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Deep learning enables stochastic optical reconstruction
microscopy-like superresolution image reconstruction
from conventional microscopy

Lei Xu,1,2,6 Shichao Kan,3,6 Xiying Yu,1 Ye Liu,5 Yuxia Fu,1 Yiqiang Peng,5 Yanhui Liang,5 Yigang Cen,4

Changjun Zhu,2 and Wei Jiang1,7,*

SUMMARY

Despite its remarkable potential for transforming low-resolution images, deep learning faces significant
challenges in achieving high-quality superresolution microscopy imaging from wide-field (conventional)
microscopy. Here, we present X-Microscopy, a computational tool comprising two deep learning subnets,
UR-Net-8 and X-Net, which enables STORM-like superresolution microscopy image reconstruction from
wide-field imageswith input-size flexibility. X-Microscopywas trained using samples of various subcellular
structures, including cytoskeletal filaments, dot-like, beehive-like, and nanocluster-like structures, to
generate prediction models capable of producing images of comparable quality to STORM-like images.
In addition to enabling multicolour superresolution image reconstructions, X-Microscopy also facilitates
superresolution image reconstruction from different conventional microscopic systems. The capabilities
of X-Microscopy offer promising prospects for making superresolution microscopy accessible to a
broader range of users, going beyond the confines of well-equipped laboratories.

INTRODUCTION

Fluorescence microscopy (FM) plays a major role in monitoring cell physiology, especially subcellular structures, molecular localizations, and

interactomes. Using highly specified molecular probes together with the development of noninvasive and multicolour imaging capabilities,

FM allows the visualization of complex biological systems.1 Conventional FM imaging, however, has a resolution barrier, as the resolution is

limited by the wavelength of light l and the numerical aperture (NA) of the objective lens. Developments in superresolution microscopy have

overcome the long-standing diffraction limit and continued to push the resolution barrier to the nanometre level, thus enabling the visual-

ization of previously invisible molecular details in biological systems that could previously be achieved only by electron microscopy (EM).2–6

Recently, superresolution microscopy has been improved on the foundation of wide-field (WF), confocal, and/or total internal reflection

fluorescence (TIRF) microscope equipment. Although these setups in superresolution microscopy imaging retain some advantages of con-

ventional microscopy, each group of superresolution techniques, such as photoactivated localization microscopy (PALM), stochastic optical

reconstruction microscopy (STORM), stimulated emission depletion microscopy (STED) and structured illumination microscopy (SIM), has its

own limitations.7–10 Sophisticated optical settings, expert handling, labeling probe, and dye choices, the consideration of sample character-

istics for preparations, aberration corrections, mathematical image postprocessing, and complex quantitative analyses are still required for

superresolution microscopy, making fast and high-throughput superresolution microscopy imaging currently very challenging.

Deep learning (DL) has had stunning successes in biomedical research and promises to revolutionize the microscopy field.11–25 Conse-

quently, several studies have established quick transformations from low resolution (LR) images to superresolution microscopy images

(SRMs) by DL. Prior works using DL were devoted to reconstructing superresolution views from LR images (i.e., confocal images) or under-

sampled superresolution microscopy images (U-SRMs) or to restoring SIM images under low signal-to-noise ratio conditions.23,24,26–33 These

studies demonstrated that DL technologies could help to overcome, at least in part, the disadvantages of superresolution microscopy. How-

ever, using DL to reconstruct high-quality STORM-like SRMs from wide-field images (WFs) with a variety of input sizes has been hampered by

the challenges of acquiring large-scale training datasets, conducting exhaustive parameter searches, and the computational costs involved. It

also remains uncertain whether the trained DL models can be generalized to reconstruct SRMs from multicolour WFs or WFs obtained from
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Figure 1. The schematic architecture and training strategy of X-Microscopy

(A) An overview of X-Microscopy: X-Microscopy was constructed with UR-Net-8 and X-Net to reconstruct STORM-like SRM images (labeled XM3) from wide-field

images (WFs). The inputs were WFs acquired from diffraction-limit conventional microscopy, and the outputs were the reconstructed SRMs.

(B) The architecture and training strategy of UR-Net-8. UR-Net-8 was constructed to generate mimic undersampled SRM images (MU-SRMs) from WFs. The

training datasets were acquired simultaneously from conventional microscopy and N-STORM. UR-Net-8 comprised an encoder with 8 convolutional layers

(encoding units) and a decoder with 8 deconvolutional layers (decoding units). A U-connected operation and a residual function were displayed between

each encoding unit and decoding unit. For the MT model instance, WFs were defined as network inputs, and undersampled SRM images (k = 10000) served

as the ground truth during training. The network outputs were mimic undersampled SRM images (MU-SRMs). The training loss functions were displayed as
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different conventional microscopic modalities. In this study, we report devising a deep network, X-Microscopy, a fusion of X-Net and UR-Net-

8, to transform WFs to STORM-like SRMs.

RESULTS

X-Microscopy design and dataset preparation

Previously, Ouyang et al. demonstrated that ANNA-PALM could reconstruct SRMs of approximately similar information content as a standard

PALM acquisition (with K frames) from a much smaller number of raw frames (k� K, k = 300 frames and single-frame exposure time is 30ms)

and/or WFs. We named these smaller number of raw frames as undersampled images, hereafter U-SRMs. If WFs and U-SRMs were used as

inputs simultaneously, high-quality reconstructions of SRMs could be achieved compared with standard PALM/STORM images (full-

sequenced SRMs, F-SRMs).27 However, if WFs were directly used as inputs with the same dataset, the reconstructed SRMs displayed

many erroneous features. These results suggested that the high-quality reconstruction of SRMs relied on the guidance of U-SRMs, which

had to be obtained from STORM/PALM. For a desired model to achieve the same effects by using WFs alone as inputs, we hypothesized

that a large-scale training dataset would be required. However, acquiring large amounts of training data is labor intensive and time

consuming. To address these challenges, we developed X-Microscopy, a synthesized pixel-to-pixel34,35 mapping network based on super-

vised DL36–39 that can directly reconstruct high-quality SRMs from WFs by using mimic undersampled SRMs (MU-SRMs) and a small-scale

training dataset. X-Microscopy is a fusion of two subnets,40 UR-Net-8 and X-Net (Figure 1A), in which UR-Net-8 was trained to generate

MU-SRMs fromWFs (Figure 1B), while X-Net was designed to take the original WFs and the MU-SRMs as inputs to reconstruct SRMs (labeled

as ‘‘XM3’’) (Figure 1C). Once trained, X-Microscopy was able to reconstruct STORM-like SRMs from WFs alone without a trade-off in

resolution.

UR-Net-8, inspired by U-Net,41,42 was developed with 8 U-connected residual units (UR units)43 with the goal of finding predictive pixel

relationships between U-SRMs and WFs. Each UR unit comprised 3 convolutional layers and 1 deconvolutional layer. There were two inno-

vations in developing this algorithm: (1) The sizes of the feature maps for each convolutional layer and deconvolutional layer were calculated

based on the sizes of theWFs (network inputs), which endowedUR-Net-8 with input-size flexibility. (2) A U-connected operation and a residual

function in each UR unit were utilized to extract finer pixel-level features fromWFs, allowing UR-Net-8 to reconstruct MU-SRMs (Figures S1A

and S1B).

X-Net was utilized to reconstruct high-quality SRMs fromWFs andMU-SRMs obtained byUR-Net-8. Therewere three innovations in X-Net:

(1) X-Net was constructed with two computational paths: the upper path and the lower path comprised 8 convolutional layers and 8 decon-

volutional layers, respectively. The upper path was devised to extract detailed features from WFs and fuse features of the lower path simul-

taneously. The lower path was applied to extract detailed pixel-level features from MU-SRMs and fuse WF features of the upper path simul-

taneously. Hence, these two paths were symmetrical and reciprocal to achieve interdependent fusion for acquiring, processing, and fusing

feature maps (Figure S1C). (2) For effective feature extraction, a channel attention mechanism and a residual function between each convolu-

tional layer and deconvolutional layer were adopted. Each channel attention unit was applied to refine important features of SRMs from the

output of the deconvolutional layers and the input of the convolutional layers, which could determine what information should flow into the

residual units (Figure S2B). Furthermore, each residual unit was utilized to filter out useful pixel-level features of MU-SRMs and WFs and to

suppress useless features (Figure S2C). (3) Similar to UR-Net-8, X-Net provided input-size flexibility that enabled the reconstruction of

SRMs from different sizes of LR biomedical images (Tables S1 and S2).

