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ABSTRACT Many Gram-negative bacteria utilize specialized secretion systems to inject proteins (effectors) directly into host cells.
Little is known regarding how bacteria ensure that only small subsets of the thousands of proteins they encode are recognized as
substrates of the secretion systems, limiting their identification through bioinformatic analyses. Many of these proteins require
chaperones to direct their secretion. Here, using the newly described protein interaction platform assay, we demonstrate that
type 3 secretion system class IB chaperones from one bacterium directly bind their own effectors as well as those from other spe-
cies. In addition, we observe that expression of class IB homologs from seven species, including pathogens and endosymbionts,
mediate the translocation of effectors from Shigella directly into host cells, demonstrating that class IB chaperones are often
functionally interchangeable. Notably, class IB chaperones bind numerous effectors. However, as previously proposed, they are
not promiscuous; rather they recognize a defined sequence that we designate the conserved chaperone-binding domain (CCBD)
sequence [(LMIF)1XXX(IV)5XX(IV)8X(N)10]. This sequence is the first defined amino acid sequence to be identified for any in-
terspecies bacterial secretion system, i.e., a system that delivers proteins directly into eukaryotic cells. This sequence provides a
new means to identify substrates of type III secretion systems. Indeed, using a pattern search algorithm for the CCBD sequence,
we have identified the first two probable effectors from an endosymbiont, Sodalis glossinidius.

IMPORTANCE Many Gram-negative pathogens utilize type 3 secretion systems to deliver tens of effectors into host cells. In order
to understand the diverse ways that these organisms cause disease, it is necessary to identify their effectors, many of which re-
quire chaperones to be secreted. Here we establish that class IB chaperones are not promiscuous, as previously proposed, but
rather recognize a conserved effector sequence. We demonstrate that pattern search algorithms based on this defined sequence
can be used to identify previously unknown effectors. Furthermore, we observe that class IB chaperones from at least seven bac-
terial species are functionally interchangeable. Not only do they bind and mediate the delivery of their own set of effectors into
host cells but they also bind to type 3 substrates from other bacteria, suggesting that inhibitors that block chaperone-effector
interactions could provide a novel means to effectively treat infections due to Gram-negative pathogens, including organisms
resistant to currently available antibiotics.

Received 5 October 2011 Accepted 13 January 2012 Published 14 February 2012

Citation Costa SCP, et al. 2012. A new means to identify type 3 secreted effectors: functionally interchangeable class IB chaperones recognize a conserved sequence. mBio
3(1):e00243-11. doi:10.1128/mBio.00243-11.

Editor John Mekalanos, Harvard Medical School

Copyright © 2012 Costa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported
License, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Address correspondence to Cammie F. Lesser, clesser@partners.org.

Over 30 species of Gram-negative bacteria, both pathogens and
endosymbionts, utilize type 3 secretion systems (T3SSs) to

deliver tens of proteins, referred to as effectors, directly into host
cells (1). Type 3 effectors target a variety of host cellular processes
to promote bacterial spread and survival. While the protein com-
ponents of these complex secretion machines are highly con-
served, each bacterial species delivers its own unique repertoire of
effectors into host cells. Although many effectors require chaper-
ones to be secreted, little is known regarding how they are defined
as type 3 secreted substrates, limiting their identification through
bioinformatic analyses.

Extensive work mapping the regions of effectors required for
their secretion has established that two domains play a role, the
N-terminal secretion sequence and, in many cases, a downstream

chaperone-binding domain (2, 3). The N-terminal secretion se-
quence is not a specific sequence, but rather, as recent experimen-
tal data suggest, an intrinsically structurally disordered region (4).
Machine learning algorithms can identify known effectors based
on the nature of their N-terminal residues. However, the full util-
ity of these algorithms in identifying new effectors is still unknown
(5–7).

Two distinct but structurally related classes of chaperones me-
diate the secretion of type 3 effectors (8, 9). Class IA chaperones
are almost always located within operons adjacent to the genes
that encode their one or two cognate effectors. In contrast, class IB
chaperones are encoded within large operons surrounded by
components of the type 3 secretion machinery rather than effec-
tors. On the basis of the results of structural analyses (10–13), it is
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hypothesized that effectors interact with class IA and class IB
chaperones via a conserved structural motif, the �-strand motif
(11), and that it is likely that the chaperone-effector complex is the
signal recognized by the type III secretion apparatus (10, 11). The
two best-characterized class IB chaperones are Spa15 from Shi-
gella flexneri and InvB from Salmonella enterica serovar Typhimu-
rium SPI1 (Salmonella pathogenicity island 1) T3SSs. Each has
been established to mediate the secretion of multiple effectors,
nine in the case of Shigella (14–16) and four in the case of Salmo-
nella (18, 23, 24). Given their ability to interact with numerous
effectors, Spa15 and InvB have been proposed to be promiscuous
in their recognition of effectors (19).

