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Abstract Reactive oxygen species (ROS) are by-products of cellular respiration that can promote

oxidative stress and damage cellular proteins and lipids. One canonical role of ROS is to defend the

cell against invading bacterial and viral pathogens. Curiously, some viruses, including herpesviruses,

thrive despite the induction of ROS, suggesting that ROS are beneficial for the virus. However, the

underlying mechanisms remain unclear. Here, we found that ROS impaired interferon response

during murine herpesvirus infection and that the inhibition occurred downstream of cytoplasmic

DNA sensing. We further demonstrated that ROS suppressed the type I interferon response by

oxidizing Cysteine 147 on murine stimulator of interferon genes (STING), an ER-associated protein

that mediates interferon response after cytoplasmic DNA sensing. This inhibited STING

polymerization and activation of downstream signaling events. These data indicate that redox

regulation of Cysteine 147 of mouse STING, which is equivalent to Cysteine 148 of human STING,

controls interferon production. Together, our findings reveal that ROS orchestrates anti-viral

immune responses, which can be exploited by viruses to evade cellular defenses.

Introduction
Reactive oxygen species (ROS) are reactive chemicals generated primarily in mitochondria as a

byproduct of oxidative metabolism (Schieber and Chandel, 2014). Due to their capacity to inacti-

vate DNA, proteins and lipids, ROS induce cell death and defend cells against many pathogens.

However, accumulating evidence suggests that ROS also control cellular signaling pathways. ROS

regulation of signal transduction allows cellular pathways to rapidly adapt to changes in the oxida-

tive environment.

Even though some pathogens are effectively controlled by ROS, other pathogens thrive in a cellu-

lar environment where ROS are abundant (Paiva and Bozza, 2014). For instance, DNA viruses such

as Kaposi’s sarcoma associated herpesvirus (KSHV), herpes simplex virus-1 (HSV-1) and Epstein Barr

virus (EBV), all induce oxidative stress in cells. Moreover, treatment with antioxidants such as N-ace-

tyl-cysteine (NAC) reduces viral burden (Paiva and Bozza, 2014). In the case of herpesviruses, ROS

not only enhance replication, but also induce virus reactivation from latency and potentially contrib-

ute to virally induced cancers (Bottero et al., 2013; Chen et al., 2018; Gao et al., 2018; Gonzalez-

Dosal et al., 2011; Ma et al., 2013; Ye et al., 2011). The underlying mechanism for ROS promotion

of virus replication and reactivation remains to be investigated. One possibility is that ROS regulate

the signaling pathways that activate the immune response to these viruses, in particular, the DNA

sensing pathways.

DNA normally localizes to the nucleus, and the presence of DNA in the cytosol serves as a univer-

sal danger signal to activate pattern recognition receptors (PRRs) that distinguish self from non-self.

Upon virus infection, cytosolic DNA is recognized by DNA sensors such as cyclic GMP-AMP synthase
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(cGAS), which catalyzes formation of an atypical cyclic di-nucleotide second messenger 20,30-cGAMP.

20,30-cGAMP binds and activates the Stimulator of Interferon Genes (STING) to induce production of

type I interferon (IFN) and stimulate an immune response that promotes virus clearance

(Motwani et al., 2019; Wu and Chen, 2014). Structural analysis of STING suggests that STING poly-

merization is necessary for its activation and that some cysteine residues may mediate STING poly-

merization by forming intermolecular disulfide bonds (Ergun et al., 2019; Jin et al., 2010;

Shang et al., 2019). The chemical nature of cysteines is such that these residues are regulated by

redox modifications, such as oxidation. However, post-translational modifications on STING cys-

teines have not been identified.

Because herpesviruses are DNA viruses that induce ROS and engage the cGAS/STING pathway,

we hypothesized that ROS antagonize the production of interferon downstream of cGAS/STING dur-

ing herpesvirus infection. Here, we found that ROS increased replication of murine gammaherpesvi-

rus-68 (MHV68), a close genetic relative of KSHV and EBV. We also found that ROS suppressed

interferon production in a STING-dependent manner. We further showed that the murine STING cys-

teine residue, C147 (equivalent to human C148), was oxidized upon ROS-inducing menadione treat-

ment and that this cysteine was required for oxidation-sensitive inhibition of STING. Collectively, our

results suggested that redox modification of STING is an important regulatory mechanism for STING

activity during viral infection.

Results

ROS promote herpesvirus replication in macrophages
To determine if ROS promote a cellular environment conducive to virus replication, we used menadi-

one as a tool to manipulate the level of ROS in cells. Menadione, also known as vitamin K3, is par-

tially reduced by complex I in the mitochondria. The resulting semiquinone then participates in a

redox cycle to partially reduce molecular oxygen, which generates ROS (Iyanagi and Yamazaki,

1970). Although prolonged treatment of a high dose of menadione leads to cell death, we deter-

mined a dose of menadione in bone marrow-derived macrophages (BMDMs) that induced no signifi-

cant cell death (Figure 1A). Further, short-term treatment with menadione did not induce significant

cell death even at a relatively high dose (Figure 1A). Menadione treatment is reported to reduce

the glutathione/glutathione disulfide (GSH/GSSG) ratio and increase accumulated cellular ROS

(Chuang et al., 2002; Loor et al., 2010). Consistent with these reports, we observed decreased

gene expression of glutathione-disulfide reductase (Gsr) and glutamate-cysteine ligase regulatory

subunit (Gclm1) with low-dose of menadione treatment. Therefore, menadione treatment of macro-

phages resulted in elevated oxidant levels in the cells (Figure 1B).

Because many viruses exploit ROS to facilitate their replication, we tested if increased ROS in

macrophages affects growth of MHV68. To test the effects of ROS on virus replication, we first

treated macrophages with low doses of menadione for sixteen hours, which increased cellular ROS

while maintaining cell viability before virus infection. Macrophages were then infected with MHV68

at a multiplicity of infection (MOI) of 5 and virus growth was determined at indicated time points.

Menadione treatment increased replication of MHV68 in a dose-dependent manner (Figure 1C).

Hydrogen peroxide (H2O2) is a membrane permeable ROS, which induces secondary ROS produc-

tion in cells upon extended treatment (Fisher, 2009). We pretreated macrophages with H2O2 at dif-

ferent concentrations for sixteen hours. The pretreatment was done in media containing FBS to

maintain a cellular environment conducive to virus replication. We then infected macrophages with

MHV68 at MOI of 5. Twenty-four hours after infection, cells expressing MHV68 lytic proteins were

quantified using flow cytometry (Reese et al., 2014). Treatment with H2O2 increased the percentage

of lytic protein positive cells in a dose-dependent manner (Figure 1D). Therefore, ROS induced by

oxidants promoted MHV68 replication in macrophages.

ROS inhibit interferon response upon STING activation
We next determined whether ROS antagonized the antiviral response to promote herpesvirus repli-

cation. Because of the central role of interferons in controlling viral replication, we asked if ROS pro-

moted MHV68 replication by inhibiting the interferon response. We first tested whether menadione

treatment impacts virus growth in wildtype (WT) control macrophages and type I interferon receptor

Tao et al. eLife 2020;9:e57837. DOI: https://doi.org/10.7554/eLife.57837 2 of 23

Research article Immunology and Inflammation Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.57837


knockout (Ifnar1-/-) macrophages (Muller et al., 1994). While menadione treatment robustly

increased virus growth in WT macrophages, it did not increase virus growth in Ifnar1-/- macrophages,

suggesting that menadione interfered with the interferon response during virus infection

(Figure 2A). Consistent with this idea, macrophages treated with menadione had significantly fewer

transcripts of Ifnb and interferon stimulated genes (ISGs), Cxcl10, Ccl5, Isg20 and Isg15 (Figure 2B

and C).

