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THE BIGGER PICTURE In clinical cancer medicine, many patients require immediate chemotherapy after
hospitalization. Current administrations for precision drug uses are limited in evaluation speed, including
genomic sequencing and tumor organoid evaluation. An extremely rapid evaluation protocol is in high de-
mand to realize drug recommendation within a few hours after tumor sampling. In this work, we have pro-
posed an approach for extremely rapid and personalized drug recommendation.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Current administrations for precision drug uses are limited in evaluation speed. Here, we propose the use of
multiplex gene-based digital markers for the extremely rapid personalized prediction of individual sensitivity
to cancer drugs. We first screen the transcriptional profiles by applying two to three gene filters and scoring
genes by their impact on drug sensitivity and finalize the gene lists by K-nearest neighbors cross-validation.
The digital markers are cancer type dependent, are composed of tens to hundreds of gene expressions, and
are rapidly quantified by reverse transcription quantitative real-time PCR (qRT-PCR) within 1–3 h after tumor
sampling. The area under the receiver operating characteristic curve reached 0.88 when testing the perfor-
mance of digital markers on organoids derived from colorectal cancer patient tumors. The algorithm and
corresponding graphic user interface were developed to demonstrate the promise of digital markers for
extremely rapid drug recommendation.
INTRODUCTION
 nosis by increasing the rate of effective treatment, reducing
Cancer is an extremely intractable disease, due to its dy-

namic, metastatic,1 and heterogeneric2 properties. Therefore,

there is no standard therapeutic regimen for most cancer

types, and even for the same cancer type, effective therapies

for different tumors at different developmental stages are

highly variable due to inter- and intra-tumor heterogeneity.2–

4 Apart from targeted therapy that can be precisely chosen

by detecting known gene mutation(s) or identifiable bio-

markers, most chemotherapies are empirical. Precision or

personalized drug uses are expected to improve cancer prog-
This is an open access article und
the magnitude of side effects, and avoiding the waste of a

therapeutic window.

In recent years, the availability of multi-omics big data and data

mining techniques has enabled us to decipher the highly compli-

cated interactive networks among the genomics, transcriptional

identities, and underlying therapeutics.5,6 Several public datasets

have been established to include genomic, transcriptomic, and

drug responsive cohorts for cancer cell lines, including the

Genomics of Drug Sensitivity in Cancer (GDSC)7–9 and the Cancer

Cell Line Encyclopedia (CCLE),10,11 and for cancer patients, such

as The Cancer Genome Atlas (TCGA).12
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Many computational algorithms and multiplex models have

been developed to decipher the connection between multi-

omics information and drug sensitivity. For example, linear pre-

diction models, including univariate regression, multivariate

regression, and elastic net, have been used to select genomic

predictors for anticancer drug sensitivity.13 Network-based ap-

proaches have been attempted to integrate heterogeneous in-

formation and learn low-dimensional feature vectors to predict

drug-target interactions,14 as well as identify biomarkers for

drug selection using protein-protein interaction networks.15

Deep neural networks can integrate the information of gene mu-

tations and transcriptional alterations and improve the prediction

of drug responses for large clinical cohorts.16,17 The accessibility

to such public datasets has expanded the scope of computa-

tion-based precision medicine. Sanchez-Vega et al. first pro-

posed oncogenic signaling pathways as a tumor classification

strategy, stratified tumors into 64 subtypes, and suggested

new therapeutic opportunities by studying the large cohort in

TCGA.18 Recently, Paull et al. discovered common regulatory

knobs in gene networks across different tumor types and pro-

posed a new mechanism of tumor classification that is indepen-

dent of organ specification.5 A similar finding was further exam-

ined in non-tumor diseases.6 Computational models have also

reported successes in probing drug tolerance transition19 and

synergistic drug effects20 in cancer cells based on their tran-

scriptional data. It is a fact that most tumors lack specific muta-

tions for targeted therapy; however, they possess transcriptional

alternations. The aforementioned studies support the investiga-

tion of transcriptional identities as markers for therapeutic

prediction and personalized drug use.21,22

However, the current RNA sequencing (RNA-seq)-based big

data mining has limitations in temporal efficiency. The RNA-seq

operation takes 4–6 weeks and requires costly gene se-

quencers.23,24 Inmany clinical practices, chemo-drug administra-

tion is expected immediately after patient hospitalization.25 There-

fore, extremely rapid drug evaluation becomes fundamentally

important, but it is beyond the capacity of any existing methods.

In this work, we aim to establish an approach that recom-

mends drug use within a few hours after accessing patient

tumors. It starts from computational screening of the whole tran-

scriptome to build small gene libraries for prediction of drug

response. The transcriptional profiles of screened multiplex

gene libraries compose digital (virtual) markers for prediction of

chemo-drug sensitivity, which is analogous to the biomarkers

used in targeted drug selection (see Table 2). The quantitative

assessment of digital markers provides precision treatment

choices for a given sample. We model the use of digital markers

in clinical practice by quantifying transcriptions of screened

digital markers using qRT-PCR. A computational algorithm is

provided that converts the transcriptional quantification to drug

recommendation (Video S1).