Here, we present evidence that class IB chaperones from seven
different bacterial species, including pathogens and endosymbi-
onts, are functionally interchangeable. Specifically, class IB chap-
erones from one species can bind and mediate the type 3
secretion-dependent translocation of effectors from another.
These class IB chaperones are not promiscuous, as previously pro-
posed, but rather recognize a defined amino acid sequence motif,
which we designate the conserved chaperone-binding domain
(CCBD). The CCBD overlaps the previously identified structural
�-strand motif, providing evidence that residues of the CCBD
sequence directly bind to chaperones. However, the CCBD dem-
onstrates that class IB chaperones recognize a conserved amino
acid pattern. The CCBD sequence is the first identified defined
amino acid sequence that is common to effectors from any inter-
species bacterial secretion system, i.e., one used by bacteria to
deliver proteins into eukaryotic cells. Uncovering this sequence
not only refines our understanding of how interactions between
chaperones and effectors are defined but also provides a new
means to identify type 3 substrates from bacteria that encode class
IB. Indeed, based on the results of a pattern search algorithm of
the Sodalis glossinidius genome for proteins that contain the
CCBD sequence, we identified the first two likely effectors from an
endosymbiont.

RESULTS
Conserved recognition of effectors by Shigella and Salmonella
class IB chaperones. It is well established that class IA chaperone-
dependent effectors are recognized as substrates of heterologous
T3SSs when their cognate chaperone is also present (20, 21). In
contrast, at the start of this study, little was known regarding the
behavior of class IB chaperone-dependent effectors in heterolo-
gous systems. For example, it was not known whether “promiscu-
ous” chaperones from one system could bind and mediate the
secretion of effectors from another. To investigate this possibility,
we tested whether class IB chaperones from Shigella and Salmo-
nella could bind each other’s effectors using the Saccharomyces
cerevisiae yeast-based protein interaction platform (PIP) assay, an
assay previously established to be more sensitive than the yeast
two-hybrid assay in detecting chaperone-effector interactions
(16).

The PIP assay is a visualization system for identifying interact-
ing proteins in living cells. In this assay, one protein is fused to
�NS, a reoviral protein that forms inclusions (platforms) when
expressed in eukaryotic cells; a second protein is fused to a fluo-
rescent protein (16). When coexpressed in yeast, if the two pro-
teins interact, the fluorescent fusion protein is recruited to the
platforms and fluorescent foci are observed. Using the PIP assay,
we observed interactions between Salmonella InvB and 10 of 23

Shigella effectors, the same 10 that interact with Shigella Spa15 in
the PIP assay (see Fig. S1A in the supplemental material) (16). In
all but one case, the majority of yeast cells visualized exhibited
fluorescent foci. The exception was green fluorescent protein
(GFP)-IpgB1, where the percentage of yeast cells that displayed
fluorescent foci with expression of �NS-InvB and GFP-IpgB1 was
decreased compared to those expressing �NS-Spa15 and GFP-
IpgB1 (34 versus 68%). This observation suggests that IpgB1 in-
teracts more weakly with InvB than Spa15, as recent studies dem-
onstrate that the percentage of yeast displaying fluorescent foci
reflect the relative in vitro binding affinities of the two proteins for
each other (22).

In a complementary set of PIP assays, Salmonella InvB and
Shigella Spa15 each interacted with three Salmonella effectors that
require InvB for their efficient secretion by the Salmonella T3SS
(SopA, SopE1, and SopE2) (see Fig. S1B in the supplemental ma-
terial) (18, 23, 24). However, the fourth Salmonella InvB-
dependent effector, SipA, bound only InvB. Neither InvB nor
Spa15 interacted with any of the 13 Shigella effectors previously
established to not require Spa15 for their secretion, including
those that bind class IA chaperones, demonstrating that these class
IB chaperones exhibit some specificity in their interactions
(Fig. S1C) (16).

Complementation of secretion of Shigella Spa15-dependent
effectors by Salmonella InvB. To determine whether the interac-
tions detected in the PIP assay were physiologically relevant, we
tested whether expression of the Salmonella InvB chaperone
would restore secretion of Shigella Spa15-dependent effectors
from a strain lacking Spa15 (Shigella �spa15 mutant). Comple-
mentation with InvB restored secretion to essentially wild-type
levels for eight of the nine Shigella Spa15-dependent effectors
(Fig. 1A), all but IpgB1, the effector that exhibited decreased in-
teraction with InvB in the PIP assay. Similarly, secretion of the
three Salmonella InvB-dependent effectors that bind Spa15
(SopA, SopE1, and SopE2) from the Shigella �spa15 mutant was
only observed with complementation by either Spa15 or InvB
(Fig. 1B). SipA, the only Salmonella InvB effector that interacted
exclusively with InvB in the PIP assay, was secreted at relatively
low levels from both the wild-type Shigella and the Shigella �spa15
mutant, suggesting that it can be secreted in the absence of a chap-
erone. Complementation of the Shigella �spa15 mutant strain
with Salmonella InvB, but not Shigella Spa15, results in increased
levels of secreted SipA (Fig. 1B). Together, the results of these
studies demonstrate that the class IB chaperones from Salmonella
and Shigella are nearly functionally interchangeable. These are the
first class I chaperones yet to be identified to bind and promote the
secretion of each other’s effectors.