Because interferon responses are induced by multiple PRR signaling pathways after virus infec-

tion, we tested which PRR pathways were inhibited by ROS. Menadione treatment inhibited Ifnb

expression upon interferon stimulatory DNA (ISD) stimulation, which engages the cGAS pathway. In

contrast, menadione did not significantly alter the interferon response induced by poly I:C (sensed

primarily by RIG-I) or poly dA:dT (sensed by multiple PRRs) (Figure 2—figure supplement 1). These

results suggested that menadione-induced ROS selectively inhibited the cGAS-STING induced inter-

feron response.

Sensing of cytosolic DNA involves the well-characterized cGAS signaling axis, which involves

downstream components such as STING, TBK1 and IRF3. To further pinpoint which step of the

D

400 200 100

0

5

15

10

***

***

0.5 2 16

40

80

120

0

5

10

3.125 µM
6.25 µM
12.5 µM
25 µM
50 µM
100 µM

A

C

0 4020 60 80 120

Vehicle

Mena 8µM

Mena 2µM

Mena 4µM

0.0

0.4

0.8

1.2

**

***

0.0

0.4

0.8

1.2
*

B

G
s
r 

m
R

N
A

 e
x
p

re
s
s
io

n

(N
o

rm
a

liz
e

d
 t
o

 G
a

p
d

h
)

G
c
lm

1
 m

R
N

A
 e

x
p

re
s
s
io

n

(N
o

rm
a

liz
e

d
 t
o

 G
a

p
d

h
)

C
e

ll 
D

e
a

th
 (

%
)

V
ir
u

s
 T

it
e

r 
(p

fu
/m

l)

M
H

V
6

8
 l
y
ti
c
 p

ro
te

in

p
o

s
it
iv

e
 c

e
lls

 (
%

)

Time (h)

Time (h) H
2
O

2 
(µM)

Vehicle

Veh
ic
le

M
en

a 
4 

µ
M

M
en

a 
8 

µ
M

Veh
ic
le

M
en

a 
4 

µ
M

M
en

a 
8 

µ
M

107

106

105

104

103

Figure 1. ROS promote herpesvirus replication in macrophages. (A) Fully differentiated bone marrow-derived

macrophages (BMDMs) were treated with vehicle or different concentrations of menadione as indicated. Cell

viability was determined at 0.5 hr, 2 hr and 16 hr after treatment. n = 2 with two technical repeats each time. (B)

BMDMs were treated with vehicle, 4 mM or 8 mM menadione for 16 hr. Transcripts of Gsr and Gclm1 were

determined using qRT-PCR. n = 6. (C) BMDMs were treated with vehicle or different concentrations of menadione

(mena) for 16 hr and then infected with MHV68 at multiplicity of infection (MOI) = 5. Virus titer was determined by

plaque assay at 0 hr, 24 hr, 48 hr, 72 hr and 96 hr after infection. n = 3 with three technical repeats each time. (D)

BMDMs were treated with vehicle or different concentrations of H2O2 for 16 hr in culture medium containing 10%

fetal bovine serum, then infected with MHV68 at MOI = 5. Twenty-four hours after infection, cells were fixed and

cells expressing virus lytic proteins were determined by flow cytometry. n = 3 with two technical repeats each time.

Data are shown as mean ± SE, an ordinary one-way ANOVA was performed followed by Dunnett’s multiple

comparison test, only the p value for the most relevant comparisons are shown for simplicity. *, p<0.05, **, p<0.01,

***, p<0.001.
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Figure 2. ROS inhibit interferon response upon STING activation. (A) BMDMs isolated from WT or Ifnar-/- mice were treated with vehicle or 8 mM

menadione for 16 hr, then infected with MHV68 at MOI = 5. Virus titer was determined by plaque assay at 0 hr, 10 hr, 24 hr, 48 hr and 72 hr after

infection. n = 1 with three technical repeats. (B, C) BMDMs were treated with vehicle, 4 mM or 8 mM menadione for 16 hr, then infected with MHV68 at

MOI = 5. Transcripts of Ifnb (B) or ISGs (Cxcl10, Isg20, Ccl5, Isg15) (C) were determined at 6 hr after infection. n = 6. (D) BMDMs were treated with

Figure 2 continued on next page
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cGAS-STING pathway is regulated by ROS, we directly induced STING activation with DMXAA and

2’,3’-cGAMP, two murine STING ligands. Ifnb expression induced by DMXAA and 2’,3’-cGAMP was

strongly inhibited by different doses of menadione (Figure 2D, Figure 2—figure supplement 2).

Furthermore, treatment with the antioxidant N-acetyl-L-cysteine (NAC) restored Ifnb expression

when combined with menadione (Figure 2E). To directly induce ROS in cells, we pulsed macro-

phages with H2O2 for 10 min prior to DMXAA stimulation. Similar to menadione treatment, H2O2

dose-dependently repressed transcription of Ifnb after DMXAA stimulation (Figure 2F). Addition of

NAC after H2O2 partially rescued Ifnb expression (Figure 2G). Collectively, these data suggest

that ROS directly inhibited interferon production downstream of cGAS sensing.

Our next question was whether ROS inhibit interferon production in non-macrophage cell types.

ROS production is a critical effector mechanism for macrophages to fend off microbial challenges

(Van Acker and Coenye, 2017; Fang, 2011). However, the high levels of ROS produced by macro-

phages requires the existence of intrinsic protective mechanisms against ROS, which otherwise

would result in premature death of these immune cells during inflammatory responses. Indeed, mac-

rophages are equipped with multiple mechanisms that allow them to be more resistant to ROS than

other cell types (Virág et al., 2019). To test whether ROS inhibition of interferon production is a

general immunoregulatory mechanism that functions in cells other than macrophages, we pulsed pri-

mary fibroblasts with H2O2 at the same concentration as we used in macrophages, followed by acti-

vation of STING with DMXAA. The expression of Ifnb in fibroblasts was not repressed, but rather

slightly increased by H2O2 treatment (Figure 2—figure supplement 3). This is consistent with the

notion that MEFs are more susceptible to ROS, which induces mitochondrial DNA fragmentation

and primes interferon response (West et al., 2015). Therefore, ROS may negatively regulate inter-

feron response in a cell-type and concentration dependent manner.

Endogenous ROS regulate interferon response
Because ROS are constantly generated by cellular respiration, cells contain low levels of ROS in the

absence of exogenous stimulation. We therefore tested if endogenous ROS regulate the interferon

response after STING activation. We first pretreated mouse macrophages with NAC to deplete

endogenous ROS, then infected cells with MHV68. We observed elevated Ifnb and ISG expression

with NAC treatment (Figure 3A and B). We also observed increased Ifnb transcripts when macro-

phages were cotreated with NAC and DMXAA, compared with DMXAA alone (Figure 3C). Peroxi-

somes are metabolically active organelles and are an important source of ROS in macrophages.

ACOX1 is the rate-limiting enzyme that metabolizes long chain fatty acid in peroxisomes and is a

major producer of H2O2. Using macrophages from Acox1-/- mice (Fan et al., 1996), we observed

increased Ifnb expression upon DMXAA stimulation compared to those isolated from the WT litter-

mate controls (Figure 3D). We did not observe an inhibition in MHV68 virus growth by NAC pre-

treatment or in Acox1-/- macrophages compared with wildtype (Figure 3—figure supplement 1).

