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Abstract The success of antimicrobial treatment is threatened by the evolution of drug

resistance. Population genetic models are an important tool in mitigating that threat. However,

most such models consider resistance emergence via a single mutational step. Here, we assembled

experimental evidence that drug resistance evolution follows two patterns: (i) a single mutation,

which provides a large resistance benefit, or (ii) multiple mutations, each conferring a small benefit,

which combine to yield high-level resistance. Using stochastic modeling, we then investigated the

consequences of these two patterns for treatment failure and population diversity under various

treatments. We find that resistance evolution is substantially limited if more than two mutations are

required and that the extent of this limitation depends on the combination of drug type and

pharmacokinetic profile. Further, if multiple mutations are necessary, adaptive treatment, which

only suppresses the bacterial population, delays treatment failure due to resistance for a longer

time than aggressive treatment, which aims at eradication.

Introduction
The rapid rise and spread of antimicrobial resistance severely curb the efficacy of drug treatments

against pathogen infections. Treatment strategies are designed to maximize efficacy and limit toxic-

ity, but their long-term applicability depends on the risk of resistance evolution (Nielsen and Fri-

berg, 2013; Foo and Michor, 2009; Bonhoeffer et al., 1997). This highlights the importance of

careful consideration of drug type, dose, and duration to guarantee the desired patient outcome

whilst also reducing the risk of resistance evolution (Nielsen and Friberg, 2013; Drusano, 2004). In

order to prevent drug resistance and preserve drug efficacy, treatment strategies should also be

guided by an understanding of resistance evolution and the ability to assess its risk

(Andersson et al., 2020; Read et al., 2011) – a task that is substantially facilitated through mathe-

matical modeling (Nielsen and Friberg, 2013; Andersson et al., 2020; Read et al., 2011;

Clarelli et al., 2020).

The main class of models used to predict drug action and treatment outcome are pharmacoki-

netic and pharmacodynamic (PKPD) models (Clarelli et al., 2020; Drlica, 2003; Abel Zur Wiesch

et al., 2017; Chakrabarti and Michor, 2017), which describe the change in drug concentration over

time (PKs) and the corresponding effect on a pathogen population (PDs). PKPD approaches are

most commonly employed to study the efficacy of treatment without considering the possibility of

resistance evolution, but coupled with bacterial population models, they can be used to investigate

drug resistance evolution over time (Yu et al., 2018).

One severely understudied aspect in such approaches is that there are two fundamentally differ-

ent patterns of de novo antibiotic (AB) resistance evolution: (i) ‘single-step’ resistance: a single
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mutation provides high drug resistance (Nielsen and Friberg, 2013; Drlica, 2003; Yu et al., 2018);

or (ii) ‘multi-step’ resistance: the accumulation of several mutations of low individual benefit is neces-

sary for high-level resistance (where high resistance here means higher than a given treatment dose).

The availability of either pattern to a pathogen population under drug selection will affect the poten-

tial for resistance evolution and therefore the evolutionary dynamics in response to various treatment

strategies.

We focus on resistance by de novo mutations as long-lasting infections such as those caused by

Pseudomonas aeruginosa become hard to treat due to resistance evolving via mutations within the

host during the course of the treatment (Oliver et al., 2000). Another example is tuberculosis (TB),

arguably the infectious disease that has caused the highest number of deaths globally (Castro et al.,

2020). During persistent TB infections, drug resistance evolves by chromosomal mutations while

resistance by horizontal gene transfer (HGT) has not been observed (Castro et al., 2020). HGT is a

common path to resistance in hospital-acquired infections and in cases of shorter treatment dura-

tions, as exemplified by Staphylococcus epidermidis infections that became resistant by acquiring

plasmids carrying genes for linezolid resistance (Dortet et al., 2018).

In this study, we will comprehensively study the influence of the mechanistic pattern of resistance

evolution itself (namely the benefits and costs of mutations) by considering ‘single-step’ resistance

vs. ‘multi-step’ resistance. The emergence of mutations and their selection depend on an interplay

between various treatment factors like drug type, dose, and treatment duration. These factors have

been studied before to various extent in isolation (Nielsen and Friberg, 2013; Drusano, 2004),

although rarely how their interactions shape resistance evolution (Martinez et al., 2012;

Olofsson and Cars, 2007). We will first establish the existence of single-step and multi-step resis-

tance patterns by reviewing evidence in the experimental literature, and then use the obtained

eLife digest The rise in antibiotic resistance is threatening our ability to treat bacterial

infections. Bacteria often evolve resistance by acquiring new genetic mutations during the treatment

period. Understanding how resistance emerges and spreads through a bacterial population is crucial

to prevent antibiotic drugs from failing.

Mathematical models are a useful tool for exploring how bacteria will respond to antibiotics and

assessing the risk of resistance. Usually, these models only consider instances where bacteria acquire

one genetic mutation that makes them virtually impervious to treatment. But, in nature, this is not

the only possibility. Although some mutations do give bacteria a high level of resistance, numerous

others only provide small amounts of protection against the drug. If these mutations accumulate in

the same bacterial cell, their effects can combine to make the strain highly resistant to treatment.

But it was unclear how the emergence of multiple mutations affects the risk of treatment failure and

the diversity of the bacterial population.

To answer this question, Igler et al. devised a mathematical model in which each bacterium is

able to mutate multiple times during the treatment period. The model revealed that if one mutation

provides a high level of resistance on its own, the risk of bacteria surviving treatment is very high.

But, if it takes more than two mutations to achieve a high level of resistance, the risk drops to almost

nothing.

Igler et al. also found that the chance of bacteria evolving high enough resistance is affected by

the type of antibiotics used and how fast the drug decays. With low-level resistance mutations,

adapting treatment to maintain an acceptable number of sensitive bacteria as competitors for (a

small number of) resistant bacteria was more effective at delaying treatment failure than trying to kill

all the bacteria at once.