For these experiments, epitope-tagged versions of each effector
were expressed under the control of a weakened version of the
isopropyl-�-d-thiogalactopyranoside (IPTG)-inducible trc pro-
moter from a low-copy-number plasmid (pBR ori) (25). This al-
lowed us to ensure that the effectors were expressed at close to
physiologic levels when type 3 secretion was induced (16), since at
least in the case of Shigella OspF, this system results in similar
levels of expression as observed under native conditions (data not
shown). Similarly, for the complementation experiments, Spa15
and InvB were expressed under the control of a weakened trc pro-
moter from another low-copy-number plasmid (pSC101 ori). We
observed no differences in the levels of secretion of each of the 9
Spa15-dependent effectors from wild-type Shigella versus Shigella
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�spa15 mutant complemented with a plasmid expressing Spa15,
suggesting that the phenotypes observed are not due to Spa15 or
InvB overexpression. Thus, Salmonella InvB and Shigella Spa15
are able to recognize and mediate the secretion of a subset of each
other’s effectors.

Identification of a conserved CCBD sequence. The observa-
tion that Spa15 and InvB recognize the same subset of effectors
suggested that these chaperones are discriminate in their recogni-
tion of effectors and led us to search for a conserved chaperone-
binding domain (CCBD) sequence. Previous studies had failed to
recognize a sequence common to all type 3 effectors. However,
when we restricted our alignment studies to the N-terminal 70
residues of the 13 Shigella and Salmonella effectors that interact
with Spa15 and/or InvB, we identified a shared sequence,
(LMIF)1XXX(IV)5XX(IV)8X(N)10 (Fig. 2A). Interestingly, the
only effector that does not contain isoleucine or valine at position
5 is Salmonella SipA, the effector that interacts exclusively with
Salmonella InvB. This consensus sequence is not found in any of
the 11 Shigella effectors that do not require Spa15 for their secre-

tion (16) or in any Salmonella effectors,
other than those that interact with InvB.
This sequence is the first defined amino
acid sequence that has been identified that
is shared by secreted effectors of any in-
terspecies bacterial secretion system, and
we designate it the conserved chaperone-
binding domain sequence.

Site-directed mutagenesis studies con-
firmed a role for the CCBD sequence in
mediating chaperone-effector interac-
tions. The conversion of all four of the
conserved residues (positions 1, 5, 8, and
10) of the CCBD sequence of Shigella
OspC1 or OspD1 to alanines completely
abolished their secretion via the Shigella
T3SS (Fig. 2B) and resulted in loss of in-
teraction of OspD1 and Spa15 in the PIP
(Fig. 2C) and yeast two-hybrid (Y2H)
protein-protein interaction assays (see
Table S1 in the supplemental material).
We also examined whether single muta-
tions at position 1, 5, 8, or 10 of the CCBD
sequence would disrupt secretion and/or
chaperone binding. For these studies,
each residue was mutated to glycine to
disrupt the hydrophobic contacts pre-
dicted to mediate chaperone-effector in-
teraction in accordance with the corre-
sponding positions in the SipA-InvB
crystal structure. Point mutations at posi-
tions 1 and 10, the less conserved residues,
resulted in a mild-to-moderate decrease
in secretion, while mutation of either po-
sition 5 or 8, positions invariantly present
as isoleucines or valines, essentially dis-
rupted all secretion (Fig. 2D). In each
case, the single point mutations disrupted
interactions between Spa15 and OspD1 in
the PIP and Y2H assays (Table S1) with
the magnitude of loss paralleling the ob-

served loss in secretion (Fig. 2C). Since decreased interactions in
the PIP and Y2H assays are both associated with decreased bind-
ing affinities determined in vitro (22, 26), these observations sug-
gest that these residues of the CCBD sequence directly bind class
IB chaperones, as observed in the SipA-InvB cocrystal structure
(11).

Interactions between the CCBD and class IB chaperones de-
termine substrate specificity. We next investigated whether in-
teractions between the CCBD and class IB chaperones are suffi-
cient to define chaperone substrate specificity. To address this
question, we exploited our earlier observations that Salmonella
InvB binds and complements the secretion of all of the Shigella
CCBD-containing effectors except for IpgB1 (Fig. 1). IpgB1 shares
a high degree of structural homology with IpgB2 (27), another
Shigella CCBD-containing effector, suggesting that the unstruc-
tured N-terminal regions of these proteins dictate whether InvB
recognizes them as effectors. Indeed, by swapping the first 47 res-
idues of IpgB1 with the first 50 residues of IpgB2 (the respective
regions of the effectors located upstream of their conserved struc-