We speculate that the differences we observed in interferon levels caused by neutralizing basal ROS

may not be sufficient to confer a viral growth difference, but these differences could be more

Figure 2 continued

vehicle or different concentrations of menadione as indicated for 30 mins, then stimulated with DMXAA at 1 mg/ml. Transcripts of Ifnb were determined

at 2 hr after stimulation. n = 3. (E) BMDMs were treated with vehicle, 25 mM menadione or 25 mM menadione and 2 mM NAC for 30 mins, then

stimulated with 1 mg/ml DMXAA. Transcripts of Ifnb were determined at 2 hr after stimulation. n = 3. (F) BMDMs were treated with vehicle or different

concentrations of H2O2 in serum free medium for 10 mins, then stimulated with 1 mg/ml DMXAA. Transcripts of Ifnb were determined 2 hr after

stimulation. n = 3. (G) BMDMs were treated with vehicle, 200 mM H2O2 for 10 mins or 200 mM H2O2 for 10 mins followed by 5 mM NAC for 30 mins,

then stimulated with 1 mg/ml DMXAA. Transcripts of Ifnb were determined 2 hr after stimulation. n = 4. Data are shown as mean ± SE, statistical

analysis was conducted using two-way ANOVA followed by Tukey’s multiple comparison test, only the p value for the most relevant comparisons are

shown for simplicity. *, p<0.05, **, p<0.01, ***, p<0.001.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. ROS regulate interferon response in macrophages upon STING activation.

Figure supplement 2. ROS regulate interferon response in macrophages upon STING activation with 2’,3’-cGAMP.

Figure supplement 3. ROS do not suppress interferon in primary fibroblasts.
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significant in the context of a genetic background that predisposes to elevated interferon and

autoimmunity.

ROS regulate interferon response by inhibiting STING polymerization
We next determined how ROS regulate STING-induced interferon production. STING is a transmem-

brane protein anchored on the endoplasmic reticulum (ER) as a dimer in the absence of stimulation.

Upon activation, STING undergoes a conformational change and rearranges to form a polymer

(Ergun et al., 2019; Ishikawa et al., 2009; Tanaka and Chen, 2012). It is then transported to the

Golgi complex where it recruits TBK1, leading to TBK1 phosphorylation. STING also serves as a scaf-

folding protein to specify phosphorylation of IRF3 by phosphorylated TBK1 (pTBK1). Phosphorylated

IRF3 (pIRF3) translocates to the nucleus and induces IFNb transcription (Wu and Chen, 2014). To

analyze activation of this pathway, we induced STING activation with DMXAA after treating BMDMs

with H2O2 for 10 mins, and measured protein expression of STING, TBK1, and IRF3 at 0 mins, 30
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Figure 3. Endogenous ROS regulate interferon response upon STING activation. (A, B) BMDMs were treated with

2 mM NAC for 30 min, then infected with MHV68 at MOI = 5. Transcripts of Ifnb (A) or ISGs (Cxcl10, Isg20, Ccl5,

Isg15) (B) were determined 6 hr after infection. n = 6. (C) BMDMs were treated with 2 mM NAC for 30 min, then

stimulated with 1 mg/ml DMXAA. Transcripts of Ifnb were determined 2 hr after stimulation. n = 4. (D) BMDMs

isolated from Acox1-/- or WT littermate control were stimulated with 1 mg/ml DMXAA. Transcripts of Ifnb were

determined 2 hr after stimulation. n = 4. Data are shown as mean ± SE, statistical analysis was conducted using

two-way ANOVA followed by Tukey’s multiple comparison test, only the p value for the most relevant comparisons

are shown for simplicity. *, p<0.05, **, p<0.01, ***, p<0.001.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Inhibition of endogenous ROS has no effect on virus replication.
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mins, 60 mins and 90 mins after stimulation (Figure 4A). H2O2 treatment did not change the basal

protein levels of STING, TBK1 or IRF3. However, pTBK1 and pIRF3 were significantly inhibited by

H2O2 treatment. We also found that H2O2 inhibited TBK1 phosphorylation in a dose-dependent

manner (Figure 4B). When using menadione to induce cellular ROS, pTBK1 and pIRF3 were also

inhibited by menadione treatment (Figure 4C). These data suggest ROS inhibit interferon signaling

upstream of TBK1 activation, possibly by inhibiting STING activation.

Next, we measured herpesvirus growth to test whether STING is required for the inhibitory effect

of ROS on interferon. To this end, we quantified virus growth in WT and STING-deficient macro-

phages (Sauer et al., 2011). Menadione increased virus growth in WT macrophages but had no

effect on virus growth in STING-deficient macrophages, supporting our hypothesis that ROS inhib-

ited interferon in a STING-dependent manner (Figure 4D).

We subsequently determined if polymerization of STING was regulated by ROS, because STING

polymerization is an early event in STING activation that occurs prior to translocation to the ER. In

the absence of stimulus, STING monomers spontaneously form dimers. This process does not involve

covalent linkage between the monomers. In contrast, STING polymerization requires the formation

NAC

DMXAA

Mena

0 20 40 60 80

A

ED

0 20 40 60 80

DMXAA

Mena

SDHA

pTBK1

STING

Non-reducing

STING

pIRF3

pTBK1

pIRF3

STING

SDHA

B C

pTBK1

pIRF3

STING

TBK1

IRF3

SDHA

DMXAA

H
2
O

2

-

-

-

- -

+ +

+

+

-

+

+ -

+ +

+

30 min 60 min 90 min

pTBK1

SDHA

DMXAA

H
2
O

2 
(µM)

- - - - + + + +

0 100 200 4000 100 200 400

-

-

-

- -

+ +

+

+

-

+

+ -

+ +

+

30 min 60 min 90 min

- - - + + +

+- + + - +

-- - + - +

M

D

107

106

105

104

103

Vehicle

Menadione

Vehicle

Menadione

107

106

105

104

103

V
ir
u

s
 T

it
e

r 
(p

fu
/m

l)

V
ir
u

s
 T

it
e

r 
(p

fu
/m

l)

WT Stinggt/gt

Time (h) Time (h)

Figure 4. ROS regulate interferon response by inhibiting STING dimerization. (A) BMDMs were treated with

vehicle or 200 mM H2O2 for 10 min in serum free culture medium, then stimulated with 1 mg/ml DMXAA. Western

blots of TBK1, IRF3, STING, pTBK1 and pIRF3 were performed at 0 min, 30 min, 60 min and 90 min after

stimulation. Data shown are representative of 2 independent experiments. (B) BMDMs were treated with vehicle or

different concentrations of H2O2 in serum free culture medium for 10 mins, then stimulated with 1 mg/ml DMXAA.

Level of pTBK1 was determined at 60 min after stimulation. n = 1 (C) BMDMs were treated with vehicle or 25 mM

menadione for 30 min, then stimulated with 1 mg/ml DMXAA. Western blot of TBK1, IRF3, STING, pTBK1 and

pIRF3 was performed at 0 min, 30 min, 60 min and 90 min after stimulation. Data shown are representative results

of two independent experiments. (D) BMDMs isolated from WT control or Stinggt/gt mice were treated with vehicle

or 8 mM menadione for 16 hr, then infected with MHV68 at MOI = 5. Virus titer was determined by plaque assay at

0 hr, 10 hr, 24 hr, 48 hr and 72 hr after infection. n = 3 with three technical repeats each time. (E) BMDMs were

treated with vehicle, 25 mM menadione, 25 mM menadione and 2 mM NAC for 30 min, then stimulated with 1 mg/

ml DMXAA. STING polymerization was determined by non-reducing SDS-PAGE. M: STING monomer; D: STING

dimer. Data shown are representative of 2 experiments.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Schematic diagrams of STING monomer, dimer and polymer on different electrophoresis

gels.