These findings suggest that adjusting the treatment strategy used for bacterial infections

according to the proportion of low- and high-level resistance mutations could slow down the

evolution of resistance. To apply these models in the real world, it will be important to measure the

level of resistance conferred by single mutations. The type of models used here could also predict

the response of other diseases that resist treatment, such as cancer.
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parameter values to inform a stochastic PKPD model of multi-step resistance evolution, which we

will explore under various treatment regimens.

We will establish the fundamental differences between evolutionary dynamics emerging from

these two patterns in one specific treatment setting, but also explore the impact of various clinically

relevant treatment strategies. First, we will compare two types of drugs, ABs and antimicrobial pep-

tides (AMPs). AMPs are key components of innate defenses but also important new antimicrobial

drugs, which work by disrupting the bacterial membrane (Zasloff, 2002; Mookherjee et al., 2020) –

as opposed to ABs, which usually target intracellular structures. AMPs have been found previously to

significantly reduce the risk of resistance evolution compared to conventional ABs (Yu et al., 2018;

Lazzaro et al., 2020), partly explained by their distinct PDs like higher killing rates (Yu et al., 2018).

Second, we will consider three different shapes of drug PKs, which are all clinically relevant

(Nielsen and Friberg, 2013), but have rarely been compared in a systematic manner

(Chakrabarti and Michor, 2017; Foo et al., 2012). These comprise fluctuating drug concentrations,

increasing concentrations (which are then maintained at the highest level), and finally constant (which

can be achieved in high-dose IV (intravenous) interventions). Third, as a number of recent studies

have questioned the practice of ‘radical pathogen elimination’ (Read et al., 2011; Hansen et al.,

2017; Hansen et al., 2020), we will compare aggressive elimination treatment with adaptive sup-

pression – a strategy where the drug concentration is regularly adapted to the pathogen load – in a

multi-step mutational framework (Hansen et al., 2017; Gatenby et al., 2009). Lastly, depending on

the drug type, resistance evolution can be shaped either by chromosomal mutations or HGT, or

both (van Hoek et al., 2011; Woodford and Ellington, 2007). Assuming a scenario where both

options are available, we will study the relative importance of resistance resulting from de novo

mutations as compared to HGT, which plays an important role in AB resistance evolution (van Hoek

et al., 2011), although likely not as much in AMP resistance (Kintses et al., 2019). Taken together,

this allows us to obtain an empirically informed modeling framework, which predicts evolutionary

dynamics of ‘single-step’ resistance vs. ‘multi-step’ resistance in the context of drug type, PKs, and

treatment strategies. We show how this framework provides critical insights into drug resistance

emergence in clinically relevant treatment settings.

Results

Antibiotic resistance evolves via multiple low- or single high-benefit
mutation(s)
Experimental studies document single target mutations as well as a sequence of mutational steps to

drug resistance evolution in bacterial populations (Spohn et al., 2019; Chevereau et al., 2015;

Melnyk et al., 2015; Lofton et al., 2013; Makarova et al., 2018; Kubicek-Sutherland et al., 2017),

but no systematic review of these patterns has been conducted so far. Here, we only selected stud-

ies that report on both parameters, benefit and costs of resistance (see Materials and methods)

(Spohn et al., 2019; Chevereau et al., 2015; Melnyk et al., 2015; Lofton et al., 2013;

Makarova et al., 2018; Kubicek-Sutherland et al., 2017), in order to obtain a complete picture of

the mutational effects. We define the benefit and cost of a mutation as an increase in the minimum

inhibitory concentration (MIC) and as a reduction in growth (in the absence of drug), respectively.

Despite differences in study setup and type of resistance mutations, we clearly found a wide range

of effects, with a large number of benefits below typical clinical MIC breakpoint values (defining

whether a bacterial strain is resistant), which are often 10xMIC or higher (EUCAST, 2020; Table 1,

Figure 1) – hence likely necessitating multiple mutations for high resistance. The corresponding fit-

ness costs range from almost none to a 25% reduction of the population growth rate and show a

very weak positive correlation (R2 = 0.07, p=0.09) with (log) benefit over all studies taken together

(Figure 1B, Figure 1—figure supplement 1). In general, mutations seem likely to incur more costs

than benefits. Notably, our literature search suggests a difference in mutational benefit available for

two different antimicrobials: the average benefit of resistance mutations to AMPs is substantially

lower than for commonly used ABs (Table 1, Figure 1—figure supplement 1). In the following, we

use the correlation observed with these assembled benefit and cost values to inform a PKPD model

that reflects the two patterns of resistance evolution.
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Table 1. Benefits and costs of drug resistance mutations from experimental studies reported for antibiotics (ABs) and antimicrobial

peptides (AMPs), with small mutational benefits (likely giving rise to multi-step resistance patterns) given in blue and large ones

(likely giving rise to single-step resistance patterns) in red, assuming a typical clinical drug dose of about 10� minimum inhibitory

concentration (MIC) (Figure 1A, B).

Source
Drug
type

Organism and
evolution
environment

Number and type
of mutations

Benefit per
mutational
event

Cost per
mutation
event

Benefit
measurement

Fitness
measurement

Spohn et al., 2019
(benefits and costs
calculated for
individual AB classes
are given in
Figure 1—source
data 1)

AMP Escherichia coli K-12
BW25113 populations
were evolved in
minimal salt (MS)
medium over 20
transfers every 72 hr
at 30˚C (~120
generations) with
successively
increasing dosages of
the antimicrobial

197 independent
mutational events
(deletions,
insertions, SNPs
(Single nucleotide
polymorphisms),
and intergenic
mutations)
~5.2 (±0.8)
mutational events/
genome

All MIC samples:
5.1 (±7.2) xMIC
~=1 xMIC/
mutation
Only the ones
where costs were
measured as
well:
31.4 (±8.5) xMIC
~=6.0 xMIC/
mutation