RESULTS

Gene filtering and prediction of drug sensitivity using a
KNN model
A computational model was built to establish digital markers by

screening genes to compose the multiplex gene library that

would predict the response of a given sample to a certain drug
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(Figure 1A). Bio-data from both cancer cell lines and cancer pa-

tients (i.e., tumor tissues) can be applied to this model. We gath-

ered the RNA-seq data and drug sensitivity data, characterized

by the half-maximal inhibitory concentration (IC50) (see Table 2),

from the GDSC and CCLE datasets to construct the training and

testing cohorts for cancer cell lines. For patient tumors, the bio-

data were constructed from the RNA-seq data and prognostic

information, i.e., the classification of drug responses in TCGA

(Table S1).

We first applied different filters for cancer cell lines and patient

tumors due to their difference in drug sensitivities (Figure 1A).

However, the processing logic was the same: genes beyond a

certain transcription level and with a stronger correlation to

drug sensitivity were retained after being filtered (Figures 1B

and 1C). After gene filtering, the genes were scored, rated, and

used to compose the gene candidate list. For cell lines, as the

RNA-seq data from CCLE and GDSC do not match well (Fig-

ure S1C), in order to make full use of the data and improve

robustness, we performed gene filtering on both datasets sepa-

rately and synthesized the scores of genes as the rating criteria

to finalize the list of gene candidates (see experimental proced-

ures for details).

The second step was K-nearest neighbors (KNN) cross-vali-

dation and establishment of digital markers (Figure 1A). The

KNN algorithm determined the top m0 genes to compose digital

markers and the parameter k0 to reach the highest area under the

receiver operating characteristic (ROC) curve (AUC) values of

receiver operating characteristic curves (see experimental pro-

cedures for details).

The last step was prediction of drug sensitivity using the KNN

model. For cell lines, drug sensitivity data are continuous; KNN

regression was therefore used to predict the Z scores of the

IC50 values. For patient samples, drug sensitivity values were

provided as labels according to treatment outcomes; we

therefore used the KNN classification here.

In ‘‘cross-validation of digital marker-based prediction of drug

sensitivity on cancer cell lines and patient tumors,’’ we show the

digital markers and cross-validation performances for several

cancer type-drug pairs (Table S2) on the datasets of cancer

cell lines and patient samples (cancer cell lines, CCLE and

GDSC; cancer patient samples, TCGA). In ‘‘qPCR-based

extremely rapid prediction of drug sensitivity,’’ we describe the

gene expression value conversion and experimental validation.

In ‘‘digital markers accurately predict drug sensitivity of cell lines

and patient tumor organoids,’’ we perform experimental valida-

tion of the prediction of drug sensitivity using cell lines and pa-

tient tumor-derived organoids cultured in the laboratory.

Cross-validation of digital marker-based prediction of
drug sensitivity on cancer cell lines and patient tumors
The transcriptional profiles and drug sensitivity of cancer cell

lines and patient tumors were shown to be cancer type specific

(Figures S1 and S2; Table S2). Correspondingly, we built the pre-

diction models in a cancer type-specific manner. For each can-

cer type, a set of digital markers was established by computa-

tional screening of individual drugs. Figure 2A shows the

comparison of the whole transcriptome and the screened digital

markers in when evaluating the treatment efficacy of fluorouracil

(5-FU) in colorectal cancer cell lines in the GDSC database. The
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Figure 1. Computational model to establish

multiplex gene-based digital markers

(A) The flow charts of the computational approach

for prediction of drug sensitivity in cancer cell lines

(upper) and patient samples (lower).

(B) The three gene filters used in screening the

digital markers for cancer cell lines.

(C) The two gene filters used in screening the digital

markers for patient samples.

ll
OPEN ACCESSArticle
cell lines are indicated by the yellow dots and mapped to the

two-dimensional (2D) space by principal-component analysis

(PCA). The background colors represent the drug sensitivity of

5-FU, rendered by KNN classification in the 2D feature space.

The prediction using the digital markers aggregates the drug-

sensitive and non-sensitive cell lines into two distinct groups in

the feature map, whereas the whole transcriptome group

(all genes) fails to prove its prediction ability. It suggests that

the digital marker-based prediction can better distinguish the

drug-sensitive and non-sensitive cell lines.

The ROC curves of cross-validation of prediction of drug

sensitivity are shown in Figures 2B and S3–S8 and Figures 2C

and S9 for cancer cell lines and patient tumors, respectively.

Table 1 summarizes the evaluation scores in Figures 2B and

2C. For both cancer cell lines and patient tumors, the AUC for

cross-validation reached scores above 0.9.

To test the generalizability of our model, we performed "cross-

prediction" for cell lines by training the KNNmodel in one dataset
(GDSC/CCLE) and predicting drug sensi-

tivity in the other dataset (CCLE/GDSC).