To train X-Microscopy, datasets were acquired consisting of WFs and paired SRMs of immunostained cytoskeletal microtubules (MTs),

F-actin microfilament bundles, MT plus-end binding protein, EB1,44 nuclear envelope structure protein Lamin B1,45,46 nucleosome histone

protein H2B and histone H3 modification marker, H3K9me3 47-50, epithelial cytoskeletal intermediate filament (IF) component, Cytokeratin

14 (CK14)51 and kinetochore antigen, CREST52 in different cell lines, namely, HeLa, U2OS, RPE1, U87MG, U373MG53 and RNE-D3 (rat normal

esophageal cell line).54

X-Net can reconstruct superresolution microscopy images from wide-field images plus undersampled superresolution

microscopy images or undersampled superresolution microscopy images

A previous study showed that ANNA-PALM could reconstruct SRMs (i.e., MTs) using U-SRMs acquired from PALM and/orWFs, which were in

good agreement with standard PALM SRMs.27 To evaluate whether the X-Microscopy subnet, X-Net, could also quickly and robustly output

high-quality SRMs fromU-SRMs (k = 300–500) and/orWFs, we trained and tested X-Net and ANNA-PALM via our MT dataset. To this end, the

Figure 1. Continued

the combination of MS-SSIM, l1 norm and conditional generative adversarial loss (lD-XMj) to determine the similarity between the MU-SRMs and the ground truth

images.

(C) The architecture and training workflow of X-Net. X-Net was equipped with two computational paths. The input of the upper path was theWF, and the input of

the lower path was the MU-SRM generated by UR-Net-8. X-Net was designed with two encoders and two decoders. The attention function and U-connection

residual operation (U-residual, MU-SRM-attention, or WF-attention) modules were established between each pair of encoding units and decoding units. The

output of the upper path was defined as XM1, and the output of the lower path was defined as XM2. These outputs were concatenated to obtain the output

XM3. During training, XMj was compared to the ground truth image (well-sampled SRM, W-SRM) via three loss functions: L1, L2 and L3. Three loss values

calculated by loss functions were used to update the learnable parameters through the back-propagation operation.
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network inputs were defined as WFs plus U-SRMs or U-SRMs alone. The ground truth images were defined as well-sampled SRM images

(W-SRMs), and the network outputs were labeled as XN3 or ANNA-PALM. The F-SRMs (Full-sequenced SRMs) acquired by STORM were

used to perform image quality assessment (IQA) (Figures 2A–2J). As shown in Figures 2A–2G, SRMs reconstructed from the MT-trained

X-Net revealed super-resolved features of MTs that were not presented inWFs and U-SRMs due to the low resolution and sparsity, consistent

with those of F-SRMs obtained by STORM. Although the MT-trained ANNA-PALM also showed effectiveness in reconstructing SRMs, the

SRMs obtained by ANNA-PALM displayed some reconstruction errors in the complex areas (Figures 2H and 2I). To assess the similarities be-

tween SRMs reconstructed by X-Net or ANNA-PALM and F-SRMs, we calculated the structural similarity (SSIM)55 using our MT test dataset.

The SSIM values of SRMs reconstructed by X-Net exceeded 0.95 in Figure 2J, and the average SSIM values were displayed in Figure S3A. To

determine whether specific architectural designs could affect the MT-trained model performance, we performed ablation experiments

involving the removal of loss functions, residual units, and channel concatenation, respectively (Figure S3B). The results showed that these

loss functions, residual units, and channel concatenation played essential roles in the performance of X-Net.

We assessed the image quality of X-Net predictions. The intensity value quantifications of the reconstructed SRMs by plot profile indicated

that X-Net provided high-fidelity predictions (Figure 2K). In addition to local quality assessment, the global image quality was evaluated using

NanoJ-Squirrel analysis.56 Reconstruction artifacts and local errors were indicated by error maps, RSE (Resolution Scaled Error), and RSP (Res-

olution Scaled Pearson coefficient) scores (Figure 2L). Moreover, the resolution quantifications57,58 determined by decorrelation analyses also

A B C D E
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Figure 2. Comparison of performance between X-Net and ANNA-PALM

(A–I) Representative SRMs of MTs reconstructed from U-SRM (k = 300) and/or WF by X-Net and ANNA-PALM.

(A) WF acquired by conventional microscopy.

(B) U-SRM (k = 300) acquired by STORM.

(C) F-SRM (K = 60000) was acquired by STORM and used to calculate SSIM values with network predictions.

(D) The image labeled ‘‘XN3 (input = U-SRM)’’ was reconstructed from B only.

(E) C and D were merged to determine the similarity (magenta indicates XN3, green indicates F-SRM).

(F) The image labeled ‘‘XN3 (inputs =WF+U-SRM)’’ was reconstructed fromA and B by X-Net. The resolution values of C, D and Fwere labeled in the lower left of

each image.

(G) C and F were merged (magenta indicates XN3, green indicates F-SRM).

(H) The image labeled ‘‘ANNA-PALM (input = U-SRM)’’ was reconstructed from B.

(I) The image labeled ‘‘inputs = WF + U-SRM’’ was reconstructed from A and B. Scale bar, 5 mm.

(J) The image quality assessments (IQA) of the trained X-Net and ANNA-PALM in terms of SSIM metric were displayed.

(K) The intensity values along the white lines in the images in A, C, D and F were shown.

(L) The error maps, RSE scores, and RSP scores were calculated to compare the X-Net reconstructions with the WF image. The WF image was defined as a

reference image. The color bar indicated magnitude of the error.
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Figure 3. SRMs of MTs, F-actin, CK14, and EB1 were reconstructed from WFs using X-Microscopy

(A–D) Representative SRMs of MTs in U373MG cells reconstructed from WFs by X-Microscopy.

(A) WF acquired from conventional microscopy.

(B) MU-SRM reconstructed from UR-Net-8.

(C) F-SRM (K = 60000) was recorded from STORM.

(D) The image labeled ‘‘XM3 (inputs =WF+MU-SRM)’’ was reconstructed fromA and B by X-Net. The super-resolved reconstruction details of B andD compared

with Cwere highlighted by arrows (Magenta, blue and orange) and white boxes. SSIM values were calculated and labeled in the upper right of XM3 images. Scale

bar, 5 mm.

(E) The error map, RSE score, and RSP score were used to assess the artifacts. TheWF image was defined as the reference image and the XM3 image was defined

as super-resolution reconstruction. The color bar indicated magnitude of the error.

(F–I) Representative SRMs of F-actin reconstructed fromWFs by X-Microscopy in RPE1 cells stained with phalloidin-647. The reconstruction details were indicated

by arrows (Magenta, blue, and orange) and white boxes. SSIM values were determined and displayed at the upper left of XM3 images. Scale bar, 5 mm.

(J) The intensity values of yellow lines in A, C, and D were quantified by line profile.

(K) The intensity values of yellow lines in F, H, and I were quantified by line profile.
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indicated that SRMs reconstructed by the X-Net were similar with F-SRMs (Figures S4A-S4F). To verify the importance of the input-size flex-

ibility in SRM reconstructions, X-Net and ANNA-PALM were tested by WF images with irregular sizes, respectively (Figure S4G). The results

showed that, when compared with ANNA-PALM, the trained X-Net could reconstruct super-resolved SRMs from these irregular-sized WF

images, while preserving the original morphologies of subcellular structures (Figures S4H–S4L). Furthermore, we tested the robustness of

X-Net by reconstructing SRMs from WFs of MTs obtained from different cell lines and fixed by different methods (Figure S5).

X-Microscopy can restore high-quality superresolution microscopy images from wide-field images alone

To restore high-quality SRMs fromWFs alone with a small-scale training dataset, we next determined whether SRMs could be reconstructed

directly fromWFs via the trained UR-Net-8 or X-Net. Although SRMs reconstructed by UR-Net-8 and X-Net exhibited clear and curvilinear MT

structures that were not displayed in WFs, reconstruction errors could be detected in areas where the MT structures were complex

(Figures S6A-S6D). Similar results were also obtained previously by ANNA-PALM.27 These results corroborated that applying U-SRMs ac-

quired from STORM as guides was an essential factor for reconstructing high-quality SRMs from WFs with limited training datasets.