0.2 (±0.16)
~=0.04/
mutation

Serial broth (MS)
dilution medium;
MIC was defined
as OD600 < 0.05
fold-increase
compared to
ancestor

Continuous
monitoring of optical
density of liquid
cultures (in MS); area
under the growth
curve from 1 to 24 hr,
normalized by the
wildtype (WT)

AB N.D.
Assumed: ~5

All MIC samples:
72.0 (±2.8) xMIC
~=14.4 xMIC/
mutation
Only the ones
where costs were
measured as
well:
120.0 (±2.8) xMIC
~=24.0 xMIC/
mutation

0.47 (±0.29)
~=0.1/mutation

Melnyk et al., 2015
(benefits and costs
calculated for
individual AB classes
are given in
Figure 1—source
data 1) (and
references therein:
synthesis of 24 studies)

AB Borrelia burgdorferi,
Campylobacter jejuni,
E. coli, Enterococcus
faecium,
Mycobacterium
smegmatis,
Mycobacterium
tuberculosis,
Staphylococcus
aureus, Streptococcus
pneumonia (all
pathogenic) in various
environments

Single mutational
events (in total 128
mutations)

96.4 (±19.8) xMIC 0.13 (±0.24) MIC fold-increase
to ancestor

Competitive fitness
(via in vitro growth
assays with WT)

Chevereau et al.,
2015

AB E. coli K-12 BW25113
knockout strains (Keio
collection) were
incubated at 30˚C for
20 hr in rich media (LB)
with various ABs

Single-gene
deletions (3913
mutant strains)
~4 mutations, all
types (day 10)

Mecillinam: 1.2
(±1.1) xIC50

Trimethoprim:
1.2 (±1) xIC50

Ciprofloxacin:
1.3 (±1.2) xIC50

~18.7 (±1.1) xIC50

0.13 (±0.07)
N.D.

IC50 (in LB) Reduction in growth
rate (in LB); calculated
from a linear fit of log
(OD) in the range
0.022 < OD < 0.22;
given relative to WT

Lofton et al., 2013 AMP Salmonella
typhimurium LT2 was
passaged daily in rich
media (refined LB) at
37˚C with successively
increasing AMP
concentrations for
400–500 generations

SNPs and
deletions
2–3 mutational
events

LL-37: 1.5–6
xMIC
~=0.5–3 xMIC/
mutation
WGH: 12–48
xMIC
~=4–24 xMIC/
mutation
CNY100HL: 2–6
xMIC
~=1–3 xMIC/
mutation

0.076 (±1.1)
~=0.025–0.038/
mutation
0.11
~=0.037–0.055/
mutation
0.17
~=0.057–0.085/
mutation

MIC through
serial broth
(refined LB)
dilution

Growth rate from
OD600
measurements (in
refined LB) in the
range 0.02 < OD <
0.2; given relative to
WT

Table 1 continued on next page
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The PD model
We mainly investigated the rise of de novo resistance in a clonal, susceptible pathogen population,

which is a common starting point for many clinically relevant infections (Balmer and Tanner, 2011),

by extending a previously described stochastic PKPD model (Materials and methods) (Yu et al.,

2018). Specifically, we considered not only a single resistance mutation, but the potential emer-

gence of a sequence of mutations, with each mutation conferring a certain (additional) benefit and

cost (Figure 1). The number of mutations needed for ‘full’ resistance depends on the applied drug

dose, but generally low mutational benefits are more likely to necessitate multi-step resistance evo-

lution. To compare scenarios where a single mutation is sufficient to scenarios where several muta-

tions have to arise in one cell, we ran the simulations over a range of mutational benefits (2–

100 xMIC) – and their correlated fitness costs (Table 1, Figure 1) – in combination with various drug

doses (0.5–100 xMIC). Hence, the minimum number of mutations necessary for resistance was pre-

determined (Figure 1—figure supplement 2), and we investigated how this affects the potential for

pathogen survival and mutational diversity under various treatment strategies (PKs) and for two dif-

ferent antimicrobials (PDs) as described below. Competition between the various mutant subpopula-

tions was modeled by imposing a carrying capacity for bacterial growth and very low turnover as

soon as this capacity is reached.

Multi-step resistance patterns show lower risk of treatment failure and
lower genetic diversity
First, we determined the probability of treatment failure by simulating change of the pathogen pop-

ulation over 200 hr under treatment with drugs (PD) parameters typical for bactericidal ABs

(Yu et al., 2018; Supplementary file 1) being applied once every 24 hr (PK). We assumed that the

Table 1 continued

Source
Drug
type

Organism and
evolution
environment

Number and type
of mutations

Benefit per
mutational
event

Cost per
mutation
event

Benefit
measurement

Fitness
measurement

Kubicek-
Sutherland et al.,
2017

AMP S. aureus (MRSA) WT
JE2 (DA28823; clinical
isolate) was passaged
daily in minimal media
(MIEM) at 37˚C with
successively
increasing AMP
concentrations

1–3 (adaptive)
amino acid
substitutions

LL-37: 6.5 (±6.2)
� survival (for
this AMP benefit
was measured
not as fold MIC
increase but fold
bacterial survival)
~=2.2–6.5 xMIC/
mutation
WGH: 13.9 (±1.2)
xMIC
~=4.6–14 xMIC/
mutation
PR-39: 2 (±1)
xMIC
~=0.7–2 xMIC/
mutation

<= 0 (no
detectable
cost, rather an
advantage, was
found in the
media used in
the evolution
experiment)

MIC through
serial broth
(MIEM) dilution,
except for LL-37
where kill curves
were used (in
tryptic soy broth,
rich media)

Maximum growth
rate in MIEM based
on (exponential
phase) OD600
measurements; given
relative to WT