We compared the performance of three

prediction methods: (1) performing gene

filtering on both GDSC and CCLE and pre-

dicting drug sensitivity by 5-fold cross-

validation in GDSC and CCLE separately,

(2) using GDSC/CCLE as the training data-

set and predicting drug sensitivity by 5-

fold cross-validation in the same dataset,

(3) ‘‘cross-prediction,’’ using GDSC/CCLE

as the training dataset and predicting

drug sensitivity by 5-fold cross-validation

in CCLE/GDSC. Except for a few in-

stances, the performance of the cross-

prediction method was satisfactory,

reaching accuracy grades similar to that

of the controls (Figures 2B and S3–S8).

The digital markers of different cancer

type-drug pairs are finalized by method 1

and are listed in Tables S3 and S4 for can-

cer cell lines and patient samples, respec-

tively. Most digital marker genes were

proven essential for the progression in

certain cancers. For example, in the digital

markers of patient samples (Table S4), the

epithelial membrane protein 2 (EMP2)

occurred in patient samples of colorectal

cancer in response to 5-FU or oxaliplatin

administration (Table S4), representing a
novel therapeutic target for endometrial cancer stem cells,26,27

while the fact that the BAG cochaperone 3 (BAG3) occurred in

colorectal cancer cell lines exposed to 5-FU or oxaliplatin corre-

lates with apoptosis in treated colon cancer cell lines28 and

chemoresistance.29

Venn diagrams of cancer genes30 and digital markers of cancer

cell lines and tumors show both similarity and distinction between

digital marker genes and cancer genes (Figures S12 and S13;

Table 2). Many screened genes have oncotherapeutic implica-

tions. For example, the Fas cell surface death receptor is related

to apoptosis,31 activating T cell killing,32 and resistance in

tumor-immune conflict in colorectal cancer,33 while the BCL2-

associated X, an apoptosis regulator, is key to apoptosis34 and

p53 transcription pathways in lung cancer35 and also correlates

with chemoresistance to cisplatin.36,37

We also analyzed the robustness of the digital markers and the

top 200 genes filtered by the 2 datasets, respectively. We

compared the top 200 genes filtered by CCLE and GDSC,
Patterns 2, 100360, October 8, 2021 3
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Figure 2. Digital marker-based prediction of drug sensitivity on GDSC and CCLE datasets

(A) The two-dimensional PCA dimensionality reduction maps of colorectal cancer cell lines. The digital marker separates the sensitive and non-sensitive cell lines

to 5-FU, whereas the complete RNA-seq data fails to separate the two classes. The color represents the drug sensitivity of 5-FU, rendered by KNN classification

(legend continued on next page)
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Table 1. Evaluation scores of the cross-validation performance

Drug and sample Accuracy Precision Recall Specificity F1 weighted AUC

Cisplatin, colorectal cancer cell line

in GDSC

0.931 0.960 0.960 0.750 0.931 0.990

5-FU, colorectal cancer cell line in GDSC 0.839 0.833 1.000 0.167 0.788 0.900

Paclitaxel, colorectal cancer cell line

in GDSC

0.929 1.000 0.920 1.000 0.936 0.960

5-FU, COAD, and READ in TCGA 0.900 1.000 0.526 1.000 0.887 0.839

Capecitabine, STAD, and ESCA in TCGA 0.756 0.737 0.167 0.970 0.697 0.904

This table lists the evaluation scores of cross-validation of prediction of drug sensitivity for colorectal cancer cell lines and patient tumors (the same

instances as in Figures 2B and 2C). For cancer cell lines, the threshold of the Z score was �1.0 to distinguish sensitivity and non-sensitivity.
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individually, and confirmed the overlapped genes (Table S5). For

example, there were 30 overlapped genes in the top 200 genes

for lung cancer cell lines and cisplatin and 26 for lung cancer

cell lines and cyclophosphamide. For other cancer type-drug

pairs, the overlapped genes were fewer in number, probably

due to the limited data availability in the two datasets for training.

It also implied the importance of data accessibility in proceeding

with computation-based precision medicine.

The feasibility of gene screening as we demonstrated was

further proved by analyzing the biological representations of

some screened genes. For example, trefoil factor 1 (TFF1), a

small cysteine-rich protein that is frequently expressed in breast

tumors under estrogen control treatment, is highly related to the

migration of breast cancer cell lines;38,39 trefoil factor 3 (TFF3) is

a predictive biomarker of endocrine response in breast cancer40

and is associated with breast cancer phenotypes.41 TFF1 and

TFF3 overlapped frequently among the top 200 genes for breast

cancer cell lines and 8 cancer drugs used in our study. Similarly,

BCL9L plays a critical role in stem cell maintenance in epithelial

homeostasis and carcinogenesis through the canonical Wnt

signaling pathway in colon cancer.42 It is apparent that the

overlapping genes were either known cancer therapeutic targets

or their role is otherwise worth further exploration.

qPCR-based extremely rapid prediction of drug
sensitivity
qRT-PCR can be used to quantify the transcription levels of small

gene libraries (e.g., containing tens to hundreds of genes) within

a few hours, thus satisfying the needs of nearly instantaneous or

point-of-care evaluation. To prove the concept, we first investi-

gated the conversion of gene transcriptional values acquired

by qRT-PCR (as the model testing data) to TPM (transcripts

per million, see Table 2) values by RNA-seq (as the model

training data). The principles of qRT-PCR43 and RNA-seq23 sug-

gest that theOCq values (the difference of quantification cycles

between the target genes and the reference gene) in qRT-PCR

are linearly correlated to log(TPM).44
in the two-dimensional feature space. The color red refers to a higher probabilit

classification, k = 7; IC50 Z score threshold = �0.6.