Therefore, we hypothesized if we could generate MU-SRMs from WFs, similar to U-SRMs acquired from STORM, to guide WFs for final

reconstructions of SRMs. To test the idea, we applied UR-Net-8 to generateMU-SRMs fromWFs and used theMU-SRMs as guides to provide

extra information (resolution) for reconstructing SRMs of MTs fromWFs alone by X-Net. We trained UR-Net-8 usingWFs as inputs and paired

STORM U-SRMs as the ground truth. The trained UR-Net-8 could transform WFs into superresolution MU-SRMs that matched with the

U-SRMs obtained by STORM. Meanwhile, we determined that the use of multi-sequence U-SRMs (k = 10000) rather than few-shot U-SRMs

(k = 300–500) for model training could achieve a better MU-SRM generation (Figures S7A–S7F). Furthermore, to analyze the reconstruction

qualities of MU-SRMs, wemerged theMU-SRM andU-SRM to determine the Pearson’s coefficient. Although theMU-SRM andU-SRMdid not

completely overlap, the locations of reconstructed pixels and the true pixels were all located on the same microtubules. These results indi-

cated that the generated MU-SRMs could simulate the role of real U-SRMs obtained by STORM, guiding WFs to learn the correct pixel dis-

tributions (resolution) during X-Net training (Figure S7G). Therefore, we integrated UR-Net-8 and X-Net into a single pipeline, named

X-Microscopy.

X-Microscopy was trained to generate superresolution microscopy image models for various subcellular structures

X-Microscopy was trained with diverse datasets of subcellular structures, including cytoskeletal filaments, dot-like structures, beehive-like

structures, and nanocluster-like structures, to create various SRM prediction models (e.g., the MT-trained model, the F-actin model, and

so forth). After training, the SRMs of cytoskeletal structures, such as MTs, F-actin microfilament bundles, and Cytokeratin 14 intermediated

filaments (CK14), reconstructed by the individual MT, F-actin or CK14 trained X-Microscopy displayed their structural details. For instance,

the reconstructedMT or F-actin SRMs showed that super-resolved visualization was observed not only in areas with sparsely distributed struc-

tures but also in areas where bifurcations and crisscrosses were formed (Figures 3A–3D and 3F–3I; Figure S8). In addition, the CK14 trained

X-Microscopy could also reconstruct SRMs from WFs (Figures 3L-3O). Quantification analyses using the plot profile demonstrated that the

SRMs of MTs or F-actin filaments reconstructed by the MT or F-actin trained X-Microscopy were nearly the same as the F-SRMs obtained

by STORM (Figures 3J and 3K). However, reconstruction errors could be observed. These reconstruction artifacts and structure errors

were determined by NanoJ-Squirrel analysis (Figures 3E and S9A–S9E).

To further demonstrate that X-Microscopy could be applied to reconstruct SRMs fromWFs of other subcellular structures, we established

more structure-specific X-Microscopy models. SRMs of EB1 reconstructed by the EB1-trained X-Microscopy clearly revealed comet shapes of

EB1 proteins that were not previously recognizable in WFs, while SRMs of Lamin B1 predicted by the Lamin B1-trained X-Microscopy ex-

hibited clear and continuous structures of the nuclear envelope and eliminatedmany in-focus backgrounds present inWFs. The EB1 or Lamin

B1 SRMs reconstructed by X-Microscopy achieved high SSIM values (Figures 3P–3S and 4A–4E; Figures S10A and S10B). The reconstruction

artifacts of EB1 were determined by error maps (Figures S9F–S9J). Thus, the reconstructed SRMs of EB1 or Lamin B1 enable us to determine

the structures of MT growing plus-ends or the shapes and sizes of nuclei at super-resolution levels.

We also reconstructed SRMs of kinetochores from WFs with the kinetochore-trained X-Microscopy. The results demonstrated

that X-Microscopy could compensate for some STORM imaging limitations, such as phototoxicity and photobleaching, to precisely recon-

struct SRMs for subcellular structures/macromolecules, i.e., paired sister kinetochores. Paired sister-kinetochores in superresolution

images obtained by STORM often showed uneven acquisition due to the extended time of STORM imaging and photobleaching, although

they could be separated well when compared with blurred paired sister-kinetochores in WFs. However, the SRMs reconstructed by the

Figure 3. Continued

(L–O) Representative SRMs of CK14 reconstructed from WFs by X-Microscopy in RNE-D3 cells. The reconstruction errors were indicated by blue arrows. SSIM

values were displayed at the lower left of the XM3 images. Scale bar, 5 mm.

(P–S) Representative SRMs reconstructed from WFs immunostained with anti-EB1 antibody.

(P) WF obtained by conventional microscopy.

(Q) MU-SRM predicted by UR-Net-8.

(R) F-SRM acquired by STORM.

(S) The image labeled ‘‘XM3 (inputs =WF +MU-SRM)’’ was reconstructed fromMU-SRM generated by UR-Net-8 and original WF using X-Net. Arrows (Magenta,

blue and orange) show the reconstruction details. The reconstruction qualities were determined by the SSIMmetric, and the calculated values weremarked at the

lower left of the XM3 images. Scale bar, 5 mm.
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kinetochore-trained X-Microscopy revealed paired sister-kinetochores not only as two clear splits but also as paired dot structures

(Figures 4F–4I; Figures S11A and S11B). We also retrieved the distances between the sister kinetochores of WF, F-SRM and XM3 images.

Given the fact that the examined cells were interphase cells, the distances of those kinetochores could be only measured from F-SRM and

XM3 images but not from WF images due to the diffraction limitation. Figure 4J shows those quantification results. In addition, when

A B C D E

F G H I J

K L M N
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Figure 4. SRMs of Lamin B1, kinetochore, H2B and H3K9me3 reconstructed from WFs by X-Microscopy

(A–E) Representative SRMs reconstructed from the WFs of Lamin B1 in U2-OS cells by X-Microscopy. The calculated SSIM values between the F-SRM and XM3

images were displayed in XM3 images. Blue andmagenta arrows indicate the reconstruction details. The reconstruction errors were indicated by the areas where

red and green intersect in E. Scale bar, 5 mm.

(F–I) Representative images of WF, MU-SRM, F-SRM, and XM3 in U2-OS cells immunostained with anti-CREST antibody. Reconstruction details in XM3 images

were indicated by blue andmagenta arrows. The reconstruction qualities were determined by SSIM, and the SSIM values were marked in XM3 images. Scale bar,

5 mm.

(J) The distances of sister-kinetochores labeled with white boxes and yellow boxes in F, H and I were shown. The distances of sister-kinetochores inWFs could not

be determined (N/D).

(K–N) Representative images of WF, MU-SRM, F-SRM, and XM3 in U2-OS cells stained with H2B antibody. The reconstruction details were indicated by arrows

(blue and orange) and white boxes. The SSIM value was shown at the upper left of the XM3 images. Scale bar, 5 mm.

(O–R) Representative SRMs of H3K9me3 reconstructed from WF in U2-OS cells by X-Microscopy were displayed. The reconstruction details were indicated by

arrows (blue and orange) and white boxes. The SSIM value was shown in the upper left part of the XM3 images. Scale bar, 5 mm.
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F-SRMs and WFs of MTs were acquired with a nearly quenching imaging buffer, SRMs reconstructed by X-Microscopy displayed more con-

tinuations ofMT filaments with fewer reconstruction errors than F-SRMs obtained by STORM (Figure S11C).We also systematically verified the

qualities of SRMs reconstructed fromWFs and MU-SRMs using the test datasets obtained from different biological structures and calculated

the SSIM values between F-SRMs and XM3 images (Figure S11D).

Next, X-Microscopy was used to reconstruct SRMs fromWFs stained by anti-nucleosome histone H2B and H3 modification and H3K9me3

antibodies in interphase cells, aiming to determine whether SRMs could be reconstructed from WFs alone with even more complex subcel-

lular structures, such as genome-wide higher-order chromatin structures. Consistent with published data,47–50,59,60 F-SRMs obtained by

STORM revealed that H2B and H3K9me3 displayed two major structural characteristics of higher-order chromatin, i.e., H2B staining that

showed spatially segregated nucleosome nanoclusters and H3K9me3 staining that revealed highly condensed aggregates. The SRMs recon-

structed fromWFs by the Histone-trained X-Microscopy were very similar to the F-SRMs obtained by STORM. However, reconstruction errors

could still be observed in areas where theWFs were too blurred. Qualitative analyses confirmed the structural similarity between F-SRMs and

the reconstructed SRMs. The SSIM values of H2B and H3K9me3 SRMs reconstructed by the Histone-trained X-Microscopy achieved high

scores (Figures 4K–4N and 4O–4R). Taken together, these results demonstrate that the structure-specific X-Microscopy could reconstruct

SRMs from WFs alone.