Makarova et al.,
2018

AMP S. aureus SH1000 and
E. coli MG1655 were
transferred for seven
daily passages in rich
media (Mueller Hinton
Broth [MHB]) at 37˚C
with successively
increasing AMP
dosages

All types
~2.4 (±0.9)
mutational events

Tenecin 1: 3.1
(±1.1) xMIC of wt
~=1.3 xMIC/
mutation

0.25 (±0.13)
~=0.1/mutation

MIC through
serial broth
(MHB) dilution;
defined as
inhibition of
visible growth
after 24 hr

Maximum growth
rate in MHB based on
OD600
measurements

AMP Mean: 4.5 (±5.3)
xMIC/mutation

Mean: 0.04
(±0.03)/
mutation

AB Mean: 28.0 (±7.1)
xMIC/mutation

Mean: 0.10
(±0.07)/
mutation
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pathogen population initially consists of completely susceptible bacteria and defined a treatment as

failed if the pathogen population was not eradicated after 200 hr. We found that the probability of

treatment failure was always close to 1 for single-step resistance evolution, but decreased rapidly if

multiple mutations were required. Notably, already if three mutations were necessary to overcome

the applied dose, the probability of pathogen survival approached 0 (Figure 2A, Figure 1—figure

supplement 2). The qualitative picture of these results was not dependent on the specific cost-bene-

fit correlation that we are assuming for most of our simulations (Figure 2—figure supplement 1).

One aspect of resistance evolution that is especially important when considering multiple muta-

tions is the mutational diversity that arises in the pathogen population: high genetic diversity (here

meaning diversity in the resistance phenotype) increases the probability that some individuals will be

able to survive a given environment – such as treatment with other drugs (Castro et al., 2020) – and

increases the adaptive potential overall (Van Egeren et al., 2018). Using the Shannon index to

determine the highest mutational diversity obtained in the population over the treatment period, we

clearly observed higher diversity with single-step than multi-step resistance evolution (Figure 2B),

even if we increased the mutation rate proportionally to the number of mutations required
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Figure 1. Pharmacodynamic (PD) model of single- and multi-step resistance. (A) The PD curve relating bacterial net growth  (which is between the

maximal growth rate  max and the maximal killing rate  min) to antimicrobial drug concentration (given in fold minimum inhibitory concentration (MIC))

illustrating a sensitive wildtype (black) and mutants with either small (blue) or large (orange) MIC increases per mutation (benefit), assuming a typical

clinical drug dose of 10xMIC. Characteristic PD curves for antibiotic (AB) (solid lines) and antimicrobial peptide (AMP) (dashed lines) single-step

resistance are compared (orange), demonstrating the typically steeper decrease (k) and lower  min observed with AMPs. (B) Shown are costs and

benefits from various empirical studies (Table 1), each dot representing resistance mutations to a specific AB or AMP class. The cost of a mutation

shows a very weak positive correlation with the log (benefit) (R2 = 0.07, p=0.09). Blue and orange colors show multi- or single-step resistance benefits

given the drug dose in (A). (C) Schematic of the PD model with several mutated subpopulations (Mi), which grow with a cost r(1-c)i, determined by the

number of mutations i, mutate with rate m, and die at a constant rate g and a drug-specific rate gi bið Þ, which is dependent on the benefit bi conferred

per mutation.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Empirical data used to obtain Figure 1B.

Figure supplement 1. Direct comparison of mutational benefits and costs between antimicrobial peptides (AMPs) and antibiotics (ABs) from
Spohn et al., 2019.

Figure supplement 2. Number of mutations necessary for resistance.
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Figure 2. Resistance evolution with single- and multi-step patterns for peak pharmacokinetic (PK). (A) Treatment failure probability (measured at the

end of the treatment period) and (B) mutational diversity (calculated over the whole treatment period) are shown for two different antimicrobial classes

(antibiotics (ABs), left; antimicrobial peptides (AMPs), right) for different combinations of mutational benefits (xMIC) and drug doses (xMIC). The

diagonal line shows where the benefit per mutation is exactly equal to the given drug dose and separates single-step (ss, lower orange triangle), where

one mutation gives a benefit higher than the applied dose, from multi-step (ms, upper blue triangle) resistance, where more than one mutation is

needed for the accumulated benefit to match the drug dose. The arrows indicate the decrease in diversity either due to increasing extinction (too many

mutations are needed for survival) or due to increasing cost per mutation (costs are too high compared to the additional benefit). A representative

example of subMIC mutational diversity is shown magnified below the plots in (B). MIC: minimum inhibitory concentration.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Resistance evolution with single- and multi-step patterns for peak pharmacokinetic (PK) with steeper correlation between cost
and log(benefit).

Figure supplement 2. Resistance evolution with increased mutation rates (proportional to the number of mutations required for resistance).

Figure supplement 3. Relative population frequencies with horizontal gene transfer (HGT).

Figure supplement 4. Treatment failure is similar with and without horizontal gene transfer (HGT).

Figure supplement 5. Resistance evolution with random mutational benefit and cost.

Figure 2 continued on next page
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(Figure 2—figure supplement 2). It can be shown analytically that a mutant strain can invade at the

mutant-free equilibrium if the death rate of the sensitive strain is higher than the death rate of the

mutant, where the mutant death rate is a combination of intrinsic and drug-induced death as well as

the mutational cost (Materials and methods). The observed higher diversity with single-step patterns

seems counterintuitive as the need for multiple mutations should increase diversity (Figure 2B), but

can be explained as follows: at high drug doses and low benefits, this effect is due to extinction that

effectively reduces genetic diversity, while at low doses and high benefits, high mutational costs

inhibit the build-up of diversity. These findings agree with an experimental study showing that resis-

tance alleles with low costs are favored (Wichelhaus et al., 2002).