Figure supplement 2. ROS decrease TBK1 recruitment during STING activation.
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of interdimer disulfide bonds (Ergun et al., 2019). Therefore, polymerized STING appears as a

dimer on non-reducing SDS-PAGE, as SDS disrupts only the non-covalent interactions, leaving cova-

lent disulfide bonds between the monomers intact (Figure 4—figure supplement 1). As expected,

DMXAA induced STING polymerization (shown as a dimer) and phosphorylation of TBK1 and IRF3.

However, polymerization was significantly inhibited by menadione treatment, and restored by the

addition of NAC (Figure 4E). As a result of decreased STING polymerization, the recruitment of

TBK1 upon DMXAA stimulation was also diminished (Figure 4—figure supplement 2). In conclusion,

ROS regulate interferon signaling by inhibiting STING polymerization.

ROS oxidization of STING at Cysteine-148 blocks STING activation
The next question we addressed was whether ROS oxidized STING, thus inhibiting polymerization.

Recent structural studies suggest that STING polymerization and activation require formation of an

intermolecular disulfide bond at Cysteine 148 (Ergun et al., 2019). The ability of C148-C148 disul-

fide bonds to bridge STING dimers suggests that the residue harbors a free thiol prior to stimula-

tion. Because free thiol functional groups are susceptible to oxidation, we hypothesized that ROS

inhibit STING function by oxidizing this free thiol group. To test this hypothesis, we treated human

STING (hSTING) overexpressing fibroblast cells with menadione or hydrogen peroxide, followed by

labeling of free thiols on STING with 5-iodoacetamido-fluorescein (5-IAF) in cell lysate. We then

immunoprecipitated STING protein and blotted for STING and fluorescein (FITC). Treatment with

either menadione or H2O2 decreased the level of free thiols on STING, measured as decreased FITC

signal relative to STING protein (Figure 5A). In addition, we treated mouse macrophages with

diamide, a reagent that specifically oxidizes free thiols to form disulfide bonds (Kosower and

Kosower, 1995). Although diamide treatment induced formation of the STING polymer, such poly-

mers were likely not functional because STING activation requires ligand-induced conformational

change (Shang et al., 2019). This was consistent with our observation that diamide treated macro-

phages failed to phosphorylate TBK1 and upregulate Ifnb upon DMXAA stimulation (Figure 5B and

C). Thus, ROS oxidized free cysteine(s), thereby blocking the activation of both overexpressed

human STING and endogenous mouse STING.

To identify the precise site of modification on STING, we labeled both reduced and oxidized cys-

teines with iodoacetamide (IAM) and N-ethylmaleimide (NEM) on STING. First, we treated mouse

macrophages with vehicle control or menadione. This was followed by alkylation of free thiols by

IAM, labeling reduced cysteines (Cysred). We then immunoprecipitated STING, reduced oxidized thi-

ols, and alkylated the DTT-reduced thiol groups with NEM, labeling oxidized cysteines (Cysox). We

lastly quantified the ratio of IAM (identified as Carbamidomethylation, CAM)/NEM modification on

specific cysteines using liquid chromatography with tandem mass spectrometry (LC-MS/MS)

(Figure 5D; Wu et al., 2020). By this effort, we determined that C147 of endogenous murine STING

was modified by both CAM and NEM (Figure 5—figure supplement 1). While very low levels of

NEM modification (Cysox) were detected on C147 of endogenous murine STING in vehicle-treated

sample, approximately one quarter of C147 was modified by NEM with menadione treatment, indi-

cating increased oxidation of C147 (Figure 5E and F). This cysteine residue is highly conserved

across all mammalian species (Figure 5—figure supplement 2) and is critical for STING function.

C147 in mouse is equivalent to C148 in human STING. A C148A mutant of hSTING is unable to form

an intermolecular disulfide bond and induce interferon response upon stimulation (Ergun et al.,

2019). To confirm the critical role C148 in STING polymer formation, we treated 293 T cells overex-

pressing a C148A mutant of hSTING with diamide. While diamide induced formation of polymer on

WT STING, we observed significantly less polymer formation with diamide on the C148A mutant

(Figure 5G). Altogether, we propose that C147 on murine STING and C148 on human STING are

oxidized by ROS, thereby blocking STING activation.

ROS regulate MHV68 replication in vivo
We have shown in vitro that ROS regulate interferon induction; however, whether this regulation is

physiologically important remains to be investigated. To address this question, we either induced

ROS with menadione or inhibited endogenous ROS with NAC in mice. We then infected mice with a

luciferase tagged-MHV68 reporter virus and monitored acute replication of the virus by luciferase

signal (Figure 6A; Hwang et al., 2008; Reese et al., 2014). Treatment of mice with 10 mg/kg
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Figure 5. ROS oxidize C148 on STING. (A) Sting-/- fibroblasts stably expressing HA-tagged human STING were treated with vehicle or 200 mM H2O2 in

serum free medium for 10 min. Cell lysates were incubated with 5 mM 5-IAF for 1 hr at room temperature to label free thiols. Protein levels of STING

and FITC were detected after immunoprecipitation for HA-tagged protein. Data shown are representative results of two independent experiments. (B,

C) BMDMs were treated with 200 mM diamide for 30 mins. STING polymers (B, n = 2) and Ifnb transcripts (C, n = 4) were determined at 1 hr after 1 mg/

ml DMXAA stimulation. M: STING monomer; D: STING dimer. Bars represent the mean ± SE, p value was calculated using two-way ANOVA followed

by Tukey’s multiple comparison test. Only the p values for the most relevant comparison are shown for clarity purpose. ***, p<0.001. (D) Schematic of

differential alkylation (IAM labeling followed by DTT reducing and NEM labeling) of cysteines for mass spectrometry analysis. (E) Mass spectra of IAM-

and NEM-modified STING in vehicle and menadione treated samples. n = 1 (F) Quantification of Cysred and Cysox from mass spectrometry analysis. (G)

Vectors with WT STING or C148A mutated STING were transfected into HEK293T cells. Twenty-four hours after transfection, cells were treated with

vehicle or 200 mM diamide for 30 min. Polymer of STING was determined with non-reducing SDS-PAGE. M: STING monomer; D: STING dimer. n = 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Representative MS/MS spectra of SAVC147EEK peptide in STING protein modified by both IAM (CAM) and NEM.

Figure supplement 2. Sequence alignment of STING from multiple species suggested C148 of STING is highly conserved across mammalian species.
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menadione increased virus replication (Figure 6B). In contrast, treatment of mice with NAC inhibited

virus replication (Figure 6C). Additionally, we measured the interferon response in both WT and

Stinggt/gt mice during MHV68 infection (Figure 6D). While expression of Ifnb1 and Cxcl10 was

increased in peritoneal exudate cells 12 hr after virus infection in WT mice, such response was dimin-

ished in Stinggt/gt mice. Consistent with our in vitro data, menadione treatment dramatically inhib-

ited interferon and ISG production induced during MHV68 infection (Figure 6E and F). These data

suggest that ROS are important for controlling virus replication in vivo.