Multicolour or cross-modality superresolution microscopy image reconstructions by X-Microscopy

Multicolour STORM imaging is challenging.One of themajor limitations of multicolour STORM is that it is difficult to find a second fluorescent

label that produces localizations of the same quality as far-red dyes such as Alexa Fluor 647. To determine whether X-Microscopy could pre-

dict high-quality multicolour SRMs from WFs, we first predicted SRMs of MTs and EB1 proteins with the MT and EB1 trained X-Microscopy

fromWFs. As shown in Figures 5A–5G, multicolour SRMs restored by the MT and EB1 trained X-Microscopy displayed superresolution struc-

tures where theMT signals gradually decayed from the peak position of EB1 toward their tips, which was consistent with the previous study.61

To further evaluate the biological significance of X-Microscopy, we testedwhether theMT and EB1 trainedX-Microscopy could reconstruct

SRMs from WFs co-stained with MTs and EB1 proteins under different experimental perturbations to assess MT dynamic instabilities.62,63

Cells treated with nocodazole or taxol displayed substantial alterations of the MT network in cells with drastic reductions of EB1 on MTs

curved by nocodazole (depolymerization) or straightened by taxol (stabilization) (Figure S12). We also extended our study to reconstruct mul-

ticolour SRMs from WFs co-immunostained for MTs and F-actin, or WFs co-immunostained for MTs, Lamin B1, and the kinetochore antigen

CREST. ForMTs and F-actin filaments,multicolour SRMspredictedby theWFs ofMT andF-actin trainedX-Microscopy clearly displayed trans-

formation configurations in which actin filaments were distributed around the periphery under the plasma membrane and formed bundles,

while MTs radiated from the MT organization center (MTOC) to form a dense network (Figures 5H and 5I). Moreover, SRMs reconstructed by

the MT, Lamin B1, and CREST trained X-Microscopy from WFs revealed that blurred and indistinguishable areas could be transformed to a

superresolution level (Figures 5J and 5K). Decorrelation analyses of reconstructed SRMs andWFs indicated that the resolution of SRMs could

be improved by X-Microscopy (Figures S13 and S14). Thus, these results demonstrated the good performance of X-Microscopy in the multi-

colour reconstruction of SRMs.

To demonstrate whether structure-specific X-Microscopy could reconstruct SRMs from WFs acquired using different microscopic plat-

forms that were never trained,WFs of MTs recorded by Nikon or Leica conventional microscopes with 1003 objectives were used for testing.

Figures 6A and 6B showed that the MT trained X-Microscopy was capable of reconstructing SRMs to resolve the bundled undistinguishable

microtubules in WF images. The possible artifacts in SRM images reconstructed with X-Microscopy were indicated with error maps, RSE and

RSP scores (Figure 6C). These results indicated that X-Microscopy had the potential to reconstruct high-quality SRMs from different conven-

tional microscopes.

Finally, we asked whether X-Microscopy could be trained using all the datasets acquired above to generate a generalized model, and

whether this model could be used for SRM reconstructions fromWFs, with or without subcellular structures included in the training.We based

this inquiry on the inherent design of X-Microscopy, which had demonstrated the ability to generate high-quality SRMs fromWFs using indi-

vidualized models. To this end, all the datasets of various subcellular structures presented above were used to train X-Microscopy and the

trained generalized X-Microscopy was applied to reconstruct SRMs from WFs of various subcellular structures above. Consistently, like the

structure-specific X-Microscopy, the generalized X-Microscopy could reconstruct high-quality SRMs fromWFs.When dealing withmore com-

plex structures such as H2B, the generalized model produced more reconstruction errors (Figure S15). We also tested the generalized

X-Microscopy with outer mitochondrial membrane images that have never been trained (Figure S16). Thus, these results indicated that

the generalized X-Microscopy holds the potential to offer a solution for testing new biological structures, showcasing its versatility in broader

applications.

DISCUSSION

Deep learning is becoming an important tool for resolution enhancement, especially the reconstruction of SRMs in fluorescencemicroscopy.

Thus far, several studies have demonstrated that networks built on U-Net and generative adversarial network (GAN) architectures leverage

and transform LR images to superresolution (SR) images.21,23,24,26–33,64 However, these ‘‘state-of-the-art’’ superresolution reconstruction

methods show some limitations in reconstructing SRMs from WFs alone. For instance, it is difficult to establish accurate SRM reconstruction

models with small-scale training datasets and it is challenging for these models to test various input sizes of WFs.
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In this study, we devised X-Microscopy to meet these challenges and showed that X-Microscopy could predict SRMs fromWFs alone with

limited training datasets and achieve comparable image quality to STORM.We performed quantitative analyses to define the limited dataset

size for UR-Net-8 (Figure S17). By combining highly efficient deep learning architectures based on pix2pix, i.e., a U-SRM generation network

(UR-Net-8) and a home-built two branching network (X-Net), we demonstrated that X-Microscopy was able to leverage binary branches sym-

metrically and reciprocally to reconstruct STORM-like SRMs fromWFs. UR-Net-8 was applied to generateMU-SRMs, and thenMU-SRMswere

used to guideWFs to accomplish the final predictions of SRMs by X-Net. Hence, the implementation of UR-Net-8 couldminimize the need for

a large training dataset in SRM reconstructions. Additionally, X-Net that consisted of two encoders and two decoders effectively extracted

intricate features frombothWFs andMU-SRMs by learning distinct convolutional kernels and integrating them through connections between

encoding and decoding units. Moreover, a channel attentionmechanism and a residual function were also adopted in each cross-connection

module that could transform input-related salient features to precise representations of high-frequency information. Furthermore, unlike

other published networks, the input image sizes of UR-Net-8 and X-Net were flexible during the test stages, which was attributed to

A B C

D E

F

G

H I J K

Figure 5. Multicolour SRMs reconstructed from WFs by X-Microscopy

(A–E) Representative images of WF and XM3 in U2-OS cells stained with anti-a-tubulin and anti-EB1 antibodies.

(A) The image labeled ‘‘WF (merged)’’ of EB1 andMTs was recorded by conventional microscopy. The merged image was displayed: magenta indicates MTs and

green indicates EB1. Scale bars, 20 mm.

(B) The WF of MTs labeled with a white box as in A. Scale bar: 5 mm.

(C) The XM3 of MTs was generated from B by X-Microscopy.

(D) The WF of EB1 labeled with a white box as in A.

(E) The XM3 of EB1 generated from D by X-Microscopy was shown.

(F) Merged images predicted by X-Microscopy with the pretrained MT and EB1 models were shown. The reconstruction details in F were highlighted by white

boxes, and magnified images were attached to the upper right of the XM3 images. The Pearson correlation coefficients of the EB1 and MT labeled with white

boxes were determined and marked in the lower right of the XM3 images.

(G) Line profiles of fluorescence intensity plotted from the white boxes in F.

(H–I) Representative images of WF and XM3 in U2-OS cells costained with anti-a-tubulin and phalloidin-647.

(H) The image labeled ‘‘WF (merged = MTs + F-actin)’’ was obtained by conventional microscopy with a 1003/1.49-NA objective lens. Color map: magenta for

F-actin, green for MTs.

(I) The XM3 images were predicted by X-Microscopy with two pretrainedmodels of MTs and F-actin. The reconstruction details in the XM3 image compared with

the WF image were marked by white and cyan arrowheads. Scale bar, 20 mm.

(J–K) Representative WF and XM3 images of U2-OS cells costained with anti-a-tubulin, anti-Lamin B1, and anti-CREST antibodies were shown. Magenta: Lamin

B1, Green: MTs, Gray: Kinetochore. Scale bar, 20 mm.
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calculating the sizes of feature maps automatically based on various inputs. In summary, X-Microscopy was tailor-made for the SRM recon-

structions from WFs alone.