Consistently lower treatment failure with multi-step resistance for
various PKs and PDs
Our results clearly show less resistance if multiple mutations are necessary, but the relative impor-

tance of the number of resistance mutations compared to other treatment considerations like the

dose-response profile of a drug (PD) (Yu et al., 2018; Spohn et al., 2019) or the administration

mode (PK) required further investigation. Hence, we compared three different PKs: ‘peak’ (fast

absorption and exponential decay), ‘ramp’ (slow, linear absorption and no decay), and ‘constant’

(immediate absorption and no decay) (Figure 3A). Whereas constant PKs distinctly lowered the

probability of treatment failure and the emergence of mutational diversity, peak and ramp PKs

showed similar magnitudes of resistance evolution (Figure 3B, C, Figure 3—figure supplements 1

and 2). However, ramp PKs lead to more than twice the mutational diversity with multi-step resis-

tance patterns (Figure 3—figure supplement 1), which suggests that treatment failure and patho-

gen diversity are connected in a non-trivial manner: while higher mutational diversity increases the

risk of resistance evolution, neither its presence nor absence is obviously predictive of the treatment

outcome (Figure 2, Figure 3—figure supplements 1 and 2).

The evolutionary dynamics can also be contrasted for different antimicrobial drugs, AMPs and

ABs, by using two different PD parameter sets (Materials and methods, Figure 1—source data 1).

Briefly, AMP treatments are characterized by higher killing rates, steeper dose-response curves

(Figure 1A), and lower mutation rates than AB ones (Yu et al., 2018). Consistent with previous find-

ings that AMPs lead to a lower risk of resistance evolution and a narrower mutant selection window

(MSW) than ABs (Yu et al., 2018), treatment failure and mutational diversity was lower for AMPs

with peak and constant PK treatments (Figures 2 and 3, Figure 3—figure supplement 2). Notably,

in accordance with empirical studies (Andersson and Hughes, 2014), we generally see mutations

accumulating at sublethal drug doses, but the maximal diversity is substantially lower in AMP treat-

ments (Figure 2B, Figure 2—figure supplement 1).

Interestingly, the steeper dose-response curve of AMPs seems to make their resistance dynamics

more sensitive to the shape of the PK than those of ABs (Figures 2 and 3, Figure 3—figure supple-

ments 1, 2, and 4): in contrast to the other two PK profiles, ramp PKs lead to a drastic increase in

treatment failure with AMPs, especially in multi-step scenarios (Figure 3, Figure 3—figure supple-

ment 1). Accordingly, for ramp PKs, AMPs did not perform better and under some conditions even

worse than ABs (Figure 3—figure supplement 4). By varying the ramp duration (or equivalently the

rate of drug uptake), we found that there is an intermediate range (48–84 hr), which showed

increased treatment failure with AMPs over ABs (Figure 3—figure supplement 5A). Paradoxically,

while a narrow MSW generally hinders the emergence of numerous mutations in the population, for

ramp PKs it can lead to optimal selection conditions for the sequential emergence of increasingly

higher resistance mutations due to the strong selection for the next mutation combined with suffi-

cient time for its emergence. Hence, especially the risk of multi-step resistance is increased if AMPs

are used with ramp treatments as compared to the other PKs (Figure 3B, C). The broader selection

windows in the presence of ABs, on the other hand, overlap and resistance mutations are less

strongly favored (Figure 3—figure supplement 5B). Overall, the number of resistance mutations

Figure 2 continued

Figure supplement 6. Resistance evolution with single-step (ss) and multi-step (ms) patterns for peak pharmacokinetic (PK) starting from neutral
mutation heterogeneity.
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Figure 3. Resistance evolution patterns with different pharmacokinetics (PKs). (A) The three PKs used in the model

are shown over time (in hours) for the same peak drug concentration (xMIC). (B) The treatment failure probabilities

and (C) mutational diversities are given for the three PKs from (A) and two antimicrobial drug classes

(antibiotics (ABs) and antimicrobial peptides (AMPs)). Blue (orange) bars show averages calculated over the blue

(orange) framed triangular areas of multi-step (ms) (single-step (ss)) resistance evolution shown in Figure 2,

Figure 3—figure supplements 1 and 2. MIC: minimum inhibitory concentration.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Resistance evolution with single-step (ss) and multi-step (ms) patterns for ramp
pharmacokinetic (PK).

Figure supplement 2. Resistance evolution with single-step (ss) and multi-step (ms) patterns for constant
pharmacokinetic (PK).

Figure supplement 3. Mutational diversity at the end of the treatment period.

Figure supplement 4. Comparison of resistance evolution with antibiotic (AB) and antimicrobial peptide (AMP)
treatments using peak or ramp pharmacokinetic (PK).

Figure supplement 5. Selection coefficient analysis.

Figure supplement 6. Resistance evolution patterns with different pharmacokinetics (PKs) and pharmacodynamics
(PDs) for bacteriostatic drug action.

Figure supplement 7. Resistance evolution patterns with different pharmacokinetics (PKs) for simulations starting
from neutral mutation heterogeneity.
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was the main determinant of treatment outcome, but we also found a complex dependence on PK

and PD characteristics.

This complexity in resistance determinants raises the question in how far the type of drug action

influences treatment outcome. Specifically, antimicrobials can have bactericidal action (which we

were modeling so far, through a drug-dependent death rate), but they can also act bacteriostatically,

that is, decreasing bacterial growth. We would expect bacteriostatic antimicrobials to slow down the

rise of mutations in comparison to bactericidal ones as the acquisition of mutations is also coupled

to bacterial growth. However, we find that this is only true for ramp and constant PK treatments (Fig-

ure 3—figure supplement 6A). Peak PKs allow for regrowth of bacterial cells due to drug decay,

which increases bacterial survival and treatment failure, especially with multi-step resistance. Interest-

ingly, mutational diversity only increased for AMP treatments (Figure 3—figure supplement 6B).

