the greatest
architect, nature.
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