We used the MT dataset to demonstrate the necessity of the X-Microscopy pipeline instead of directly training X-Net and UR-Net-8 with

WFs and SRMs (Figure S6). We also compared X-Microscopy with published networks, specifically a deep learning-based single-frame super-

resolution microscopy method (SFSRM)23 and a deep learning-based point-scanning super-resolution method (PSSR),32 both trained directly

using our MT dataset. The results revealed that X-Microscopy exhibited superior performance (Figure S18). We illustrate the robustness and

generalization of X-Microscopy for SRM reconstructions of different macromolecular structures from WFs alone by the individual structural-

specific trained X-Microscopy. These include SRM predictions of cytoskeletal structures, i.e., microtubules (MTs), F-actin microfilament bun-

dles and CK14 intermediate filaments (IFs), MT plus-end binding protein EB1, nuclear lamina proteins, kinetochores, and chromatin nucleo-

somes in different cell lines. Moreover, X-Microscopy enabled the reconstruction of multicolour SRMs fromWFs and could predict SRMs from

WFs alone obtained by different conventional microscopic systems. Taken together, these results demonstrated that X-Microscopy allowed

high-quality construction of SRMs from WFs alone of different subcellular macromolecular structures and paved the road for multi-dimen-

sional applications of X-Microscopy in biomedical studies.

Limitations of the study

X-Microscopy, as a computational tool, also encounters challenges similar to those faced in other published works.23,27,30 The data presented

in the study most come from the individual structural-specific trained X-Microscopy. The "generalized" trained X-Microscopy provides a so-

lution to predict SRMs from WFs of new subcellular structures (Figures S15 and S16). However, X-Microscopy requires new datasets for

training or fine-tuning to effectively handle new structures with significant structural differences from the pre-trained model, thereby

enhancing SRM reconstruction accuracy. In the future, more variable subcellular structure datasets need to be collected to train and refine

the ‘‘generalized’’ trained X-Microscopy. In addition, more sophisticated quantification methods are required for more extensive character-

izations of hallucination artifacts and reconstruction uncertainties during X-Microscopy training, validating and testing.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

A B

C

Figure 6. SRMs reconstructed from WFs by X-Microscopy using different microscopic systems

(A and B) Representative images ofWF and XM3 in U2-OS cells stained with tubulin were shown. TheWFs were acquired by aNikon Eclipse Ti2 microscope with a

1003/1.49-NA objective lens and a Leica DM5000B microscope equipped with a 1003/1.30-NA objective lens. The XM3 images were reconstructed by

X-Microscopy with the pretrained MT model. The representative XM3 images of each region of interest (ROI) were displayed on the corresponding WF

image. Scale bars: 50 mm.

(C) The XM3 image of each ROI was quantified with NanoJ-Squirrel analysis. The error maps, RSP scores and RSE scores were shown. The color bar indicated

magnitude of the error.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-a-tubulin Sigma-Aldrich Cat# T5168; RRID:AB_477579

Rat anti-a-tubulin Sigma-Aldrich Cat# MAB1864; RRID: AB_2890657

Mouse anti-EB1 BD Biosciences Cat# 610535; RRID: AB_397892

Human anti-crest Erba Diagnostics Cat# HCT-0100, RRID:AB_2744669

Rabbit Anti-Cytokeratin 14 antibody Abcam Cat# ab181595, RRID:AB_2811031

Rabbit anti-H2B Abcam Cat# ab1790, RRID:AB_302612

Rabbit anti-H3K9me3 Abcam Cat# ab8898, RRID:AB_306848

Rabbit anti-LaminB1 Abcam Cat# ab16048, RRID:AB_443298

Alexa Fluor 647 phalloidin Thermo Fisher Scientific Cat# A22287, RRID:AB_2620155

Goat anti mouse Alexa Fluor 647 Thermo Fisher Scientific Cat# A-21236, RRID:AB_2535805

Goat anti rat Alexa Fluor 647 Thermo Fisher Scientific Cat# A-21247, RRID:AB_141778

Goat anti mouse IgG Atto 488 Sigma-Aldrich Cat# 62197, RRID:AB_1137649

Goat anti rabbit IgG Alexa Fluor 546 Thermo Fisher Scientific Cat# A-11010, RRID:AB_2534077

Goat anti human IgG Alexa Fluor 647 Thermo Fisher Scientific Cat# A-21445, RRID:AB_2535862

Goat anti mouse IgG Alexa Fluor 647 Thermo Fisher Scientific Cat# A-21236, RRID:AB_2535805

Goat anti rabbit cy5 Thermo Fisher Scientific Cat# A10523, RRID:AB_2534032

Goat anti rat IgG(H + L) Alexa Fluor 568 Thermo Fisher Scientific Cat# A-11077, RRID:AB_2534121

Chemicals, peptides, and recombinant proteins

DMEM/F-12 Thermo Fisher Scientific Cat# 11330032

RPMI 1640 Thermo Fisher Scientific Cat# 11875119

DMEM Thermo Fisher Scientific Cat# 11965092

Penicillin-Streptomycin Thermo Fisher Scientific Cat# 10378016

Phosphate Buffer Saline Thermo Fisher Scientific Cat# 20012050

Trypsin-EDTA Thermo Fisher Scientific Cat# 25200072

DMSO Sigma-Aldrich Cat# D8418

Fetal bovine serum Thermo Fisher Scientific Cat# 10091148

Cholera Toxin CELL technologies Cat# Cc104

insulin CELL technologies Cat# Cc101

hydrocortisone CELL technologies Cat# Cc103

EGF PEPROTECH Cat# AF-100-15

Y27632 Topscience Cat# T1725

paraformaldehyde (PFA) Sigma-Aldrich Cat# 158127

Glutaraldehyde Sigma-Aldrich Cat# G6257

NaBH4 Sigma-Aldrich Cat# 71320

Triton X-100 Sigma-Aldrich Cat# T8787

Bovine Serum Albumin Solarbio Cat# A8020

Goat serum Solarbio Cat# SL038

Sodium choride Sigma-Aldrich Cat# S9888

Tris-cl Sigma-Aldrich Cat# TRIS-RO

Glucose Sigma-Aldrich Cat# D9434

HCl Sigma-Aldrich Cat# 258148

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Wei Jiang

(wjiang6138@cicams.ac.cn).

Materials availability

This study did not generate new unique regents.

Data and code availability

� The datasets of X-Microscopy have been deposited at the Science Data Bank public platform, and DOIs are listed in the key resources

table. They are available in this link: https://www.scidb.cn/en/s/BzuuMz. If you have any questions, please contact wjiang6138@cicams.

ac.cn.
� All original code has been deposited at the Github and is publicly available as of the date of publication. DOIs are listed in the key re-

sources table.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

acetone Sigma-Aldrich Cat# 179124

ethanol Sigma-Aldrich Cat# 51976

methanol Sigma-Aldrich Cat# 34860

glucose oxidase Sigma-Aldrich Cat# G7141

catalase Sigma-Aldrich Cat# C9322

b-mercaptoethanol Sigma-Aldrich Cat# M3148

mercaptoethylamine (MEA) Sigma-Aldrich Cat# 30070

NaOH Sigma-Aldrich Cat# 655104

NaCl Sigma-Aldrich Cat# S9888

MgCl2 Sigma-Aldrich Cat# M2393

Experimental models: Cell lines

HeLa ATCC CRM-CCL-2

U87MG ATCC HTB-14

U2-OS ATCC HTB-96

RPE1 ATCC CRL-4000

RNE-D3 Preserved by our lab N/A

U373MG ATCC HTB-17

Software and algorithms

ImageJ National Institutes of Health (NIH) https://ImageJ.nih.gov/ij

Python2.7 Python Software Foundation https://www.python.org/download/releases/2.7/

Scipy package for Python Scipy package for Python https://www.scipy.org

Tensorflow deep learning framework for Python Google Brain https://tensorflow.google.cn/

Cuda NVIDIA https://developer.nvidia.com/cuda-downloads

CuDNN NVIDIA https://developer.nvidia.com/cudnn

GraphPad Prism 8 GraphPad https://www.graphpad.com/scientific-software/prism/

Adobe Illustrator 2020 Adobe https://www.adobe.com/

Adobe Photoshop 2019 Adobe https://www.adobe.com/

Other

Datasets and trained models for X-Microscopy This paper https://www.scidb.cn/en/s/BzuuMz

Source code This paper https://github.com/kanshichao/X-Microscopy
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� Any additional information required to reanalyze the data reported in this paper is available from the lead contact (wjiang6138@cicams.

ac.cn) upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture

Human cell lines were obtained from ATCC and cultured at 37�C with 5 % CO2 in humidified incubators. HeLa, U87MG and U2-OS cells were

cultured in DMEM supplemented with 10 % FBS and 1 % penicillin–streptomycin antibiotics. RPE1 cells were maintained in DMEM/F12 sup-

plementedwith 10% FBS and 1%penicillin–streptomycin. U373MG cells were grown in RPMI 1640medium supplementedwith 10% FBS and

1 % penicillin/streptomycin. The normal rat oesophageal epithelial cell line RNE-D3 was established and preserved by our laboratory.54 RNE-

D3 cells were cultured in DMEM/F12 (3:1) supplemented with 10 % FBS, 8 ng/mL cholera toxin, 5 ng/mL insulin, 25 ng/mL hydrocortisone,

0.1 ng/mL EGF and 10 mM Y27632 in a humidified 37�C incubator supplemented with 5 % CO2. All cell lines were authenticated and proven

to be free of mycoplasma.