Discussion
Recent work indicates that ROS regulate cellular defense pathways, including Toll-like receptor sig-

naling and inflammasome activation (Bulua et al., 2011; Schieber and Chandel, 2014; Soucy-

Faulkner et al., 2010; Tschopp and Schroder, 2010; West et al., 2011). However, the function of

ROS in DNA sensing pathways has not been investigated. Here, we found that ROS regulate cyto-

plasmic DNA sensing by inhibiting STING activity during herpesvirus infection. ROS suppressed the

activation of STING, as well as the activation of TBK1 and IRF3, thus leading to reduced IFNb
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transcription. Importantly, we also determined that ROS oxidized a particular cysteine residue,

C147, of murine STING. When we mutated the equivalent human C148 residue, diamide was no lon-

ger able to oxidize STING and form functional polymers, suggesting that redox regulation of STING

required this cysteine residue. We also explored the functional consequence of ROS regulation of

STING activity in vivo and demonstrated that treatment of mice during herpesvirus infection with

either an inducer of ROS or a neutralizer of ROS, increased or decreased MHV68 replication in mice,

respectively. Consistent with these findings, a ROS inducer inhibited interferon production during

herpesvirus infection in a STING dependent manner. Our work suggests that redox modification of

STING is an important mechanism for regulating STING activity, which may explain how herpesvi-

ruses manipulate STING signaling and reduce interferon levels to support their replication. Notably,

elevated ROS levels in the context of viral infection is of high clinical relevance, as ROS is increased

in elderly people as well as in many diseases, including cardiovascular diseases, lung fibrosis, diabe-

tes mellitus and cancer (Kurundkar and Thannickal, 2016; Ma et al., 2013; Ma et al., 2013;

Di Pietro et al., 2017; Saadatian-Elahi et al., 2020). This suggests that antiviral responses in these

individuals could be repressed, leading to impaired control of chronic herpesvirus infections and

poor clinical outcomes (Stowe et al., 2007; Ye et al., 2016).

Structural and functional data prior to our study indicate that STING is oxidized under certain cir-

cumstances, but the precise site(s) of oxidation and the role of ROS in STING regulation has been

unclear. On one hand, nuclear factor erythroid 2-related factor 2 (NRF2), which drives the expression

of antioxidant genes, decreases STING-induced interferon and thus increases susceptibility to herpes

simplex virus-2 (HSV-2) (Gunderstofte et al., 2019; Olagnier et al., 2018). These studies did not

indicate whether STING itself is oxidized in the presence or absence of NRF2. On the other hand,

induction of oxidative stress by the complex I inhibitor rotenone inhibits ectopically expressed

STING activity and interferon production (Jin et al., 2010).

The malleable chemistry of cysteines makes them optimal targets for redox regulation

(Bindoli et al., 2008; Wang et al., 2012). Cysteines are susceptible to multiple post-translational

modifications, including sulfenylation, SOH; sulfinylation, SO2H; sulfinylation, SO3H; glutathionyla-

tion, -SSG; protein disulfide formation; nitrosylation, etc., all of which can affect protein structure

and function. Moreover, many cysteine oxidative modifications are reversible, making them ideal for

initiating and terminating signals. Redox modification can also be either activating or inhibiting for

protein function. For example, sulfenylation of the EGFR catalytic site enhances kinase activity

whereas oxidation-induced disulfide bond formation inactivates MKK6 (Paulsen et al., 2012;

Wani et al., 2011).

Previous reports indicate that cysteine residues of STING may form disulfide-containing polymers

(Ergun et al., 2019; Jin et al., 2010; Jønsson et al., 2017; Li et al., 2015; Motani et al., 2015). A

recent report identified redox regulation of C206 upon cGAMP binding to STING (Cuervo et al.,

2020). The authors also indicate the C148 may be oxidized under baseline conditions but did not

characterize this oxidation. In our report, we identify C148 oxidation of STING as a posttranslational

modification that negatively regulates STING activation. Our model suggests that increased ROS

promote oxidation of C148. C148 is important for forming disulfide bridges between STING dimers,

leading to the formation of stabilized polymers in the ER (Ergun et al., 2019; Shang et al., 2019).

When C148 is oxidized, STING no longer forms stable polymers, thereby preventing recruitment

and activation of TBK1 (Figure 7; Zhang et al., 2019). Notably, our data do not distinguish whether

oxidized STING can still bind to cGAMP or if oxidation prevents cGAMP binding and conformational

change of STING dimers.

Some pathogens may have evolved to take advantage of ROS to inhibit cellular defenses. Indeed,

multiple herpesviruses induce oxidative stress in infected cells and ROS promote virus replication in

vitro. Using a mouse model gammaherpesvirus, MHV68, we demonstrated that in vivo treatment of

mice with menadione to induce ROS increased virus replication and treatment of mice with NAC to

inhibit ROS suppressed virus replication. The effects of menadione and NAC treatments were rela-

tively modest in these in vivo experiments. However, our results are consistent with previous reports

that PRRs other than STING also participate in the control of MHV68 infection (Bussey et al., 2019;

Sun et al., 2015). In addition, another group showed that implantation of KSHV-infected cells into

mice and treatment with NAC inhibits lytic replication of this human gammaherpesvirus (Ye et al.,

2011). Further work is required to determine if ROS inhibition of cytoplasmic DNA sensing promotes
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reactivation of herpesviruses from latency in vivo and whether particular herpesvirus-encoded genes

alter the ROS levels in the cell.

Consistent with our data that STING undergoes redox modification, a recent study demonstrates

that glutathione peroxidase 4 (GPX4), an enzyme that protects cells against membrane lipid peroxi-

dation and maintains redox homeostasis, is required for the activation of the cGAS-STING pathway.

This report also shows that GPX4 is required for innate immune responses against herpes simplex

virus 1 (Jia et al., 2020). These data, along with our data, support a model whereby ROS promote

DNA virus acute replication in a STING-dependent manner.

Oxidative inhibition of STING may also be important for preventing overactivation of the inter-

feron response due to other sources of cytosolic DNA, not just viral infection. Mitochondrial damage

and release of mtDNA into the cytoplasm activates the cGAS-STING pathway (Chen et al., 2018;

McArthur et al., 2018; West et al., 2015). In the absence of cellular caspases, mtDNA induces type

I interferon production (White et al., 2014). Notably, many of the stimuli that lead to mitochondrial

fragmentation and release of mtDNA also produce mitochondrial ROS (Araujo et al., 2018;

Willems et al., 2015; Woo et al., 2012). Redox regulation of STING may represent a negative regu-

latory mechanism to limit aberrant production of type I interferon.

Multiple autoimmune and autoinflammatory diseases are associated with increased production of

interferon and are termed type I interferonopathies. These monogenic diseases are driven by muta-

tions in DNases or STING (Motwani et al., 2019). Particularly, the rare autoinflammatory disease

called STING-associated vasculopathy with onset in infancy (SAVI) is caused by gain-of-function

mutations in the gene that encodes STING, TMEM173 (Liu et al., 2014). Of the six patients identi-

fied with SAVI, all had point mutations in close proximity to C148, with one patient having a V147L

mutation. It is therefore plausible that this region is important for negatively regulating STING activ-

ity and normalizing the ‘basal’ or tonic levels of interferon in cells (Gough et al., 2012). We found

that NAC treatment of macrophages prior to viral infection increased Ifnb transcript levels but did

not significantly alter MHV68 growth. The small change in basal ROS with NAC treatment may be

insufficient to suppress virus replication. However, changes in the low level of endogenous ROS in

cells could regulate basal interferon through STING activation and could contribute interferonopa-

thies over the long term.
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Altogether, our results identify a critical post-translational modification of STING and indicate

that redox regulation of STING is important for innate immune responses against certain DNA

viruses. The cysteine at position 147 in mice and 148 in humans is a critical cysteine for STING poly-

mer formation and activation. Identifying the post-translational modifications of STING contributes

not only to our understanding of the basic biology of the cGAS/STING pathway but is also critical

for identifying novel immunotherapies to target interferon production.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(Mus musculus)