Multi-step resistance can lower the threshold for adaptive treatment
application
The conventional treatment goal is to ‘eradicate’ the pathogen population, but it has been sug-

gested that under certain conditions ‘mitigation’ could be a superior strategy (Hansen et al., 2017;

Hansen et al., 2020; Gatenby et al., 2009), for example, if it is likely that a resistant subpopulation

already exists at the beginning of the treatment. This strategy is called adaptive treatment as drug

doses are adapted to keep the sensitive population as big as possible and the total pathogen bur-

den below a given limit. (In practice, this is challenging as it requires monitoring of the pathogen

burden and adjusting drug doses accordingly, which is difficult to implement even for measurements

of total within-patient loads.) In adaptive treatment, the sensitive population provides a benefit by

competitively inhibiting the resistant subpopulation, but also a risk by supplying mutational input

(Figure 4). This trade-off creates a threshold for the size of the pre-existent resistant subpopulation

above which adaptive treatment is more effective than aggressive ‘eradication’ in containing the

infection (Hansen et al., 2017).

Previously, the threshold for adaptive treatment was derived in a single-step resistance scenario

(Hansen et al., 2017). When we incorporated adaptive treatment in our multi-step resistance frame-

work (Figure 4—figure supplement 1), we found that the resistant subpopulation threshold above

which adaptive treatment is more beneficial can be much lower in the multi-step scenario than in the

single-step one (Figure 4A). This can be intuitively explained by the fact that all (partially) sensitive

bacteria serve as competitors for fully resistant cells, but only the subpopulation one mutation away

from being fully resistant constitutes the risk population (Figure 4B). Thus, with multi-step resistance

there is a smaller population to supply resistant bacteria than with single-step resistance, changing

the trade-off towards adaptive treatment. Additionally (in scenarios where adaptive treatment is

favorable), the difference between adaptive and aggressive treatment in the duration until treatment

failure can be several-fold larger for multi-step than single-step resistance patterns (Figure 4—figure

supplement 2). Hence, assuming either single- or multi-step evolution could lead to considerably

different treatment strategy assessments with regard to treatment failure through resistant

pathogens.

HGT does not change the treatment failure probability
In addition to chromosomal mutations (Woodford and Ellington, 2007), antimicrobial resistance

can be conferred through HGT (van Hoek et al., 2011), which could facilitate resistance in multi-

step scenarios. To account for this possibility, we extended the model to allow for acquisition of a

gene conferring full resistance, initially only at a low rate from the environment, and then at a den-

sity-dependent rate from other cells carrying the HGT gene (for assumption and implementation

details, see Materials and methods). The HGT gene always provided immediate resistance to the

applied maximal dose, regardless of the benefit or costs conferred by mutations. In order to com-

pare the population dynamics of these two main antimicrobial resistance acquisition mechanisms, we

assumed that resistance through mutations or HGT can be acquired independently of each other

and that their effects are multiplicative.

Even though HGT carriers dominated the remaining pathogen population at the end of the treat-

ment (Figure 2—figure supplement 3), the addition of HGT did not change the probability of treat-

ment failure (Figure 2—figure supplement 4). This result holds true as long as the acquisition rate
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from the environment is lower than the mutation rate (this constraint is examined further in the Dis-

cussion). Consequently, initial rescue of the population is due to mutations – and therefore depen-

dent on the magnitude of the mutational benefit – whereas HGT resistance is acquired later during

the infection, after which it spreads rapidly.

Discussion
In this study, we compared the risk of drug resistance evolution patterns that either feature single

resistance mutations with large costs and benefits or multiple steps involving mutations with smaller

costs and benefits. We extended this comparison across a wide range of PD and PK profiles, which

cover a multitude of antimicrobials and treatment strategies. We first showed that the single- and

multi-step resistance patterns are relevant by gathering evidence of multi-step resistance patterns in

the experimental literature (Table 1, Figure 1). While it is intuitive that drug resistance requiring

Figure 4. Adaptive treatment threshold. (A) The dependence of the threshold number of resistant bacteria cells

Mm is given for different proportions of the risk population to the whole competitor population for single-step

(orange stars), where the risk population is always equal to 1, and multi-step (blue lines) resistance patterns.

Different benefits (and correlated costs) per mutation are shown as different color shades. (B) The minimum

inhibitory concentration (MIC) increases with every mutation (given by bi), but only an MIC above the given drug

dose will lead to a reproductive number R0 >1, that is, growth of the population (resistant cells). All other

subpopulations serve as competitors, and the subpopulation one mutation away from resistance is the risk

population.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Optimal pharmacokinetic (PK) for adaptive treatment.

Figure supplement 2. Differences in time to treatment failure are more pronounced with multi-step patterns.
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more than one mutation will arise more slowly, we find that it can be a surprisingly strong inhibitor

of resistance evolution and mutational diversity, depending on the drug class and administration

route (Figure 3). We demonstrated that the number of mutations necessary for resistance strongly

affects predictions of treatment outcome and optimality with regard to antimicrobial resistance – in

a manner that is robust to variations in mutation rates and in the cost per mutation (Figure 2—figure

supplements 2 and 5). Experimental support for our simulation results comes from studies reporting

that mutational input limited to low benefits (Drlica, 2003) leads to decreased drug resistance evolu-

tion as compared to systems, in which high-benefit mutations are available (Allen et al., 2004).

Moreover, limited access to high-benefit mutations seems to curtail MIC increase beyond a certain

threshold (Chevereau et al., 2015).

The pattern of resistance evolution (single- and multi-step) is likely to be associated with the

molecular mechanisms of resistance for a given antimicrobial: as an overall rule, the magnitude of

the resistance benefit correlates with the mechanism of resistance, for example, efflux pumps yield

low benefits, whereas specific drug target mutations yield high benefits (Hughes and Andersson,

2017).