FIG 1 Shigella and Salmonella class IB chaperones are functionally interchangeable. S. flexneri strains
(wild type, �spa15 mutant, and the �spa15 mutant complemented with Shigella Spa15 or Salmonella
InvB) and expressing the designated FLAG-tagged Shigella (A) or Salmonella (B) effectors were grown
under conditions that induce T3SS. The supernatant proteins were precipitated with TCA, separated by
SDS-PAGE, and immunoblotted with anti-FLAG and anti-IcsA antibodies. IcsA is an autotransporter
and secreted by a mechanism other than type 3 secretion and serves as a loading control. The blots
shown are representative of at least three experiments.
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tural domains), we switched their substrate specificity, as InvB
now recognizes IpgB1, but not IpgB2, as a type 3 substrate (Fig. 3A
and B). This substrate specificity is not determined by the
N-terminal secretion signal, as additional swaps established that
substrate specificity maps to regions that encompass the CCBD
sequences of the two proteins (Fig. 3A and B). The switch in rec-
ognition of the IpgB1/IpgB2 hybrids likely represents differences
in their binding affinities, as the ability of InvB to complement the
secretion of these proteins from the Shigella �spa15 mutant cor-
relates with its capacity to bind the proteins in the PIP assay
(Fig. 3C). All of the hybrid effectors were secreted by the Shigella
�spa15 mutant in the presence of Spa15 (Fig. 3B). These observa-
tions suggest that the CCBD is a major determinant in defining
interactions between effectors and class IB chaperones.

The CCBD sequence is unique to effectors that bind class IB
chaperones. Notably, at least in the case of SipA, whose crystal
structure in complex with InvB has been solved, the CCBD do-

main overlaps with the �-strand motif, a region characterized by
three hydrophobic residues (�) separated by 1 to 4 variable resi-
dues (�X2– 4�X1–2�) (11). This structural motif is found in effec-
tors that bind class IA and IB chaperones. Unlike the CCBD se-
quence, there is no sequence conservation of residues in the
�-strand motif other than their hydrophobic nature. Over 35 type
3 effectors have been proposed to contain the structural �-strand
motif, including those dependent on Spa15 or InvB for their se-
cretion (11). We randomly selected and tested whether nine of
these effectors (Salmonella SifA, SifB, SigD, SptP, and SseJ, Esche-
richia coli EspH, Map, and Tir, and Yersinia pseudotuberculosis
YopH) interact with Spa15 or InvB in the PIP assay (see Fig. S2A in
the supplemental material). This set included six effectors (SigD,
SptP, EspH, Map, Tir, and YopH) previously shown to bind class
IA chaperones. None of these effectors interacted with Spa15 or
InvB. Similarly, we observed no interactions in the PIP assay be-
tween the nine Shigella CCBD-containing effectors and two atyp-

FIG 2 Identification of the conserved chaperone-binding domain, a sequence common to Shigella and Salmonella class IB-dependent effectors. (A) Multiple-
sequence alignment of effectors whose secretion is promoted by InvB or Spa15. The CCBD sequence is shown in large red letters. (B to D) Wild-type Shigella
expressing epitope-tagged alleles of wild-type (wt) and mutant alleles of OspC1 and OspD1 were grown under conditions that induce T3SS. The residues at
positions 1, 5, 8, and 10 in CCBD* were changed to alanines. The supernatant and pellet fractions were immunoblotted with anti-FLAG antibody to assess for
secretion and protein stability, respectively. The supernatant fractions were also immunoblotted with anti-IcsA antibody as a loading control. All blots shown are
representative of at least three experiments. (C) Yeast coexpressing �NS-Spa15 and the designated GFP-OspD1 alleles were visualized 4 to 5 hours after induction
of each protein in the PIP assay. The percentage of yeast expressing fluorescent foci (pips) was determined by counting 100 cells. The values shown are
representative of two independent experiments done in triplicate.
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ical class IA chaperones that have been established to bind multi-
ple effectors, CesT from enterohemorrhagic E. coli and SrcA from
the Salmonella SPI2 T3SS (Fig. S2C) (28, 29). Therefore, we hy-
pothesize that the amino acid sequence of the CCBD defines the
specificity of interactions of class IB chaperones with their cognate
effectors.

Conserved recognition of CCBD-containing effectors by
class IB chaperones in distantly related species. We next investi-
gated whether the recognition of CCBD-containing effectors is
restricted to closely related pathogens like Shigella and Salmonella
or a feature common to all class IB chaperones. Towards this goal,
we tested the ability of seven additional class IB chaperones, four
from human pathogens (Proteus mirabilis [30]), Burkholderia do-
losa, Burkholderia mallei [31] and Yersinia enterocolitica [32]) and
three from endosymbionts (Sodalis glossinidius [33, 34] and Ham-
iltonella defensa [35]) to bind to Shigella CCBD-containing effec-
tors. Sodalis glossinidius, a tsetse fly endosymbiont, contains three
T3SSs, two of which (SSR1 and SSR2) encode InvB homologs.
Similarly, Y. enterocolitica encodes two T3SSs, the well-studied Ysc

T3SS and the relatively poorly character-
ized Ysa T3SS. Only the latter system en-
codes a class IB chaperone.