METHOD DETAILS

Immunofluorescence

For immunostaining, cells were cultured on glass-bottomed dishes (World Precision Instruments, Singapore) overnight and then washed

three times with PBS. Cells were fixed either by adding 3 % paraformaldehyde and 0.1 % glutaraldehyde solution in PBS at room temper-

ature for 10 minutes or by adding cold acetone and methanol (1:1 v/v) solution for 5 min. After washing with PBS three times, the cells were

treated with freshly prepared 0.1 % NaBH4 solution to reduce the autofluorescence from PFA fixation. Fixed samples were incubated over-

night in blocking buffer (10 % goat serum, 3 % BSA, 0.2 % Triton X-100 in PBS). Primary antibodies (mouse anti-a-tubulin 1:50000, mouse

anti-EB1 1:5000, human anti-CREST 1:3000, rabbit anti-Cytokeratin-14 1:1000, rabbit anti-H3K9me3 1:500, rabbit anti-H2B 1:500 and rabbit

anti-Lamin B1 1:200) were added to the dish in blocking buffer. After 1-2 h incubation in room temperature or overnight in 4�C, the cells

were washed five times with washing buffer (0.2 % BSA, 0.02 % Triton X-100 in PBS) with at least 15 minutes of incubation between washes.

Secondary antibodies (goat anti-mouse/rat/human Alexa Fluor 647/cy5 and goat anti-mouse Atto-488) were added at a dilution of 1:200

and incubated for 2 hours in blocking buffer on an orbital shaker. Before STORM imaging, the storage buffer was switched to STORM

imaging buffer containing 10% (w/v) glucose, 0.56 mg/mL glucose oxidase, 0.17 mg/mL catalase and 0.14 M b-mercaptoethanol, which

were diluted in 50 mM Tris-Cl, pH=8.0, 10 mM NaCl, 10 % glucose. The glucose oxidase and catalase were diluted with 10mM Tris-Cl,

pH=8.0 and 50mM NaCl, respectively.

For the drug treatments in Figure S12, U2-OS cells were seeded in 35 mm glass-bottomed dishes until the cell confluence reached 60 %.

The cells were treated with different concentrations of nocodazole (100 nM) and Taxol (1 mM) for 30 min or treated with a vehicle control. After

drug treatments, the cells were fixed and co-stained with anti-a-tubulin and anti-EB1 antibodies and the WFs were acquired using a 1003

/1.49-NA objective lens.

WF and STORM image acquisition

Our microscopic system from Nikon Instruments was equipped with Nikon Eclipse Ti2 conventional microscopy and commercial N-STORM

(Nikon) at the same time so that WFs and SRMs could be recorded by the shared scientific CMOS (sCMOS) camera. TheWFs and SRMs were

obtained by PlanApo TIRF 1003/1.49 NA oil immersion objective (CFI SR HP Apochromat TIRF 100x/1.49NA, Nikon). All WF-SRM training

pairs were well matched, and there was no need for pixel registration, which simplified the training process. WF images were recorded on

512 3 512 or 256 3 256 pixel before SRM imaging. For SRM imaging, raw SRM data were acquired under the highly inclined illumination

of a 50 mW 647 nm laser using a Nikon N-STORM inverted microscope. All raw SRMs were recorded at 512 3 512 or 256 3 256 pixels.

The temperature of the imaging environment was controlled at 23�C.
For STORM imaging of MTs or F-actin filaments, 50000-60000 frames were acquired at an exposure time of 10-20 ms. For STORM imaging

of EB1 or kinetochores, 30000-50000 frames were acquired at an exposure time of 5-8 ms. For STORM imaging of Lamin B1 and Lamin A/C,

40000-50000 frameswere recorded at an exposure time of 10ms. For STORM imaging of H2B, 40000-50000 frames were recorded at an expo-

sure time of 10-20 ms. For STORM imaging of H3K9me3, 40000-50000 frames were recorded at an exposure time of 10 ms. For STORM im-

aging of Keratin-14, 40000-50000 frames were recorded at an exposure time of 20 ms. All raw SRM images were reconstructed and analysed

using theN-STORManalysis module in NIS-Elements ARAnalysis 5.01.00 (Nikon). Quantitative information for each localization, including the

x- and y-position, standard deviation (s), background noise, and localization precision, is determined by this analysis modules according to

N-STORM user manual.

To reduce image storage and increase the training speed, all images were exported and saved as 8-bit images by commercial NIS-

Elements AR Analysis 5.01.00 software, as in previous SRM reconstruction work.26,27,30 To evaluate the robustness of X-Microscopy in Figure 6,

The WF images of microtubule were captured by Nikon Eclipse Ti2 microscopy equipped with a 1003/1.49NA objective lens (CFI Apochro-

mat TIRF 1003/1.49NA) and another conventional microscope (Leica DM5000 B, Lecia Microsystems) using a 1003/1.30NA objective lens

(HCX PL FL1003/1.30 Oil 0.17/D, Leica Microsystems).

The microtubule andmitochondrial imaging data in Figure S16 were kindly provided by NOVEL optics (China) and obtained from the NIB

900 and NSR950 microscopes equipped with a 1003/1.49 NA objective lens.
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The training and test datasets for UR-Net-8

No more than 30 FOVs (field of view) of different structures were acquired for training. For SRM reconstructions with deep learning, the size

of the training dataset should be as large as possible to cover the distribution of images in the task domain for deep learning. To achieve

good performance with a small-scale dataset, we therefore manually cropped the original image FOVs into smaller ROIs to generate high-

quality training samples for all experiments. To ensure the variety of the training dataset, only one high-quality ROI was captured from each

FOV and each FOV was acquired from a different cell. Many ROIs were used for training and each ROI contained 30 U-SRMs and1 WF. The

WFs were used as inputs, and the U-SRMs were defined as ground truth. To define U-SRMs, random subsets of 10000 consecutive frames

from all the image sequences were created. The details of each training dataset and test dataset were as follows. We trained our MT

model with 25 ROIs of STORM images and corresponding WFs. The F-actin model was established with 14 ROIs by transfer learning

with the MT model. The number of training samples for the EB1 model was 15 ROIs. We trained the Lamin B1 model and the kinetochore

model with 17 ROIs and 15 ROIs, respectively. The CK14 model was constructed with 15 ROIs. The H3K9me3 model was established with 6

ROIs, and the H2B model was trained with 8 ROIs. During training, a separate validation set was not specifically designated in our

approach. The training set was utilized as the validation set to determine the model parameters. At the test stage, the test sets consisted

of 14 ROIs for microtubules, 7 ROIs for F-actin, 17 ROIs for Lamin B1, 13 ROIs for EB1, 21 ROIs for kinetochores, 7 ROIs for CK14, 9 ROIs for

H2B, and 5 ROIs for H3K9me3.

The training and test datasets for X-Net

To validate the feasibility of X-Net for reconstructing SRMs from U-SRMs and/or WFs, 25 ROIs of immunostained MT images were used for

X-Net training. To define U-SRMs, random subsets of 300-500 consecutive frames from all the image sequences were created. To define

W-SRMs, random consecutive subsets of 95 % of all available frames were reconstructed. Each ROI of images for training contained 30

W-SRMs, 30 U-SRMs, 1 WF and 1 F-SRM. For testing, only U-SRMs (k=300-500) and/or WFs were used as inputs, and the F-SRMs were

used to calculate SSIM with the desired outputs. For Figure S3, 14 ROIs were used to test the X-Net, each ROI contained 1WF and 6 U-SRMs.