(B) The ROC curves for cross-validation of prediction of drug sensitivity for colore

plot refer to filtering and scoring genes on both datasets (method 1), filtering an

different dataset (method 3). IC50 Z score threshold =�1.0. The upper row shows

more cancer type-drug pairs, see Figures S3–S8.

(C) The ROC curves for cross-validation of prediction of drug sensitivity for patient

5-FU, STAD (stomach adenocarcinoma), ESCA (esophogeal carcinoma), and ca
We first demonstrated this conversion on the colorectal cancer

cell line SW620 by using RNA-seq and qRT-PCR data acquired in

our laboratory. log(TPM) was replaced with log(TPM + 1) to avoid

the error when TPM = 0 and GAPDH was set as the reference

gene. Figure 3A shows a linear fit of the screened digital marker

genes. Using RNA-seq data from the GDSC database resulted

in a nearly identical graph (Figure 3B), demonstrating a robust

conversion between qRT-PCR and RNA-seq data. The fitted

parameters were then imported to the computational model with

an embedded conversion formula log(TPM + 1) = �0.3995 3
OCq + 5.6974 (to convert OCq to TPM).

To experimentally validate the use of digital markers, half of the

cells were treated with drugs of serially increased concentrations

and their viability rates to obtain the IC50 values were tested (Fig-

ures S10 and S11). The other half of the cells were lysed and

used in the qRT-PCR quantification of the digital marker genes.

The gene transcription values were then imported into the

computational model. The predicted drug sensitivity values

were compared with the experimental values for validation.

Digital markers accurately predict drug sensitivity of
cell lines and patient tumor organoids
Seven colorectal cancer cell lines (HCT-116, HT-29, SW620,

SW480, Caco-2, LoVo, and DLD-1) were cultured and adminis-

tered three chemotherapy drugs, cisplatin (Figure 4A), paclitaxel

(Figure 4B), and 5-FU (Figure 4C). The experimental and the pre-

dicted Z scores of the IC50 values presented nearly linear and

positive correlations. The wrong prediction is marked by a cross

in Figure 4B.

For drug effectiveness in cancer patients, clinical tracking and

prognosis of cancer chemotherapy take a few years to accom-

plish. Therefore, to shorten the course of validation, we used

patient-derived organoids to recapitulate gene expression and

mimic the responses of their parental tumors.15 Tumor organoids

have been proven to recapitulate tumor heterogeneity and

personalized responses to chemotherapies with the prediction

accuracy generally higher than 90%.45
y of non-sensitivity; green refers to a higher probability of sensitivity. For KNN

ctal cancer cell lines to cisplatin, paclitaxel, and 5-FU. The three curves in each

d scoring on an identical dataset (method 2), and filtering and scoring on the

the cross-validation testing results for GDSC, and the lower row for CCLE. For

samples. COAD (colon adenocarcinoma), READ (rectum adenocarcinoma) and

pecitabine are shown. For more cancer type-drug types, see Figure S9.

Patterns 2, 100360, October 8, 2021 5



Table 2. The terminology table

Terminology Abbreviation Meaning

Digital marker – the genes (and their transcription

quantification) screened to

predict drug sensitivity for

each cancer type-drug pair

Gene list – the list of digital marker genes

Gene library – the assembly of gene lists

or all drug candidates for

a certain cancer type

Chemo-drug – the non-targeted cancer

drugs

Cancer gene – genes in the COSMIC

Cancer Gene Census

Gene filter – the filters used to screen

digital markers

Half maximal

inhibitory

concentration

IC50 IC50 is a measure of

antagonist drug potency in

pharmacological research;

IC50 values represent the

concentration of a drug

that is required for 50%

inhibition in vitro

Transcripts per

million

TPM A normalized quantification

of transcription of RNA-seq

results
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Therefore, we used tumor organoids to approximate patient

tumor gene expression and drug responses. After in vitro culture

for 4–5 days, a group of tumor organoids were treated with

different concentrations of 5-FU for 72 h to obtain the IC50 values

(Figure S11). Another group was lysed and used for qRT-PCR.

The experimentally measured drug sensitivity, represented by

the IC50 values, and the predicted responses by the computa-

tional model, were compared.

Figure 4D shows the 2D PCA dimensionality reduction map of

the training data and the experimental data. The squares and cir-

cles are the training data possessing the effective and ineffective

treatment outcomes. The blue and red stars are the experimental

testing data of the effective and ineffective cases. The back-

ground colors are filled by the probability estimation (the probabil-

ity to be ineffective) of KNN classification in the 2D feature space,

green for effectiveness and red for ineffectiveness. From left to

right, the black dashed lines separate the space into "effective

zone," "intermediate zone," and "ineffective zone."