To increase the throughput of our
protein interaction studies, we developed
an automated microscopy-based version
of the PIP assay. Automating the PIP as-
say decreased the time needed for image
acquisition and analysis allowing for the
rapid analysis of hundreds of yeast cells
for the formation of fluorescent foci
(pips) (Fig. 4A). One issue we encoun-
tered with the automated PIP assay was
that the segmentation software used had
difficulty identifying fluorescent foci in
yeast that express weakly fluorescent GFP
fusion proteins, specifically GFP-OspB,
GFP-OspC3, and GFP-OspD2. To ac-
count for differences in GFP intensities
(Fig. 4B), for each effector protein, we
normalized the number of yeast that ex-
hibited fluorescent foci with each ho-
molog to those observed with Shigella
Spa15.

As summarized in Fig. 4B (raw data
shown in Fig. S3A in the supplemental
material), all of the class IB chaperones,
except those from the Sodalis SSR1 and
B. mallei T3SSs, interacted with Shigella
CCBD-containing effectors. The lack of
detection of interactions of the Sodalis
SSR1 and B. mallei homologs with effec-
tors was not due to their inability to form
platforms in yeast, as fluorescent foci were
observed when each of these chaperones
was simultaneously fused to a cyan fluo-
rescent protein-�NS fusion protein
(Fig. S3B).

Functionally interchangeability as a
general feature of class IB chaperones.
To confirm that the chaperone-effector

interactions detected in the PIP assay were physiologically rele-
vant, we investigated whether each of the class IB homologs could
complement translocation of the nine Shigella CCBD-containing
effectors using the well-established TEM-1 �-lactamase reporter
assay (36). Briefly, in this assay, HeLa cells are preloaded with
CCF4/AM, a fluorescence resonance energy transfer (FRET)-
based dye, that emits green fluorescence. When translocated into
host cells, the TEM-1 �-lactamase fusion proteins cleave the sub-
strate, disrupting FRET and resulting in cells that emit blue fluo-
rescence (Fig. 5A). The translocation efficiency of each effector
corresponds to the percentage of cells that fluoresce blue.

To facilitate our studies, we adapted the TEM-1 �-lactamase
reporter assay to monitor the translocation of Shigella effectors
into HeLa cells in a 96-well format. Effector–TEM-1 fusions were
expressed under the control a weakened trc IPTG-inducible pro-
moter from a low-copy-number plasmid (pBR ori). After the ex-
pression of effectors was induced, HeLa cells were infected with
Shigella at a multiplicity of infection (MOI) of 100 for 2 h. The cells
were examined and the numbers of green and blue cells were

FIG 3 The CCBD sequence defines chaperone-effector interactions. (A) Schematic of IpgB1/IpgB2
hybrid proteins used in this study. (B) Shigella �spa15 mutant complemented with Spa15 or InvB and
expressing epitope-tagged alleles of the designated IpgB1 or IpgB2 hybrid proteins grown under con-
ditions that induce T3SS. The supernatant fractions were immunoblotted with anti-FLAG antibody to
assess for secretion. The supernatant fractions were also immunoblotted with anti-IcsA antibody as a
loading control. (C) Yeast coexpressing �NS-Spa15 or �NS-InvB and the designated IpgB1/IpgB2
alleles were visualized 4 to 5 hours after induction of each protein in the PIP assay. The percent of yeast
expressing fluorescent foci (pips) was determined by counting 100 cells. The values shown are repre-
sentative of two independent experiments done in triplicate.
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counted. These conditions were used for
our high-throughput studies given that at
the 2-h time point we observed similar
levels of translocation of all nine effectors
into host cells with wild-type Shigella and
the Shigella �spa15 mutant comple-
mented with Spa15 (Fig. S4A in the sup-
plemental material).

As summarized in Fig. 6B and shown
in Fig. S4A in the supplemental material,
all of the class IB chaperones, except those
from the Sodalis SSR1 and B. mallei
T3SSs, complemented the translocation
of CCBD-containing effectors from the
Shigella �spa15 mutant into host cells.
Lack of translocation by the Sodalis SSR1
and B. mallei chaperones was not due to
lack of expression or decreased stability of
these proteins, as both effectors are pres-
ent at levels similar to Spa15 in Shigella
(Fig. S4B). Rather, as neither interact
with CCBD-containing effectors in the
PIP assay, it is likely that these homologs
do not complement secretion because
they do not bind the effectors. Interest-
ingly, Sodalis SSR2, like Salmonella InvB,
poorly complemented the translocation
of IpgB1. Consistent with this observa-
tion, the Sodalis SSR2 homolog, like Sal-
monella InvB, complements the secretion
into the media of all the Shigella CCBD-
containing effectors, except for IpgB1
(Fig. S5). Taken together, the PIP and
translocation assay results suggest that,
with the exception of homologs from the
Sodalis SSR1 and B. mallei T3SSs, the ma-
jority of class IB chaperones are function-
ally interchangeable and recognize a con-
served amino acid domain, the CCBD
sequence.