To reconstruct high-fidelity SRMs from WFs, we used the MU-SRMs predicted from WFs by UR-Net-8 and/or original WFs as inputs for

X-Net training. The detailed interpretation for each training dataset was similar to that of UR-Net-8.

X-Microscopy: The architecture of UR-Net-8

UR-Net-8, constructed based on skip-connection41 and residual,65 was devised for generating U-SRMs (Figure 1B). UR-Net-8 contains a

generator network Gs and a discriminator network Ds.‘U’ indicates U-connection, ‘R’ indicates residual, and ‘8’ indicates 8 units of UR-Net

used between the encoder and decoder (Figures S1A and S1B).

The generator network Gs comprised an encoder with 8 convolutional layers (encoding units) and a decoder with 8 deconvolutional

layers (decoding units) (Figure 1B). A residual unit was utilized between each encoding unit and decoding unit. The architecture and oper-

ating principle of the residual module were illustrated as follows. In the encoder, the number of feature channels was increased constantly

by the first four convolutional layers, while it was decreased by the last four deconvolutional layers in the decoder. From the input layer to

the output layer, the spatial resolution of feature maps in the encoder was halved layer by layer, while it was doubled layer by layer in the

decoder. In this way, the input of UR-Net-8 passed through a deeper convolutional layer of the encoder, and more important feature maps

were output. Then, all output feature maps flowed directly into the adjacent encoding unit and the corresponding residual unit. Finally, the

output of the residual unit flowed into the decoding unit. Convolutional kernels were applied to convolve feature maps in each convolu-

tional layer. The feature maps of UR-Net-8 were adaptively zero-padded (i.e., the size of output feature maps was calculated based on the

size of input image to decide whether zero-padding should be used). The kernel size of the convolutional layers in the encoder and the

deconvolutional layers in the decoder was 535, and the stride was 2. Moreover, the convolutional layers in the residual units comprised

convolutions of size 333 with stride 1 (Figure S1B). Importantly, each convolution was followed by a rectified linear unit (ReLU)66 and batch

normalization.

Ds contains 4 convolutional layers (i.e., s1, s2, s3, and s4), 1 spatial pyramid layer (s5) and 1 linear classification layer (s6). Here, s5 is a spatial

pyramid pooling layer,67 conferring the input-size flexibility by sampling feature maps of different input sizes to vectors of the same length for

the discriminator. The input of Ds is a concatenation of the input WFs of Gs and the reconstructed U-SRMs along the channel dimension or a

concatenation of two input images of Gs and the ground truth image along the channel dimension. The output of Ds can be determined by

training data and predefined ground truth values (Figure S2D).

X-Microscopy: The architecture of X-Net

X-Net was constructed to have a generator network Gr and a discriminator network Dr for adversarial training (Figure 1C). The generator

network Gr displayed two parallel networks with an X-shape to share information between encoders and decoders (Figure S1C). The two

desired inputs of Gr , which could be set as theMU-SRMs predicted fromUR-Net-8 plusWFs, two sameU-SRMs acquired from superresolution

microscopy, two same WFs or U-SRMs plus WFs were brought into two encoders and output feature maps. Then, feature maps could be

concatenated along the channel dimension and propagated to two decoders. Finally, the outputs were concatenated along the channel

dimension, and the SRMs were reconstructed by a convolution operation with one convolutional layer.
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The detailed architecture of X-Net is illustrated as follows. For the generator network Gr , Gr comprised two encoders and two decoders.

Each encoder and each decoder were devised with 8 convolutional layers and 8 deconvolutional layers, respectively (Figure S1C). The kernel

sizes of the first two layers in the encoder and the last two layers in the decoder were 535, and the stride was 2. Other layers had convolutional

kernels of size 333 and the stride of 2. The rectified linear unit (ReLU) activation function was used to comply with nonlinear mapping in all

layers except for e8 and d1 (Tables S1 and S2). The batch-normalization function was applied to carry out fast convergence in all layers except

e1 and d8. The procedures for extracting and processing featuremaps of X-Net were similar to those of UR-Net-8. The architecture of discrim-

inator Dr was akin to Ds (Figure S2D).

The attention and U-connection residual modules were the key design of X-Net. As shown in Figure S1C, they were established between

each pair of encoding units ei and decoding units d(9-i) (1%i%8) based on skip connection (ei and di are marked in Figure S2A). They played

an important role in concentrating on the major features and information extracted from WFs and MU-SRMs to reconstruct the main and

detailed maps of the SRMs. The detailed architecture of the attention and residual modules was as follows.

Each attentionmodule had two inputs (A and B in Figure S2B). For the attention between layer i of the decoder and layer 9-i of the encoder,

A is the output of d(i-1), and B is the input of ei. The attention module consisted of 5 convolutional layers and 1 deconvolutional layer. Four

convolutional layers (a1, a3, a5 and a8) had kernels of size 131 with stride 1. The kernel size of the convolutional layer (a2) was 232, and the

stride was 2 (Table S3). The deconvolutional layer (a6) had convolutions of size 333 with stride 2. Importantly, we calculated the elementwise

addition (a4) for the convolution outputs of A andB (the outputs of a3 and a2) and calculated the elementwisemultiplication (a7) for the output

of deconvolution (a6) and the convolution output of B (a2) (Figure S2B). The residual module had four inputs (A, B, C and D in Figure S2C) for

the residual between layer i of the decoder and layer 9-i of the encoder. A is the output of d(i-1), and B and C were the inputs of e(9-i) in the

upper and lower encoders, respectively. D was the output of the attention module located between layer i of the decoder and layer 9-i of the

encoder. The residual unit included 1 deconvolutional layer (r1) and 1 convolutional layer (r6), where the kernel size of the deconvolutional

layer was 333 and the stride was 2. The convolutional layer had kernels of size 131 with stride 1 (Table S4). One elementwise additional oper-

ation was used to calculate the residual between the output of the last convolutional layer (r6) and the input B.

The training strategy of X-Net

Experiments were conducted on a computer with 64 GB of memory and one 11 GB GTX Titan 1080 GPU. The algorithms were implemented

on a 64-bit Ubuntu 16.04 operating system with Python 3.6.4 and the 1.13.1 version of TensorFlow.68 X-Net was trained end-to-end using sto-

chastic gradient descent (SGD) with Adam69 and a batch size of 1 with 100,000 or more iterations (back-propagation steps). The momentum

term of Adam was set to 0.5. The initial learning rate was set to 23 10� 4. During training, the parameters of the generator and discriminator

were updated alternately. We updated the parameters of the discriminator once after updating the parameters of the generator 4 times. To

speed up training, the model was first trained from scratch with fixed size images and then fine-tuned with different sizes of images. Training

the network from scratch typically took from hours to days on a singleGTX Titan 1080GPU.Once trained, the network took only a few seconds

to reconstruct SRMs with input-size flexibility.

In training the network, three loss functions were applied, i.e., L1, L2, and L3 in Figure 1C. The training loss functions were a combination of

MS-SSIM loss,70 l1 norm loss and conditional generative adversarial (cGAN) loss. The MS-SSIM loss was calculated by using 1 minus the MS-

SSIM between the reconstructed SRM image and the ground truth image. The l1 norm loss (l1� j, j˛{1,2,3}) was the mean of the absolute dif-

ference between the reconstructed SRM image and the ground truth image. The cGAN loss served as a regularization technique to improve

the performance and stability of the GAN training process in image superresolution tasks,30,33 which contained one generator loss and one

discriminator loss. The generator loss was calculated based on the output value of the discriminator. The discriminator loss lD�XMj was the

cross-entropy between the value of the ground truth (0 or 1) and the output value of the corresponding discriminator.

The MS-SSIM assessed the similarity index of the overall structure between the reconstructed SRMs bO and the ground truth image O,

which was calculated as follows: an image was resized to different scales, and the structure sjð bO;OÞ, luminance ljð bO;OÞ, and contrast

cjð bO;OÞ were calculated at each scale. Here, sjð bO;OÞ, ljð bO;OÞ, and cjð bO ;OÞ were formulated as follow:

sjð bO ;OÞ =
sÔO+C1

sÔsO+C1
; (Equation 1)

ljð bO ;OÞ =
2mÔmO+C2

m2
Ô
+m2

O+C2
; (Equation 2)

cjð bO ;OÞ =
2sÔsO+C3

s2
Ô
+s2

O+C3
; (Equation 3)

where C1 = 0:00045, C2 = 0:0001 and C3 = 0:0009. m and s are the mean and standard deviation in a Gaussian sliding window (11 3 11).