C57BL/6J The Jackson
Laboratory

Stock No. 000664 Bred at UTSW facility
with IACUC approval

Strain, strain
background
(Mus musculus)

C57BL/6J-Tmem173gt/J The Jackson
Laboratory

Stock No. 017537 Bred at UTSW facility
with IACUC approval

Strain, strain
background
(Mus musculus)

B6.129S2-Ifnar1tm1Agt/J The Jackson
Laboratory

Stock No.
32045

Bred at UTSW facility
with IACUC approval

Strain, strain
background
(Mus musculus)

B6.129P2-Acox1tm1Jkr/J The Jackson
Laboratory

Stock No.
029747

Bred at UTSW facility
with IACUC approval

Cell line
(Herpesviridae,
Rhadinovirus)

Murine gamma
herpesvirus 68
(WUSM stain)

ATCC VR-1465

Cell line
(Herpesviridae,
Rhadinovirus)

Murine gamma
herpesvirus 68-M3FL

Home made
Hwang et al., 2008

Cell line
(Mus musculus)

3T12 ATCC Cat# ATCC CCL-164;
RRID:CVCL_0637

Cell line
(Homo sapiens)

293T ATCC Cat# ATCC CRL-3216;
RRID:CVCL_0063

Transfected
construct
(Homo sapiens)

STING GenBank AVQ94753.1 Express STING
into 293T cells

Antibody Anti-STING
(Rabbit polyclonal)

Proteintech Cat# 19851-1-AP;
RRID:AB_10665370

WB (1:1000);
IP (1 ug/ml)

Antibody Anti-STING
(Rabbit monoclonal)

Cell Signaling Cat# 50494S;
RRID:AB_2799375

WB (1:1000)

Antibody Anti-TBK1/NAK
(Rabbit monoclonal)

Cell Signaling Cat# 3504S;
RRID:AB_2255663

WB (1:1000)

Antibody Anti-IRF-3
(Rabbit monoclonal)

Cell Signaling Cat# 4302S;
RRID:AB_1904036

WB (1:1000)

Antibody Anti-Phospho-TBK1
(Ser172)
(Rabbit monoclonal)

Cell Signaling Cat# 5483S;
RRID:AB_10693472

WB (1:1000)

Antibody Anti-Phospho-
IRF-3 (Ser396)
(Rabbit monoclonal)

Cell Signaling Cat# 4947S;
RRID:AB_823547

WB (1:1000)

Antibody Mouse monoclonal
anti-SDHA antibody

Abcam Cat# ab14715;
RRID:AB_301433

WB (1:5000)

Antibody Anti-MHV68
(Rabbit polyclonal)

Home made
Weck et al., 1997

FACs (1:1000)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-Rabbit IgG(H+L)
secondary antibody,
Alexa Fluor 647
(Goat polyclonal)

Thermo Fisher
Scientific

Cat# A-21245;
RRID:AB_2535813

FACs (1:4000)

Antibody Anti-Rabbit IgG,
Peroxidase (Donkey
polyclonal)

Jackson Immuno
Research Laboratory

Cat# 711-035-152;
RRID:AB_10015282

WB (1:5000)

Antibody Anti-Mouse
IgG, Peroxidase
(Goat polyclonal)

Jackson Immuno
Research Laboratory

Cat# 115-035-174;
RRID:AB_2338512

WB (1:5000)

Antibody Anti-FITC
(Rabbit polyclonal)

Thermo Fisher
Scientific

Cat# 71-1900;
RRID:AB_2533978

WB (1:2000)

Recombinant
DNA reagent

pcDNA 3.1(+)
Mammalian Expression
Vector (plasmid)

Thermo Fisher
Scientific

Cat# V79020 Vector for the
expression
of human STING

Sequence-
based reagent

Ifnb forward This paper qPCR primers CAGCTCCAAGAAAGGACGAAC

Sequence-
based reagent

Ifnb reverse This paper qPCR primers GGCAGTGTAACTCTTCTGCAT

Sequence-
based reagent

Cxcl10 forward This paper qPCR primers TTAACGTCAGGCCAACAGAG

Sequence-
based reagent

Cxcl10 reverse This paper qPCR primers GAGGGAAACCAGGAAAGATAGG

Sequence-
based reagent

Isg15 forward This paper qPCR primers CAGGACGGTCTTACCCTTTCC

Sequence-
based reagent

Isg15 reverse This paper qPCR primers AGGCTCGCTGCAGTTCTGTAC

Sequence-
based reagent

Isg20 forward This paper qPCR primers CCATGGACTGTGAGATGGTG

Sequence-
based reagent

Isg20 reverse This paper qPCR primers CTCGGGTCGGATGTACTTGT

Sequence-
based reagent

Gapdh forward This paper qPCR primers GGGTGTGAACCACGAGAAATA

Sequence-
based reagent

Gapdh reverse This paper qPCR primers GTCATGAGCCCTTCCACAAT

Sequence-
based reagent

Gsr forward This paper qPCR primers CACCGAGGAACTGGAGAATG

Sequence-
based reagent

Gsr reverse This paper qPCR primers ATCTGGAATCATGGTCGTGG

Sequence-
based reagent

Gclm forward This paper qPCR primers AATCAGCCCCGATTTAGTCAG

Sequence-
based reagent

Gclm reverse This paper qPCR primers CGATCCTACAATGAACAGTTTTGC

Sequence-
based reagent

C148 forward This paper Site direct
mutagenesis
PCR primers

CTCTGCAGTGCTGAAAA
AGGGAATTTCAACGTGGC

Sequence-
based reagent

C148A reverse This paper Site direct
mutagenesis
PCR primers

ATCTCAGCTGGGGCCAGG

Commercial
assay or kit

Lipofectamine
3000 Reagent

Thermo Fisher
Scientific

Cat# L3000008

Commercial
assay or kit

Qiagen RNeasy
Mini Kit

Qiagen Cat# 74104

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Commercial
assay or kit

SuperScript VILO
cDNA Synthesis Kit

Thermo Fisher
Scientific

Cat# 11754050

Commercial
assay or kit

PowerUp SYBR
Green Master Mix

Thermo Fisher
Scientific

Cat# A25776

Commercial
assay or kit

LIVE/DEAD Fixable
Dead Cell Stain Kits

Invitrogen Cat# L34975

Commercial
assay or kit

Q5 Site-Directed
Mutagenesis Kit

New England BioLabs Cat# E0554S

Chemical
compound, drug

DMXAA InvivoGen Cat# tlrl-dmx (1 ug/ml) for
macrophages,
(2 ug/ml) for
fibroblasts

Chemical
compound, drug

2’3’-cGAMP InvivoGen Cat# tlrl-nacga23 (10 ug/ml)

Chemical
compound, drug

ISD InvivoGen Cat# tlrl-isdn (10 ug/ml)

Chemical
compound, drug

poly(dA:dT) InvivoGen Cat# tlrl-patn-1 (1 ug/ml)

Chemical
compound, drug

poly(I:C) Invivogen Cat# tlrl-picw (1 ug/ml)

Chemical
compound, drug

D-Luciferin,
Potassium Salt

GOLDBIO Cat# LUCK (150 mg/kg)

Chemical
compound, drug

Menadione Sigma Cat# M9429 (10 mg/kg) for mice,
concentration
for cells were
indicated in
each experiment

Chemical
compound, drug

Hydrogen
peroxide solution

Sigma Cat# 216763 Concentration for cells
were indicated in
each experiment

Chemical
compound, drug

N-Acetyl-L-cysteine Sigma Cat# A7250 2 mM for macrophages,
5 mM in drinking water
with 2% sucrose