Unfortunately, the specific mutations linked to the benefit and cost of mutations in our literature

analysis (Table 1) are generally not known. Overall, however, MIC increase was low for drugs, which

typically show unspecific resistance mechanisms via two-component systems or lipopolysaccharide

modifications – as generally seen for AMP resistance (Lofton et al., 2013; Makarova et al., 2018;

Kubicek-Sutherland et al., 2017) – and high for drugs with typical resistance via specific target

modifications, as seen for some AB classes (e.g., rifampicin resistance via RNAP subunit mutations)

(Goldstein, 2014). For most drugs, the prevalent resistance mechanisms are known (van Hoek

et al., 2011); hence, this information can be used to determine drug and dosing regimens that mini-

mize resistance evolution based on the inferred pattern of resistance evolution (i.e., using the proba-

bility that a single- or multi-step pattern is underlying resistance evolution). A recent study also

suggests that resistance evolution in biofilms, which are often associated with clinical infections, is

prone to occur through unspecific mechanisms, even if specific mechanisms are favored in planktonic

cultures (Santos-Lopez et al., 2019).

Interestingly, the risk of resistance evolution does not seem to be related to the emerging muta-

tional diversity in the population in a trivial manner as it is either limited by fast extinction or high

mutational cost (Figure 2, Figure 3—figure supplements 1 and 2). Reducing mutational diversity is

however a worthwhile goal in its own right as mutational diversity can increase adaptation by fixing

more mildly deleterious mutations, which can then act as stepping stones for multi-drug resistance

evolution (Van Egeren et al., 2018). Further, the diversity arising during the treatment period will

help to determine if escalating the drug dose is expected to be beneficial or if, conversely, it would

be detrimental because higher-resistance mutations are already present in the population and would

be selected. The strength of this selection is determined by the MSW of the antimicrobial. Hence,

the number of resistance mutations emerging over the treatment can be useful in estimating the

width of the MSW – even though the diversity remaining at the end of the treatment will likely be

lower (Figure 3—figure supplement 3).

We find that mutational diversity arises from a combination of selection pressure, bacterial

growth, and fitness costs and cannot be predicted from the mutational benefit or the probability of

treatment failure alone. Diversity is also shaped in unexpected ways by interactions between the

drug type and drug concentration changes, making drug choice not only dependent on the PD char-

acteristics, but also the specific drug PK in the target body compartment. Notably, this can lead to

more favorable assessment of a specific drug application mode for one type of drug (e.g., AMPs for

bolus drug application), but a different mode for another drug (e.g., ABs for drug infusions). While

we mostly focused on the action of bactericidal drugs in this study, we note that purely bacterio-

static effects can lead to different trends for PK and PD influence on treatment failure and mutational

diversity, for example, making peak PKs the least favorable drug administration route (Figure 3—fig-

ure supplement 6). The unexpected complexity in predicting which treatment strategies will mini-

mize resistance evolution highlights the need of critically evaluating assumptions such as single-step

resistance made in current PKPD models. The role of specific drug characteristics in resistance evolu-

tion is exemplified by the steepness of the PD curve, k. By analyzing the selection coefficients for

various treatments, we find that k governs not only the size of the MSW (Yu et al., 2018;

Chevereau et al., 2015), but generally shapes the selection pressure for resistance evolution in a
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qualitative manner.  min, the minimal bacterial growth rate, on the other hand, leads to substantial

quantitative changes in selection pressure, meaning that k and  min shape the form and strength of

drug selection independently (Figure 3—figure supplement 5C). Ultimately, the interactions

between PD and PK characteristics give rise to complex, and dynamic, fitness landscapes that are

navigated by mutations of various benefit and cost sizes.

Interestingly, AMP-like drugs show considerably more resistance evolution with ramp PKs than in

the other PK scenarios. This is noteworthy as natural AMP expression patterns in the producing

organisms resemble ramp PKs (Johnston et al., 2014; Haine et al., 2008). This finding could sug-

gest another reason why natural AMP production in cocktails is favorable (Zanchi et al., 2017) as

AMP cocktails will limit the selection pressure and potential for resistance evolution to individual

components. Intuitively, we would expect that a gradual increase in drug concentration would facili-

tate the rise of multiple mutations and indeed we find that ramp PKs lead to the highest probability

of treatment failure and mutational diversity (Figure 3). However, a high probability of treatment

failure is still mostly observed with high mutational benefits (Figure 3—figure supplement 1),

that is, limited with the small-benefit mutations likely associated with multi-step resistance

(Jochumsen et al., 2016). For clinical settings, our simulations caution that attention should be paid

to the drug application mode when using AMPs. AMP-like colistin and daptomycin, for example, are

typically applied as (short) IV treatments (Liu et al., 2011; Tsuji et al., 2019), which resemble peak

PKs, and they are still active as last-resort drugs for multi-drug-resistant bacterial pathogens

(Liu et al., 2011; Tsuji et al., 2019). Overall, our results agree with Yu et al., 2018 in that AMP

treatment lowers resistance evolution and mutational diversity. This is particularly notable as multi-

step patterns seem to be the common mechanism by which AMP resistance evolves (Table 1;

Spohn et al., 2019; Jochumsen et al., 2016; Joo et al., 2016) – thereby suggesting another advan-

tage over ABs, for which single- and multi-step evolution is common (Drlica, 2003; Weinreich et al.,

2006; Wistrand-Yuen et al., 2018; Marcusson et al., 2009; Jin and Gross, 1988).