From the organoids derived from ten patient tumors we

observed that 5-FU administration proved effective (IC50 <

100 mM) in four cases and ineffective (IC50 > 100 mM) in six cases.

Figure 4E shows the experimental and predicted values for the ten

tumor samples. The prediction probability was positively corre-

lated with the experimentally measured IC50 values (in log form),

except for two false-positive predictions (Figures 4D and 4E); the

AUCscore of the experimental validation reached 0.88 (Figure 4F).

DISCUSSION

In conclusion, we have proposed and validated amultiplex gene-

based digital marker system to realize extremely rapid evaluation
6 Patterns 2, 100360, October 8, 2021
of drug sensitivity. For potential clinical practice, we have sug-

gested a pipeline of standard uses involving tumor sampling,

RNA extraction, qRT-PCR (or potentially gene chip) quantifica-

tion, and intelligent readout (i.e., drug recommendation).

Based on our model validation on organoids derived from pa-

tient tumors, we propose a clinical application pipeline for

extremely rapid and personalized drug recommendation (Fig-

ure 5). We will screen gene libraries, establish digital markers

for all the common cancers and their clinical therapeutic drugs,

and construct a user-friendly algorithm. When a patient is hospi-

talized, the doctor should obtain a sample of the tumor (e.g., via

surgery, gastrointestinal endoscopy, or biopsy) to extract the

transcriptomic materials. The transcriptional profile of the pre-

dictive digital marker should be then quantified using qRT-PCR

and input to the prediction algorithm to be processed. The algo-

rithm then outputs the predicted drug recommendation. The

whole process can be completed within 1–3 h post sampling,

satisfying the clinical need for immediate administration of

chemotherapy following hospitalization. The process can be

further improved by developing customized multiplex gene

microfluidic chips that can quickly quantify transcriptomics in

one small and portable device.

By using our customized computational model comprised of

gene filters and a KNN algorithm, we have demonstrated the

construction of small gene libraries containing digital markers

that can best predict drug sensitivity. For a given cancer type,

a small group (e.g., 10–20) of genes can predict a patient’s

response to a common chemotherapy drug; a larger library

(e.g., 50–200) of genes can predict the effects of several com-

mon drugs used in clinical practice to a specific cancer type.

Therefore, it may be feasible to establish gene libraries that cover

most clinical chemotherapy drugs and use them to construct

cancer type-specific digital markers.

Our model screened many genes possessing important drug

predictive abilities (Tables S6 and S7). Most of these digital

marker genes are not yet included in the recognized cancer

gene list30 but have been repeatedly reported in the literature

because of their importance in cancer progress or therapy. For

example, the screened genes, such as EMP2 and BAG3, have

become prevalent targets for cancer therapeutic studies, which

have been discussed in the Results, but theywere not included in

the current cancer gene list.30 The double check from both

molecular biology study and computational study may guide

the exploration of unspecific genes as targets for drug develop-

ment and personalized therapy.

Unlike traditional biomarkers that have defined biological

functions, (e.g., proteins, mRNA, or exosomes) digital bio-

markers do not have a defined biological significance. However,

experimental and computational evaluation support their power-

ful predictive capacity for applications such as drug sensitivity.

Further studies on large datasets may allow us to look into the

black box. The strategy of establishing digital virtual markers

may also reduce the cost and shorten the time course of new

biomarker development.

Limited data accessibility, high diversity, and lack of standard-

ization in biomedicine are common issues for computational-

based diagnosis and prognosis. Although this panorama is

quickly changing, learning how to extract useful information

from ‘‘small’’ data remains a valuable goal to achieve in the
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Figure 3. Comparison between OCq and TPM for gene transcrip-
tion quantification

The fitted linear relationship between log(TPM + 1), derived from RNA-seq of

the cancer cell line SW620 from (A) laboratory experiments and (B) the GDSC

dataset, andOCq measured by laboratory qRT-PCR. The reference gene for

qRT-PCR was GAPDH.
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medium term. This would allow us extract information from

much of the published literature on cancer biology to pretrain

algorithms on the resultant public datasets.

We now discuss the limitations of this study. First, the training

datasets from either cancer cell lines or patient tumors were

limited and inconsistent. This is because these data are

compiled from multiple different laboratories and patients. In a

future where biobank data are standardized and available for

most common cancer types, the predictive power of digital

markers will be expanded and its accuracy improved. Second,

the algorithm we used could be further improved by inputting

prior knowledge (e.g., known biological pathways and drug-pro-

tein interactions) which increases the complexity of the model

but is expected to increase its accuracy as well. Third, a recent

report5 classified tumors by master regulator proteins in their

pathways after finding their similarities across different cancer

types. This classification strategy may be integrated into the cur-

rent digital marker approach for improved prediction scope and

accuracy. In all, this study introduces the concept of a ‘‘digital

marker’’ for drug sensitivity, but its practical uses require further

studies to improve and validate.
This study aims to shorten the time from patient tumor sam-

pling to the start of administration of an effective treatment. We

therefore adopted a computational-based strategy to reduce

the library of genes to construct the predictive digital markers.