Identification of the first effectors
from an endosymbiont based on a pat-
tern search algorithm for the CCBD
sequence. While the proteins that com-
prise T3SSs, including class IB chaper-
ones, are highly conserved, each bacterial
species delivers its own unique set of ef-
fectors into host cells. Although class IB
chaperones can be identified based on ho-
mology searches, with the exceptions of
Shigella Spa15 and Salmonella InvB, none
of their cognate effectors are known.
Since most of the homologs bind and me-
diate the translocation of Shigella CCBD-
containing effectors, we reasoned that we
could identify their native effectors by
searching their respective genomes for
open reading frames (ORFs) that contain
the CCBD sequence. We focused our ini-
tial studies on Sodalis glossinidius, partic-

FIG 4 Summary of interactions of class IB chaperones with CCBD-containing effectors obtained by
automated microscopy. (A) Images of yeast expressing GFP-OspD1 in the presence of either �NS
(negative control) or �NS-Spa15 (positive control) obtained via automated microscopy. The images in
the left column are unprocessed, while the images in the right column represent pip-positive (green)
and pip-negative (red) yeast as determined by the IN Cell Workstation segmentation software. (B) The
heatmap shown (45) represents relative number of yeast with fluorescent foci (pips) visualized with
coexpression of the designated �NS-class IB chaperone and GFP-effector fusion protein pairs. For each
GFP fusion protein, the absolute percentage of yeast expressing fluorescent foci was normalized to the
absolute percentage of yeast expressing fluorescent foci when the GFP-effector fusion protein was
coexpressed with �NS-Spa15. The data are representative of 3 independent experiments done in du-
plicate. At least 6,000 cells were quantified per condition.
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ularly given that no effectors from an endosymbiont have yet been
identified. Using the Bioinformatics Toolkit pattern search algorithm
(37) for the CCBD sequence [(LMIF)1XXX(IV)5XX(IV)8X(N)10] in
the first 25 to 45 N-terminal residues of annotated ORFs (a region
chosen based on the location of the CCBD sequence in all 13 Shigella
and Salmonella Spa15/InvB-dependent effectors), we identified 13
Sodalis proteins, 9 of which are annotated as housekeeping proteins.
We focused our studies on the remaining proteins that were anno-
tated as hypothetical ORFs (see Fig. S6A in the supplemental mate-
rial).

Two of these four Sodalis glossinidius proteins, SG0576 and

SG0764, were stably expressed in Shigella,
and both of these were secreted into the
media by wild-type Shigella under condi-
tions that induce type 3 secretion
(Fig. 6A). The secretion of both was im-
paired or absent from the Shigella �spa15
mutant, and as predicted based on the re-
sults of binding and translocation studies,
expression of the class IB homolog from
the Sodalis SSR2, but not the SSR1 T3SS,
restored secretion of both proteins from
the Shigella �spa15 mutant (Fig. 6A). Nei-
ther protein was secreted from a Shigella
strain that does not form a functional
T3SS due to loss of expression of the
structural protein MxiM (Shigella �mxiM
mutant) (see Fig. S6B in the supplemental
material) (38). Last, SG0576 and SG0764
were both translocated into host cells via
the Shigella T3SS in a class IB chaperone-
dependent manner (Fig. 6B). Together,
these observations strongly suggest that
these proteins are substrates of the Sodalis
SSR2 T3SS. Thus, we have identified the
first type 3 effectors from an endosymbi-
ont.

DISCUSSION

Many Gram-negative bacteria utilize
T3SSs to deliver tens of proteins directly
into host cells during the course of an in-
fection. The identification of effectors re-
mains challenging, even in the postgen-
omics era, in part given their lack of a
defined searchable conserved secretion
signal. Here, we demonstrate that class IB
chaperones are not promiscuous, as pre-
viously proposed, but rather recognize a
defined amino acid sequence, which we
designate the conserved chaperone-
binding domain. This CCBD sequence is
recognized by class IB chaperones from
both endosymbionts and animal patho-
gens. Seven of the nine class IB homologs
studied here not only bound CCBD-
containing effectors but were functionally
interchangeable in the context of the Shi-
gella T3SS. Notably, by using a pattern
search algorithm to screen for proteins

that contain the CCBD sequence, we successfully identified the
first putative effectors from an endosymbiont, Sodalis glossinidius.

Candidate effectors have traditionally been identified from
bacterial genome sequences by searching for proteins that share
sequence similarity with type 3 effectors or mammalian proteins
as well as by focusing on those encoded by genes within pathoge-
nicity islands or exhibit a distinctive GC content. Recently, several
groups have developed machine learning algorithms to identify
candidate effectors based on their N-terminal 15 to 20 residues,
the secretion signal. Curiously, using available Web-based tools
for two of these algorithms, we found that the SIEVE (39) and

FIG 5 Functional interchangeability of class IB chaperones in a type 3 translocation assay. (A) Images
of HeLa cells preloaded with CCF4/AM infected with wild-type (WT) Shigella or Shigella �spa15
mutant expressing OspD1–TEM-1. (B) The heatmap shown (45) is representative of the percent blue
cells observed when the HeLa cells were infected with Shigella �spa15 mutant strain that carries plas-
mids that express the designated class IB chaperone with each of the effector–TEM-1 fusion proteins.
Translocation was quantified by measuring the percentage of cells that fluoresce blue (cleaved CCF4/
AM). Data are representative of two independent experiments done in triplicate and at least 600 cells
were counted for each sample.
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Effective T3 (5) algorithms identify only about half of the 15 Shi-
gella, Salmonella, and Sodalis CCBD-containing effectors, suggest-
ing that CCBD-based searches will lead to the identification of
effectors missed by the machine learning algorithms.