Chemical
compound, drug

Iodoacetamide Sigma Cat# I1149 100 mM

Chemical
compound, drug

N-ethylmaleimide Sigma Cat# E3876 50 mM

Chemical
compound, drug

Elastase Worthington Cat# LS006363 1 mg/ml

Chemical
compound, drug

5-(Iodoacetamido)
fluorescein

Sigma Cat# I9271 5 ug/ml

Chemical
compound, drug

Diamide Sigma Cat# D3648 200 uM

Software, algorithm GraphPad Prism 8 GraphPad www.graphpad.com;
RRID:SCR_002798

Software, algorithm FlowJo software FlowJo www.flowjo.com;
RRID:SCR_008520

Software, algorithm Live Image
Software

Perkin Elmer www.perkinelmer.com;
RRID:SCR_014247

Animals
C57BL/6J, C57BL/6J-Tmem173gt/J (Sauer et al., 2011), B6.129S2-Ifnar1tm1Agt/J (Muller et al.,

1994), B6.129P2-Acox1tm1Jkr/J (Fan et al., 1996). were purchased from The Jackson Laboratory. All

mice were housed in a specific pathogen-free, double-barrier facility at the University of Texas
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Southwestern Medical Center. Mice were maintained and used under a protocol approved by UT

Southwestern Medical Center Institutional Animal Care and Use Committee (IACUC).

Chemicals
Menadione, hydrogen peroxide solution, diamide and N-Acetyl-L-Cysteine were purchased from

Sigma-Aldrich. Iodoacetamide (IAM), N-Ethylmaleimide (NEM), 5-iodoacetamido-fluorescein (5-IAF)

were purchased from Sigma-Aldrich to label free thiols on protein. cGAMP, ISD, DMXAA, poly I:C,

poly dA:dT were purchased from Invivogen to induce interferon signaling.

Chemical treatment
A stock solution of menadione was prepared in DMSO at 50 mg/ml, then diluted to different con-

centrations with culture medium. Cells were treated with menadione by replacing culture medium

with fresh medium containing menadione and incubated at 37˚C for a duration indicated in each

experiment. A stock solution of hydrogen peroxide was prepared in PBS at the concentration of 1

M, then diluted to different concentration with serum-free medium to avoid the decomposition of

hydrogen peroxide by residual catalases in FBS. However, the treatment of hydrogen peroxide was

conducted in culture medium containing FBS for the flow cytometric quantification of viral growth in

BMDMs, in which case, serum is essential to support virus growth.

Cell culture
Bone marrow derived macrophages were differentiated in DMEM (Corning) with 10% FBS (Biowest)

supplemented with 1% glutamine (Corning), 1% HEPES (Corning) and 10% CMG14 (Takeshita et al.,

2000) supernatant for 7 days. 3T12 cells (ATCC, CCL-164, mycoplasma tested) were maintained in

DMEM with 5% FBS supplemented with 1% glutamine and 1% HEPES. 293 T cells (ATCC, CRL-3216,

mycoplasma tested), fibroblasts overexpressing human STING were maintained in DMEM with 10%

FBS. Primary fibroblasts (MEFs) were isolated from embryonic tissue in DMEM with 10% FBS supple-

mented with 1% glutamine, 1% HEPES, then passed and maintained in the same culture medium for

further propagation.

Generation of virus stocks
Murine g-herpesvirus 68 (WUSM stain) was purchased from ATCC. Murine g-herpesvirus 68-M3FL

was generated as previously reported (Hwang et al., 2008). Virus stock was generated in 3T12 cells

and aliquots of virus were stored at �80˚C.

Virus infection
Fully differentiated BMDMs were seeded on 24 well plates (1.5 � 105 cells per well) or six well plates

(106 cells per well). Cells were pretreated with mock control or menadione at 8 mM, 4 mM, or 2 mM

for 16 hr. The next day, macrophages were infected with MHV68 at MOI = 5. After an hour, cells

were washed with PBS twice to remove unabsorbed virus and resuspended in medium with or with-

out treatments. For the viral growth curve, samples were collected at 0 hr, 24 hr, 48 hr, 72 hr and 96

hr after infection and were frozen at �80˚C. The titer of virus was determined by plaque assay in

3T12 cells. For qRT-PCR, cells were washed with ice-cold PBS twice at 6 hr after infection and were

frozen at �80˚C.

Plaque assay
The concentration of virus was quantitated by plaque assay in 3T12 cells. The frozen samples con-

taining virus were thawed in an incubator at 37˚C. The samples were serial diluted, then added to a

monolayer of 3T12 cells. After an hour of absorption, the cells were then covered with 1% methylcel-

lulose. Plates were incubated at 37˚C for 7 days, and the monolayers were stained with 0.1% crystal

violet.

Flow cytometry for MHV68 lytic protein positive cells
To determine the percentage of cells that express lytic proteins of MHV68 infection, cells were har-

vested 24 hr after infection and fixed with 2% formaldehyde. The cells were blocked with 10%

mouse serum and 1% Fc block (anti-CD16/32, clone 2.4G2, Tonbo), and then stained with polyclonal
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rabbit antibody to MHV68 (1:1000) (Reese et al., 2014; Weck et al., 1997), followed by secondary

goat anti-rabbit Alexa Fluor-647 (Thermo Fisher, Invitrogen, A-21244).

Cell viability assay
Fully differentiated BMDMs were treated with different concentrations of menadione as indicated.

Cells were then scraped and collected at different time points and stained with LIVE/DEAD Fixable

Near-IR Dead Cell Stain Kit (ThermoFisher Scientific) for 30 min at room temperature in the dark.

After washing with PBS, dead cells were identified using flow cytometry.

Transfection
293 T cells were seeded on six well plates. The next day, cells were transfected with WT STING vec-

tor or C148A STING vector using Lipofectamine 3000 (Thermo Fisher Scientific) according to the

manufacturer’s protocol.

Western blot
Cells were lysed with RIPA buffer (150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS,

25 mM Tris with protease inhibitor cocktail (Roche)). Protein concentrations were determined using

the Bradford assay (Bio-Rad). Equal amounts of protein were mixed with 5x loading sample buffer

containing 2-Mercaptoethanol and heated at 97˚C for seven mins. The samples were resolved by 4–

12% Bis-Tris plus gels (Thermo Fisher Scientific) and transferred to a nitrocellulose membrane. Pro-

teins were labeled with primary antibodies against STING (1:1000, Catalogue no.13647S, Cell Signal-

ing; 1:1000, Catalogue no. 1985–1-AP, Proteintech), TBK1 (1:1000, Catalogue no. 3504S, Cell

Signaling), IRF3 (1:1000, Catalogue no. 4302S, Cell Signaling), pTBK1 (1:1000, Catalogue no. 5483S,

Cell Signaling), pIRF3 (1:1000, Catalogue no. 4947S, Cell Signaling), SDHA (1:5000, Catalogue no.

ab14715, Abcam), b-actin (1:5000, Catalogue no. A2228, Sigma). Secondary antibodies used were

donkey-anti-rabbit (1:5000, Catalogue no.711-035-152, Jackson ImmunoResearch Laboratory) and

goat-anti-mouse peroxidase (1:5000, Catalogue no.115-035-174 Jackson ImmunoResearch Labora-

tory). Membranes were developed using Luminata Forte Western HRP substrate (Millipore). For non-

reducing SDS-PAGE, protein was mixed with 5x loading sample buffer and incubated at RT for 1 hr

without boiling. Samples were then resolved by 4–12% Bis-Tris plus gels.