Other reported state-of-the-art methods can predict drug sensi-

tivity using RNA-seq data or thewhole transcriptome as the input

for the algorithm. However, this results in a longer time before

obtaining a prediction. Therefore, the direct comparison of this

study with those different algorithms was not performed, as it

can be misleading. The main focus of our method was on

providing rapid recommendations. Nonetheless, our method

provides a delightful solution toward extremely rapid evaluation

of personalized drug sensitivity, which might inspire more

computational work to serve this purpose with improved robust-

ness and accuracy.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests should be directed to and will be fulfilled by

the lead contact, Shaohua Ma (ma.shaohua@sz.tsinghua.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data and python codes of prediction of drug sensitivity and the graphic inter-

face are available from the GitHub repository at https://github.com/jqfan77/

cancer_digital_marker.git.

Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.

Tumor sampling

Patient tissues for tumor fabrication of organoids were collected under the

approval of The First Affiliated Hospital of Zhengzhou University Ethics

Committee and The Affiliated Cancer Hospital & Institute of GuangzhouMedical

University Ethics Committee, following both national and local regulations.

Tissues were stored in ‘‘ready-to-use’’ solution (Aqix, UK) with 100 mg/mLprimo-

cin (InvivoGen, USA) and transported to the laboratory under incubation on ice.

Culture of cell lines

The colorectal cancer cell lines presented in this study, including HCT-116,

HT-29, SW620, SW480, Caco-2, LoVo, and DLD-1, were provided by the Peter

E. Lobie Group at the Tsinghua Shenzhen International Graduate School

(SIGS). Cell lines SW620 and SW480 were grown in DMEM medium supple-

mented with 10% FBS (v/v) (Gibco, USA) and 1% penicillin/streptavidin (v/v)

(Gibco). DLD-1 was grown in RPMI medium with 10% FBS and 1% peni-

cillin/streptavidin. HCT-116 and HT-29 were grown in McCoy’s 5A medium

with 10% FBS and 1% penicillin/streptavidin. LoVo was grown in DMEM/

F12 medium with 10% FBS and 1% penicillin/streptavidin. All cell lines were

maintained at 37�C in a humidified incubator at 5% CO2.

Tumor dissociation and organoid culture

Tumor tissues were washed with cold 13 PBS with 5% penicillin/streptavidin

(v/v) (Gibco) and cut into sub-millimeter sized small pieces. Tissues were then

digested by 1 mg/mL collagenase IV (Gibco), 0.1 mg/mL DNase I (Sigma-Al-

drich, USA), 0.1 mg/mL dispase type II (Sigma-Aldrich), 100 mg/mL primocin

(InvivoGen) and 1% FBS (v/v) in DMEM/F12 medium on an orbital shaker at

37�C, incubated for 20–40 min. After tissue digestion, dissociated cells, cell

clusters, and microtissues were passed through a 100-mm cell strainer

(Corning, USA). Then the dissociated cells and cell clusters were resuspended

in DMEM/F12 and centrifuged at 1,000 rpm for 5 min.

The cells dissociated from tumor tissues were suspended in Matrigel

(Corning) at a density of 108 cells/mL. Organoids were formulated by following

the reported protocol developed by Jiang et al.46 Organoids were cultured in

medium containing 20% FBS (v/v), 1% penicillin/streptavidin, 13 GlutaMAX
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Figure 4. Experimental validation of digital marker-based prediction of drug sensitivity on cell lines and patient sample-derived tumor

organoids

(A–C) Comparison of the predicted sensitivity and themeasured sensitivity of (A) cisplatin, (B) paclitaxel, and (C) 5-FU, tested on seven colorectal cancer cell lines.

The axis values are the Z scores of the IC50 values for each drug. The cross in (B) shows the wrong prediction. The seven cell lines are HCT-116, HT-29, SW620,

SW480, Caco-2, LoVo, and DLD-1. Functions, R2, p values of linear regression, and the Pearson correlation coefficient r (the square root of R2) are shown.

(D) The two-dimensional PCA dimensionality reduction map of the training cohort and the testing cohort. The squares and circles are the training data possessing

effective and ineffective treatment outcomes. The blue and red stars are the testing data possessing effective and ineffective cases. The background color is filled

by probability estimation of KNN classification in the two-dimensional feature space, green for effectiveness and red for ineffectiveness. For KNN classification,

k = 30. Drug used here, 5-FU; cancer type, COAD and READ.

(E) Comparison between the predicted and measured drug effectiveness. The x axis shows the experimentally measured log10(IC50) values for tumor-derived

organoids. The y axis values show the probability of drug ineffectiveness, which are expected to correlate positively with the x axis values. The blue dots are

effective cases, whereas the red dots are ineffective cases. The wrong predictions are indicated by the red crosses. Drug used here, 5-FU; cancer type, COAD

and READ.