While the conserved residues of the CCBD are clearly impor-
tant, they are not sufficient to define effectors, as this sequence is
found in bacterial housekeeping proteins, which are unlikely to be
secreted. This is not surprising, as additional determinants play a
role in defining effectors. For example, our pattern search algo-
rithms for the CCBD sequence motif do not select for proteins that
encode an N-terminal secretion signal. In addition, it is possible,
that the variable residues of the CCBD sequence, the residues in-
dicated as X in the consensus sequence, play a role in defining an
effector. Curiously, these residues in the verified effectors are en-
riched for nucleophilic and charged residues. This is a particularly
interesting finding, as recent work suggests that the three-
dimensional structure of the chaperone-effector complex defines
the secretion signal (10, 40). Last, binding to the chaperone does
not ensure that a protein is secreted via the T3SS, as prior to being
secreted, the effectors are unfolded by an T3SS-associated ATPase
that presumably enables them to be transported through a ~20-
angstrom channel into host cells. Indeed, heterologous proteins
with high intrinsic stability that have been engineered to encode
amino-terminal secretion signals are not secreted (41). Future ex-
perimental work and bioinformatic analyses designed to address
the possibilities outlined above will likely result in refinements
that improve the specificity of pattern search algorithms for the
detection of effectors.

In summary, our current work demonstrates that by exploiting
the functional interchangeability of class IB chaperones and their
conserved recognition of the CCBD sequence motif we have de-
veloped a new experimental genome-mining means for the iden-
tification of previously unknown effectors. Notably, while it is
relatively straightforward to monitor the secretion and transloca-
tion of Shigella effectors, with the exception of the Salmonella SPI
T3SS, in vitro conditions that induce other T3SS genes that encode
class IB chaperones are currently unknown. However, as demon-
strated with Sodalis CCBD-containing effectors, candidate effec-
tors from bacteria that encode functionally interchangeable class
IB chaperones can be screened for those that are recognized as
substrates of the Shigella T3SS. Once likely effectors of these rela-
tively poorly characterized T3SSs are identified, these proteins can
be used as a readout to identify in vitro conditions that induce
their respective native T3SSs. Furthermore, our discovery that
class IB chaperones recognize a conserved sequence provides a
new means to pursue the development of novel antimicrobial
agents using rationale drug design approaches.

MATERIALS AND METHODS
Plasmids. All of the plasmids involving S. flexneri and many of the S. Ty-
phimurium ORFs have been previously described (16, 42). The remaining
bacterial and yeast expression plasmids were created via Gateway (Invit-
rogen) site-specific recombination (16).

Basically, the ORF encoding each effector and each chaperone was
amplified from genomic DNA (gDNA) by nested PCR such that it is
flanked by attB sites. In addition to an attB site, a Shine-Dalgarno se-
quence was introduced upstream of each ORF. We created open (lacking
a stop codon) and closed versions of each ORF when carboxy fusions were
desired. Mutant alleles of the effectors were created by sewing PCR. The
amplified genes were then introduced into pDNR223 and/or pDNR221 to
create Gateway entry vectors via BP reactions (Invitrogen). Each insert

FIG 6 SG0567 and SG0764 are the first identified effectors from an endo-
symbiont. (A) Wild-type Shigella or the Shigella �spa15 mutant comple-
mented with the Spa15 homologs from the Sodalis SSR1 or SSR2 T3SSs and
expressing FLAG-tagged Sodalis candidate effectors were grown under condi-
tions that induce T3SS. The supernatant proteins were immunoblotted with
anti-FLAG and anti-IcsA antibodies. The blots shown are representative of at
least three experiments. (B) HeLa cells preloaded with CCF4/AM were infected
with wild-type Shigella or the Shigella �spa15 mutant expressing the desig-
nated protein fused to TEM-1 for 2 hours. The cells were fixed, and the per-
centage of blue cells were determined. Values are representative of three inde-
pendent experiments done in triplicate, and at least 600 cells were counted for
each sample (means plus standard errors of the means [SEM] [error bars] are
shown).
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was sequence verified and subsequently transferred to a variety of Gate-
way destination vectors via LR reactions (Invitrogen).

For the �NS fusion proteins in the PIP assays, the chaperones and
effectors were introduced into pAG416GAL-�NS-ccdB, pAG415GAL-
�NS-ccdB, and/or pAG415GAL-CFP-�NS-ccdB. For the GFP fusion
proteins, the chaperones and the Salmonella effectors, with the exception
of SipA, were introduced into pAG413GAL-GFP-ccdB and pBY011 (43).
Conventional cloning was used created GFP-SipA (amino acids 1 to 254)
in pRS313.