RT-qPCR
Cells were plated in six well plates, either infected with MHV68 or induced with STING ligand as indi-

cated. RNA was extracted using RNeasy Mini Kit (Qiagen) and reverse transcribed into cDNA using

SuperScript VILO cDNA Synthesis Kit (Thermo Fisher Scientific). Relative quantification of target

genes was determined using PowerUp SYBR Green Master Mix (Thermo Fisher Scientific) in a Quant-

Studio 7 Flex real time PCR system. Sequences of primers are as follow:

Primers Sequence

Ifnb forward CAGCTCCAAGAAAGGACGAAC

Ifnb reverse GGCAGTGTAACTCTTCTGCAT

Cxcl10 forward TTAACGTCAGGCCAACAGAG

Cxcl10 reverse GAGGGAAACCAGGAAAGATAGG

Isg15 forward CAGGACGGTCTTACCCTTTCC

Isg15 reverse AGGCTCGCTGCAGTTCTGTAC

Isg20 forward CCATGGACTGTGAGATGGTG

Isg20 reverse CTCGGGTCGGATGTACTTGT

Gapdh forward GGGTGTGAACCACGAGAAATA

Gapdh reverse GTCATGAGCCCTTCCACAAT

Gsr forward CACCGAGGAACTGGAGAATG

Gsr reverse ATCTGGAATCATGGTCGTGG

Gclm forward AATCAGCCCCGATTTAGTCAG

Gclm reverse CGATCCTACAATGAACAGTTTTGC

Tao et al. eLife 2020;9:e57837. DOI: https://doi.org/10.7554/eLife.57837 17 of 23

Research article Immunology and Inflammation Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.57837


Immunoprecipitation
Cells were lysed with gentle lysis buffer (Cell Signaling) for 15 mins, and then the cell lysate was

spun down at 16,000 g for 10 mins. STING antibody (Proteintech) was added into the cell lysate at 1

mg/mL and incubated overnight at 4˚C with rotation. The next day, 20 mL of Pierce protein A/G mag-

netic beads (Thermo Fisher Scientific) were added into each sample and incubated at 4˚C for 2 hr to

capture STING protein. Samples were then washed with lysis buffer five times, and protein was dis-

sociated from beads by heating at 97˚C for seven mins.

STING cloning
FLAG-tagged STING was cloned into pcDNA 3.1 (+) mammalian vector. C148A mutant was gener-

ated by site-directed mutagenesis (New England Biolabs). Vectors with wildtype STING and C148A

mutated STING were transfected into HEK293T cells for transient STING overexpression. Mutagene-

sis primers: forward-CTCTGCAGTGCTGAAAAAGGGAATTTCAACGTGGC; reverse-ATCTCAGC

TGGGGCCAGG.

Detection of oxidative modification on STING
Sting-/- fibroblasts stably expressing HA-tagged human STING were plated on 10 cm dishes at a

density of 107 cells per dish. Twenty-four hours later, growth medium with 10% FBS was replaced

with DMEM supplemented with 2% FBS. The next day, cells were treated with mock control, 25 mM

menadione for 30 mins or 200 mM H2O2 for 10 mins in serum-free DMEM. Cells were then washed

with ice cold PBS twice and lysed with gentle cell lysis buffer (Cell signaling) containing 5 mM 5-IAF

which labels free thiols with a fluorescein (FITC) tag (Ostman et al., 2011). Cell lysate was spun

down at 16,000 g for 10 mins, and the supernatant was then incubated at RT for 1 hr in the dark.

Lysates were subjected to immunoprecipitation for HA-tagged STING and probed for both STING

and FITC using western blot.

Mass spectrometry analysis of STING cysteine oxidation
Quantification of cysteine oxidation on STING with mass spectrometry was completed as described

previously (Wu et al., 2020). Differentiated BMDMs were treated with serum free medium or 25 mM

menadione for 30 mins, and proteins were extracted using gentle cell lysis buffer (Cell signaling)

with 100 mM iodoactamide to label free thiols (Cysred). After immunoprecipitation, the STING-Trap

beads were incubated with alkylation buffer (100 mM iodoacetamide, 2% SDS and 150 mM Tris, PH

8.0) at room temperature for 1 hr to sufficiently label free thiols on STING. Proteins were separated

by SDS-PAGE, and the bands corresponding to STING were excised. The protein gel band was

digested overnight with elastase (Worthington) following reduction with DTT and a second alkylation

step with N-ethylmaleimide to label oxidized thiols (Cysox). The samples then underwent solid-phase

extraction cleanup with an Oasis HLB mElution plate (Waters) and the resulting samples were ana-

lyzed by LC-MS/MS, using an Orbitrap Fusion Lumos mass spectrometer (Thermo Electron) coupled

to an Ultimate 3000 RSLC-Nano liquid chromatography system (Dionex). Raw MS data files were

converted to a peak list format and analyzed using the central proteomics facilities pipeline (CPFP),

version 2.0.3 (Trudgian et al., 2010; Trudgian and Mirzaei, 2012). Peptide identification was per-

formed with a non-specific enzyme search using the Open MS Search Algorithm (OMSSA)

(Geer et al., 2004) search engine against the mouse protein database from UniProt, with common

contaminants and reversed decoy sequences appended (Elias and Gygi, 2007). Fragment and pre-

cursor tolerances of 10 ppm and 0.5 Da were specified, and three missed cleavages were allowed.

Oxidation of Met and carbamidomethylation (iodoacetamide modification) and N-ethylmaleimide

modification of Cys were set as variable modifications. Mass spectrometry data were deposited

online, with the link of: http://massive.ucsd.edu/ProteoSAFe/status.jsp?task=

03fb020e0fe9474ea5fa9326219f7cee.

MHV68 acute replication in mouse
Experiments were carried out using 8–12 weeks old mice under the protocol approved by IACUC.

Mice were sex-matched and randomly allocated into groups prior to experiments. For menadione
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treatment, mice were injected intraperitoneally with either vehicle control (5% DMSO in corn oil) or

menadione (10 mg/kg) for 1 week, starting 3 days before virus infection. For NAC treatment, 5 mM

NAC was provided in the water with presence of 2% sucrose that mice were allowed to drink ad libi-

tum throughout the experimental period starting 5 days before infection. Mice were then infected

with MHV68-M3FL with a dose of 106 PFU by intraperitoneal injection. To quantify virus-encoded

luciferase expression (Hwang et al., 2008). Mice were weighed and injected with 150 mg/kg of

D-Luciferin (GOLDBIO) prior to imaging using an IVIS Lumina III In Vivo Imaging System (Perki-

nElmer). Total flux (Photons/second) of the abdominal region was determined using Living Image

software (PerkinElmer) by designating a circular region of interest (ROI) for each mouse.

Measure transcripts of Ifnb1 and Cxcl10 in peritoneal exudate cells
(PECs)
Mice aged between 8–12 weeks were sex-matched and randomly allocated into groups prior to

experiments. Mice were injected intraperitoneally with either vehicle control (5% DMSO in corn oil)

or menadione (10 mg/kg in corn oil) starting 3 days before infection. Mice were then infected with

MHV68 at 106 PFU by intraperitoneal injection. Twelve hours after infection, PECs from each mouse

were collected. RNA was extracted and reverse transcribed. Transcripts of Ifnb1 and Cxcl10 were

the quantified by qRT-PCR.

Quantification and statistical analysis
Bars are mean ± SE unless otherwise stated in figure legend. Statistical comparisons were performed

using GraphPad Prism 7.0 software. p value was computed using unpaired one-way or two-way

ANOVA. Statistical significance was set at p<0.05. The numbers of independent replicates (n) are

reported in the figure legends.
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