Then, the MS-SSIM is defined as:

MS � SSIMð bO ;OÞ = ½lMð bO ;OÞ �aM$
YM
j = 1

�
cjð bO ;OÞ �bj �sjð bO ;OÞ �gj ; (Equation 4)
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where M is the highest scale factor, and aM, bj and gj are used to adjust the relative weighting of the measurements at different scales (lumi-

nance, contrast and structure). Their values are set according to the ref. 70 in the experiments:

M = 5;a = b = g = ½0:0448; 0:2856; 0:3001;0:2363;0:1333�:
Finally, the MS-SSIM loss is defined as follows:

lms� ssim = 1 � MS � SSIMð bO ;OÞ: (Equation 5)

The l1 norm loss is defined as:

l1 = Eðj bO � OjÞ; (Equation 6)

where E is the average function.

Suppose that the output of the discriminator is by , and the ground truth value is 0 and 1 for the input of bO andO, respectively. The discrim-

inator loss lD is defined as:

ld = E½logðby ðOÞÞ + logð1 � by ð bOÞÞ�: (Equation 7)

Moreover, in all the experiments, the generative adversarial loss for the generator is defaulted to be the same as all other GAN-based

losses, defined as E½logð1 � byð bOÞÞ�.

The training strategy of UR-Net-8

UR-Net-8 was trained based on cGAN.35 The training loss function was the combination of MS-SSIM loss, l1 norm loss and cGAN loss. The

calculation formulas for these losses were the same as those calculation formulas in X-Net training.

In the training process of UR-Net-8, the parameter settings and training strategies were consistent with those of X-Net except for the

following settings. The initial learning rate was set to 13 10� 4. We alternated between updating the parameters of the generator 10 times

and updating the parameters of the discriminator once.

Performance comparisons with the leading methods

We compared our X-Microscopy with the following state-of-the-art methods recently developed in the literature: a deep-learning-based sin-

gle-frame super-resolution microscopy (SFSRM) method and a deep-learning-based point-scanning super-resolution (PSSR) method (Fig-

ure S18). We implemented these algorithms using PyTorch on a single GeForce GTX 1080 GPU with 11GB of memory and used the Adam

optimization algorithm for all experiments, similar to X-Microscopy. The detailed settings of these parameters were based on their published

works.23,32

Input-size flexibility

To realize input-size flexibility, the input size and output size of each convolutional layer and each deconvolutional layer were calculated based

on the size of the input image. Suppose that the size of the input image is h3w and the computed output size of the feature map is Hi3Wi at

layer ei or di, where i is the index number of convolutional layers or deconvolutional layers. The size calculating functions were defined as

follows:

Hi =

�
h � 1

2i
+ 1

�
;Wi =

�
w � 1

2i
+ 1

�
; (Equation 8)

where P$R is the floor function (e.g., P1:3R = 1, P1:9R = 1).

The hyperparameters of our networks were shown in Tables S1–S7. Tables S1 and S2 show the hyperparameters of the encoders and de-

coders in X-Net. Tables S2–S5 show the hyperparameters of the attention unit, the residual unit, and the discriminator in X-Net. Tables S6 and

S7 show the hyperparameters of the encoder and decoder in UR-Net-8. Table S8 shows the hyperparameters of the residual module in UR-

Net-8. In each table, the input size and output size of each layer were calculated based on the size of the input images. Table S9 shows the

training and test details between ANNA-PALM and X-Net.

Data augmentation

Data augmentationwas used to increase the amount or diversity of data and to improve the robustness of the trainedmodel. It was performed

at each iteration during training. One iteration contained three steps. (1) One image was randomly selected from all the training images and

then cropped. (2) This cropped image was defined as input to the network for training. In this stage, the loss values were calculated between

the output and the ground truth to assist the training process. (3) Based on the loss values output from the previous step, the parameters of the

network were updated. After completing the above three steps, an iteration was completed.
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Data augmentation was conducted after data preparation, and images smaller than 1003100 were directly trained without data augmen-

tation. If the image size was larger than 1003100, data augmentation was used to process these images for training. Our detailed explanation

of the data augmentation program is illustrated as follows:

During training, we first randomly sample 4 integer numbers between 0 and 49, denoted as w0, h0, w1, and h1 in each iteration. Then, for

images with sizes larger than 100 3 100, we cropped a patch from the input images using the following formula:

I)I½h0 : h � h1;w0 : w � w1�; (Equation 9)

where h and w are the height and width of the image tensor I. The arrowhead pointed to the left indicates that the values of I were updated.

After random cropping, we normalized the values of the cropped patches between 0 and 1 by performing I)I=255:0. Here, 255.0 means that

the pixel range of our experimental images was 8 bits. It should be noted that we did not consider images with sizes smaller than 1003 100 in

our experiments. Suppose that the input image size was smaller than 1003 100, e.g., 803 80. The randomly sampled integer numbers were

w0 =48, h0 =48,w1 =48, and h1 =48. Finally,w � w1 = 32<w0, h � h1 = 32<h0. Note: the starting and ending coordinates of random crop-

ped imageswere determined by a computer program rather than by human operation. If the starting coordinates randomly fell on the edge of

the image without content, useless and low-quality content (background without any image content) in the cropped images would interfere

with training performance. Hence, data augmentation was not applied for images with sizes below 1003100 due to the possibility of useless

information from the image background.

Multicolour superresolution image alignments

We found that the multicolour SRMs reconstructed from WFs by X-Microscopy exhibited misalignments. This is because the range of one

pixel of WF may map to a range of multiple pixels of the SRM image. Therefore, the multi-color super-resolution images obtained by image

reconstruction algorithm sometimes be misaligned. To align these reconstructed images, an image alignment and calibration algorithm in

the Fourier space was adopted. Suppose that two reconstructed image tensors I1 and I2 were misaligned and the height and width of them

were h andw, the height and width of tensor I2 were expanded to h +m and w+ n by zero padding, respectively. Then the cross-power spec-

trumwas computed between I1 and I2 using the fft2 and ifft2 functions implemented in scipy package71 and themaximum value was set as the

peak correlation. Furthermore, the position of the peak correlation was the aligned position exactly. Finally, we moved one tensor to the

matched position to align another tensor. This method could effectively align multicolour SRM.

QUANTIFICATION AND STATISTICAL ANALYSIS

During the test stage, quantitative metrics were used to evaluate the performance of X-Microscopy. The resolution of each cropped image

was estimated using the ImageDecorrelation Analysis57 plugin of ImageJ.72 For SSIM, we used the F-SRMs as the ground truth for calculation.

The SSIM between image bO and image O was calculated as follows:

SSIMð bO ;OÞ =
ð2mÔmO+C2Þð2sÔO+C3Þ�
m2
Ô
+m2

O+C2

��
s2
Ô
+s2

O+C3

� ; (Eqaution 10)

where mÔ and mO are themean values of the pixels of image bO and imageO, respectively. sÔ and sO are the standard deviations of the pixels

of image bO and imageO, respectively.We applied aGaussian slidingwindow (11311, s = 1:5) tomove pixel by pixel across the whole image

to calculate the SSIM value. At each position of the Gaussian window, the SSIM value was calculated individually. The final SSIM value was

averaged from the values of all window positions. Note that the SSIM metric was used only to evaluate structural similarity during the test.

During the training stage, we calculated the MS-SSIM loss by applying the SSIM metric to the reconstructed SRM and ground truth. The

MS-SSIM metric is described above in detail.

For the Pearson r73 value, suppose that we have two images X and Y , each with n pixels. We calculated the Pearson r value based on the

following formula:

rðX ;Y Þ =

Pn
i = 1

ðXi � XÞðYi � Y ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1

ðXi � XÞ2 Pn
i = 1

ðYi � Y Þ2
s ; (Equation 11)

where imageX and image Y grey values of voxel will be noted as Xi and Yi, respectively, and the corresponding average intensities over the full

image as X and Y .

The intensity of the line profile and colour boxes were measured using the Plot Profile (plugin of ImageJ). The error maps and RSE (res-

olution-scaled error) and RSP (resolution scaled Pearson coefficient) scores were determined by NanoJ-Squirrel.56 Statistical analyses were

performed using GraphPad Prism 8.0.
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