To generate FLAG tag fusions for the secretion assays, the wild-type,
mutant, and hybrid effectors were introduced into pDSW206-FLAG-
ccdB (ColE1 ori, ampicillin resistance) (16, 25), and the chaperones were
introduced into pNG162-ccdB (p204 promoter [IPTG-inducible],
pSC101 ori, spectinomycin resistance) (16, 44).

To generate TEM-1 fusions for the translocation assay, the Shigella
and Sodalis effectors were introduced into pDSW206-TEM-1-ccdB
(ColE1 ori, ampicillin resistance) (a gift from John Leong and Loranne
Magoun, University of Massachusetts Medical School)

Finally, for chaperone stability, chaperones were tagged with Myc at
their N termini and introduced onto the pNG162-ccdB plasmid.

All oligonucleotide primers used in the constructs described here are
described in Table S2 in the supplemental material.

Conventional (manual) PIP assays. Yeast assays were preformed as
previously described (16). Yeast cells were visualized 4 to 6 h after galac-
tose induction using a Nikon TE300 microscope with Chroma Technol-
ogy filters and a 100� objective. Images were captured digitally using a
black-and-white Sensys charge-coupled-device (CCD) camera and IP
LAB software (Scanalytics).

High-content image analysis (automated PIP assays). The yeast cells
were grown in 96-well microtiter plates (Nunc) as previously described
(16) and transferred into 96-well microtiter plates (BD). Each experimen-
tal condition was performed in duplicate on a plate. Three sets of identical
plates were examined, bringing the total number of replicates to six per
condition. The cells were imaged at a magnification of �40 in each well
using the IN Cell Analyzer 1000 (GE Healthcare, Piscataway, NJ). Briefly,
the IN Cell Analyzer 1000 is an epifluorescence microscope with fully
automated image acquisition capabilities, including a motorized stage,
motorized filter wheel, and computer-controlled CCD camera. Three
fields were preselected to avoid sampling bias throughout the plate. Ex-
posure parameters were empirically optimized for GFP fluorescence to
ensure that images fall within the linear range of exposure. Following
exposure optimization, images were collected in selected wells and stored
for analysis. Images were analyzed using IN Cell Workstation Software
(GE Healthcare). Cells were segmented using the nucleus “Top Hat” al-
gorithm and a 1-�m cell collar. Cell detection was determined by endog-
enous GFP expression within the yeast. Foci or pip were identified as an
organelle between 0.2 �m and 2.0 �m with a mean organelle intensity/cell
intensity ratio above 1.5. Output parameters included the following: cell
count, nucleus area (whole yeast cell), nucleus intensity (whole yeast cell
intensity), organelle count, organelle intensity, organelle intensity/cell in-
tensity, percent pip formation, and total number of pip formation. Cells
were classified as pip positive if cells expressed �1 organelle; otherwise,
cells were classified as pip negative. Cells not expressing GFP were not
analyzed.

Secretion and chaperone stability assays. The pDSW206-based plas-
mids encoding each of the IPTG-inducible FLAG-tagged effectors were
transformed into the designated Shigella strains. Complementation ex-
periments were performed with a Shigella �spa15 mutant strain, where
homologous chaperones were expressed under an IPTG-inducible
pNG162 vector. Congo red type 3 secretion assays were conducted as
previously described. Basically, the total cell and supernatant fractions
were separated by two centrifugations (each centrifugation at 20,000 � g
for 2 min). The cell pellet of the first centrifugation was taken as the total
cell fraction. Proteins in the supernatant of the second centrifugation were
precipitated with trichloroacetic acid (TCA) (10% [vol/vol]). Protein

content of the pellet and supernatant fraction were assessed by Western
blotting with anti-FLAG antibody (Sigma). For loading control, mem-
branes were probed with anti-IcsA (an autotransporter that is cleaved and
released into the media once it reaches the surface of Shigella). We have
previously established that lysis is not an issue using this protocol, as we
rarely, if ever, detect evidence of cytoplasmic proteins (16) or unprocessed
IcsA.

High-throughput TEM-1-based translocation assay. Translocation
of effectors into HeLa cells was performed as previously described (36)
with minor modifications. Basically, bacteria were grown overnight in
tryptic soy broth medium (BD Scientific) in a 96-well plate. In the morn-
ing, the cultures were back diluted (1/100), and 1.0 mM IPTG was added
when the bacterial cultures reached an optical density at 600 nm (OD600)
of 0.6. Thirty minutes after induction, bacteria were centrifuged, and the
pellet was resuspended in phosphate-buffered saline (PBS). HeLa cells
(1.5 � 104 cells/well, in 96-well black plates with clear bottom [Costar])
preloaded with CCF4/AM according to the manufacturer’s instructions
(Invitrogen) were infected at an MOI of 100. The plates were centrifuged
for 10 min to promote contact of the bacteria with HeLa cells. IPTG
(0.1 mM) was added to the medium, and the plates were incubated at 37°C
for 2 h. Subsequently, the infected cells were fixed with paraformaldehyde,
and the percentage of effector translocated was assessed via fluorescence
microscopy (Nikon TE300 microscope with Chroma Technology filters
and a 40� objective) by determining the percentage of cells that fluoresce
blue.
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