(F) The ROC curve for the predictive performance of drug effectiveness using tumor-derived organoids (AUC = 0.88).
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supplement (Thermo Fisher Scientific, USA), 13 B-27 supplement (Thermo

Fisher Scientific), 1.25 mM N-acetylcysteine (Sigma-Aldrich), 100 ng/mL

noggin (MedChemExpress [MCE], USA), 100 mg/ml R-spondin 1 (MCE),

5 ng/mL EGF (R&D, USA), 5 mM nicotinamide (Sigma-Aldrich), 5 mM Y-

27632 (R&D), 100 mg/mL primocin (InvivoGen) and 13 FibrOut (CHI Scientific,

USA) in DMEM/F12 medium. The medium was changed every 2 days.

Use of datasets GDSC, CCLE, and TCGA

We obtained the transcriptional and drug sensitivity (or prognosis) data from

the public datasets. The GDSC data were downloaded from https://www.

cancerrxgene.org/.We used data fromGDSC2, a newer version of GDSC con-

taining 809 cell lines and 198 compounds, in this study. The CCLE data were

downloaded from https://portals.broadinstitute.org/ccle. TCGA data were

downloaded from https://portal.gdc.cancer.gov/.

Gene filters

The gene filters were slightly different for cell lines and patient samples, but

the essential idea was the same: the genes were first filtered by their tran-
8 Patterns 2, 100360, October 8, 2021
scriptional level, and then by their correlation level, to drug sensitivity. In all

the filtering steps, TPM values across all samples were considered to

calculate the mean value, Pearson correlation coefficient, or the dispersion

scores.

For gene filters applied to cell lines

First, genes with mean expression level log(1 + TPM) > 1 (across all samples)

were retained. After this step, about one-third of the genes remained

(10,000–20,000 genes, the number was different for different cancer type-

drug pairs) (Figure 1B). Second, genes with a Pearson correlation coefficient

(between TPM and Z scores of IC50) > 0.25 were retained. After this step,

about 3,000 genes were retained. Third, genes were scored and rated by

the absolute values of the Fisher’s linear discriminant of the gene transcrip-

tion magnitudes between cell lines with the highest and lowest 15% of the

IC50 values. Genes were enumerated in the subsequent KNN algorithm by

order. KNN algorithm cross-validation determined the top m (m is the num-

ber of genes, m % 30) genes to be selected as digital markers to reach the

best performance.

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://portals.broadinstitute.org/ccle
https://portal.gdc.cancer.gov/


Figure 5. The proposed clinical application

pipeline of the digital marker-based rapid

drug effectiveness prediction

Figure createdwith Biorender (https://biorender.com).
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For gene filters applied to patient samples

First, genes with mean expression level log(TPM) > 0 (across all samples) were

retained. After this step, about 10,000–20,000 genes were retained (the number

was different for different cancer type-drug pairs) (Figure 1C). Second, genes

were scored and rated by the p values from theMann-Whitney U test. According

to the drug sensitivity label, patients were divided into two groups for each can-

cer type-drug pair. Mann-Whitney U test was performed on the TPM of each

gene across the two groups of patients. Scored and rated genes were enumer-

ated in the subsequent KNN algorithm with order. KNN algorithm cross-valida-

tion determined the top m (m is the number of genes, m % 30) genes to be

selected as digital markers to reach the best performance (Figures 1C and S14).

Gene selection and KNN enumeration

After applying the gene filters, the remaining genes were scored and rated ac-

cording to their importance for prediction of drug sensitivity. The KNN algo-

rithm was used to finalize the gene list for each drug. The top m (m = 1–30)

genes were enumerated in the subsequent KNN 5-fold cross-validation with

order. For each m, the parameter k of KNN was also enumerated to reach

the best cross-validation performance. Finally, the composition of the digital

markers and parameter k0 were determined with the desirable AUC score in

the 5-fold cross-validation process.

Gene selection was performed for each cancer type-drug pairs in most of

the situations. For cancer cell lines, to finalize the digital markers, we per-

formed gene filtering on both datasets separately and synthesized the scores

of genes as the rating criterion to finalize the gene candidate list. Then we per-

formed KNN cross-validation on CCLE/GDSC datasets according to the gene

candidate list to determine the digital markers for a certain cancer type-drug

pair. To test the robustness of the digital markers, we also screened digital

markers separately on CCLE and GDSC.

Thewet laboratory validation adopted a different procedure for gene selection.

For experimental validation of prediction of drug efficacy for cell lines, to select

the genes with the most stable prediction ability and reduce the impact of errors

(inconsistency) in the databases, the screened genes for all 198 drugs in the

GDSC dataset were calculated and the number of occurrences of each gene

was counted. Genes with more than 20 occurrences were considered to have

stable predictive ability in a specified tissue and were preferentially selected in

the gene list to compose the digital marker and for qRT-PCR quantification.

The genes were screened on the data from GDSC and CCLE separately, and

only genes screened from both databases were further analyzed.

Prediction of drug sensitivity

We performed the gene filtering process to screen gene candidates (which will

feed into the KNN model to generate the final digital markers) for each cancer

type-drug pair, which means that, for each cancer type-drug pair, we estab-

lished a set of digital markers. In total, we studied three cancer types and eight

drugs for cancer cell lines, and six cancer type-drug pairs for patient samples,

listed in Table S2.
For cell lines, we built the model based on the

data in both CCLE and GDSC (method 1). We

filtered and scored the genes in both datasets sepa-

rately, and then added the scores of each gene ob-

tained in the two datasets and finally got their scores

and ranks. Then we performed 5-fold cross-valida-

tion on the ranked genes to compose the digital

markers and predicted drug sensitivity values on

the two datasets separately. To test the generaliza-

tion of our model, we performed "cross-prediction"

(method 2) for cell lines, i.e., predicting drug sensi-

tivity of one dataset (CCLE/GDSC) using the ranked

genes filtered by the other dataset (GDSC/CCLE).
Training and testing the model in the same dataset was also performed for

comparison (method 3).

For patient samples, we performed 5-fold cross-validation on the ranked

genes and obtained the prediction models and digital markers when reaching

the best performance. Six cancer type-drug pairs were analyzed (Table S2),

and the prediction outcome of COAD, READ, and 5-FU was validated by

experiment.

Graphic user interface for prediction of drug sensitivity of cancer

cell lines

The Tkinter package in python was used to set up the graphic user interface

(GUI) to show the possible process of prediction of drug sensitivity as well

as drug recommendation. The codes can be downloaded in GitHub. By

entering ‘‘python GUI.py’’ in the command line window, you can run the GUI

program. In the GUI, first, a file containing digital marker genes and gene tran-

scription levels (in TPM form) is required. After uploading the file and selecting

cancer type, the prediction result is shown by clicking the ‘‘Predict’’ button.

The IC50 values and Z scores of the IC50 values of the four drugs are shown.

Relative Z scores of IC50 are computed by normalizing the IC50 values among

the cell lines of the certain cancer type, and are considered to determine

whether the drug is effective or not. Drugs with relative Z scores below �1

are considered ‘‘sensitive’’ and shown in green, and those with relative Z

scores above 1 are considered ‘‘non-sensitive’’ and shown in red, and others

shown in black represent ‘‘neutral’’ outcomes.

Experimental evaluation of drug sensitivity

For evaluation of the drug sensitivity of cancer cell lines, cells were seeded in

96-well plates at a density of 4,000 cells per well. Drugs (cisplatin, paclitaxel,

and 5-FU, purchased fromMCE) of seven different concentrations (Figure S10)

were tested. The drugs were first solubilized in DMSO. Each dosing condition

was tested with four replicates (i.e., four wells containing 2D cultured cells).

After 72 h treatment, a cell viability assay, using the Cell Counting Kit 8

(HY-K0301, MCE), was conducted according to the manufacturer’s

instructions.

For evaluation of the drug sensitivity of tumor organoids, we adopted the

protocol from Jiang et al.46 Tumor organoids were cultured in the 96-well

plates (two organoids per well). 5-FU of seven different concentrations (0,

1, 10, 50, 100, 200, 500 mM in DMSO) were tested (Figure S11). Each dosing

condition was tested with five replicates (i.e., five organoid-containing wells).

After 72 h treatment, a CellTiter-Glo 3D cell viability assay (Promega, USA)

was employed to detect cell viability according to the manufacturer’s instruc-

tions. The cell viability rates were calculated. The drug response curves were

fitted by GraphPad, and IC50 values were calculated.

RNA-seq and cDNA preparation

RNA-seq data for cell lines were acquired using GENEWIZ (Suzhou, China).

The cell lines in culture were sent to GENEWIZ to perform standard RNA-seq
Patterns 2, 100360, October 8, 2021 9
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analysis. Total RNA of both cell lines and tumor organoids were extracted us-

ing the Eastep Super Total RNA Extraction Kit (Promega)/RNeasy Mini Kit (-

QIAGEN, Germany), following the manufacturer’s instructions. The purity

and concentration of RNA were determined by using a NanoDrop 2000 spec-

trophotometer (Thermo Fisher Scientific). RNA (1–2 mg) were used to prepare

cDNA using the PrimeScript RT Reagent Kit (TaKaRa, Japan) with random

primers and oligo dT primers.

qRT-PCR assay

qRT-PCR were performed in 96-well plates (Sangon, China) on a Real-Time

PCR Detection system (Bio-Rad, USA). Primer sequences and characteristics

are described in Tables S8 and S9. The qRT-PCR reaction mix was composed

of 12.5 mL GoTaq Green Master Mix, 2X (Promega), 10 mM upstream primer,

10 mMdownstream primer, 2 mLDNA template, and 25 mL nuclease-free water.

Cycling reaction conditions were 95�C for 10 min, 40 cycles of 95�C for 15 s,

and 60�C for 1 min. All qRT-PCR experiments were performed with three bio-

logical replicates. All qRT-PCR data are shown in the Figures S15 and S16.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100360.
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