Unfortunately, distributions of mutational effects have rarely been characterized experimentally

for drug resistance, and even then only for a single mutational step (Chevereau et al., 2015). We

show, however, that this information is crucial as input for PKPD models to accurately predict resis-

tance evolution and population diversity in response to drug treatment. Even between mutations

involved in multi-step resistance to a single drug, benefit and costs of individual mutations are likely

to vary (Figure 1B). In addition, epistasis in benefit and or cost magnitude can facilitate or preclude

certain evolutionary pathways (Jochumsen et al., 2016). Both options can be easily included in our

model, but empirical data in this regard is sparse, and we expect our main results with regard to PD

and PK influence on single- and multi-step resistance to be robust to such changes. The empirical

data that we used to inform our simulations did also not provide explicit information about potential

compensatory mutations, which arguably can influence the dynamics of resistance evolution

(Andersson and Hughes, 2010) – although likely in a very complex manner, as recent studies sug-

gest (Dunai et al., 2019). According to our results, these mutations might even be a necessary

means to allow multi-step resistance patterns to arise. If they emerge fast enough to compensate for

the cost of the first mutation, they would increase the selection coefficient of this mutational sub-

population and thereby provide a stepping stone to high-level resistance. This might either be akin

to crossing a fitness valley, if the first mutation does not provide a benefit, or it might facilitate

climbing a fitness peak by making low-benefit mutations more favorable.

For many antimicrobial drugs, resistance evolution can not only arise through chromosomal muta-

tions, but also by acquisition of resistance genes through HGT (van Hoek et al., 2011). Notably, our

results highlight the importance of transfer rates as we find rescue of the pathogen population

through HGT resistance only if the initial acquisition rate is higher than the mutation rate. HGT is not

only dependent on the recipient population size but also on the donor population size, hence using

typical experimentally measured conjugation rates of 10�11–10�13 ml cell�1 h-1 (Licht et al., 1999),

environmental donors have to be more abundant than 105 cells ml�1 to be faster than chromosomal

mutation rates (Rodrı́guez-Rojas et al., 2014) of 10�6, which might not always be the case at bacte-

rial infection sites (Stecher et al., 2012). This implies either (i) that HGT resistance is acquired after

chromosomal mutations, (ii) that HGT spreads mostly at sublethal drug doses, or (iii) that acquisition

rates from a pre-existent pool of HGT carriers are high. Plasmid transfer rates are likely increased at

low AB doses (Cairns et al., 2018), but generally they are highly variable, and even though they are

biased towards spread between clone-mates, there seems to be no obvious correlation between
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transfer rates and genetic distance of donors and recipients (Dimitriu et al., 2019). Hence, deter-

mining the relative importance of resistance evolution through HGT or chromosomal mutations is

difficult, but for specific drugs like AMPs, for which spread of HGT resistance from the gut micro-

biota seems to be low (Kintses et al., 2019), the risk of treatment failure is mainly shaped by the

beneficial mutations available to the population.

Most of our results assumed a completely susceptible pathogen population at onset of treatment,

as seen in many bacterial infections (Balmer and Tanner, 2011). However, the fast growth and high

mutation rates can lead to significant heterogeneity in bacterial populations and we would expect

this (neutral) heterogeneity to increase treatment failure, even with multi-step resistance patterns, by

giving the population a ‘head-start’ in the accumulation of mutations. This is indeed what we see

with our model when we start from a heterogeneous population, but we still find on average less

than 50% treatment failure in each multi-step resistance scenario (considering various PKs and PDs)

(Materials and methods, Figure 2—figure supplement 6, Figure 3—figure supplement 7).

When starting from populations that likely already contain resistance mutations, aiming for ‘miti-

gation’ (adaptive treatment) can be more effective in reducing resistance spread than trying to

completely ‘eradicate’ the pathogen population (aggressive treatment). If multiple steps are neces-

sary to obtain full resistance to the highest possible drug dose, we find that the threshold for choos-

ing adaptive over aggressive treatment can be much lower than if only a single mutation were

necessary (Figure 4). Additionally, in drug-free environments, we expect a lower frequency of resis-

tant cells for multi-step patterns as it is less likely that neutral heterogeneity produces cells carrying

all resistance mutations. Hence, the high competitive benefit is paired with a low risk for resistance

evolution. Even though determination of the number and size of resistant subpopulations is very dif-

ficult in practice, this suggests that adaptive treatment is likely to be superior in containment of

resistant infections for many drugs, for which multi-step patterns are the most common resistance

mechanism. Further, the assumptions in our model are not specific to bacterial populations or anti-

microbials, which makes them more broadly applicable to other drug treatments, like cancer therapy

(Chakrabarti and Michor, 2017). Our results suggest a way forward to develop treatment strategies

that – in addition to all other important considerations – explicitly account for the risk of drug resis-

tance evolution.

Materials and methods

Key resources table

Reagent type (species) or resource Designation Source or reference

Software, algorithm R package adaptivetau Johnson, P. Tau-Leaping Stochastic Simulation. R package version 2.2–3 (2019) (Johnson, 2019

Other Previously published datasets Melnyk A, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations. (2015) (Melnyk

Literature review of costs and benefits of antimicrobial drug resistance
mutations
We compounded a comprehensive set of experimental evolution studies (or reviews thereof) that

measured both fitness costs (usually growth rate reductions in the absence of drugs) and benefits

(usually increases in MIC) of AB or AMP resistance mutations within the same set of experiments.

The studies used various bacterial species, including pathogenic isolates (see Table 1). From empiri-

cally measured data of sample replicates, we calculated costs as the arithmetic mean of 1-(relative

fitness to wildtype) and the benefit as the geometric mean (due to the logarithmic scale of MIC/IC50

measures) of MIC or IC50 increase relative to the wildtype. (Note: Chevereau et al., 2015 used IC50

instead of MIC but our calculation of IC50 and IC90 – which is likely very close to MIC – in their data

gave a good correlation [R2 = 0.45, p<0.001], which indicates that the benefits obtained from IC50

measurements are comparable to ones obtained from MIC measurements.) As fitness measure, we

considered only the measurements done in the same conditions (media and temperature) that was

also used for experimental evolution, even if growth was also measured in different environments.

We list the conditions of the various evolution experiments, MIC and fitness measurements in
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Table 1, with the exception of Melnyk et al., 2015, where we only list the eight different pathogenic

strains used, as this paper synthesizes 24 different studies, grown under various conditions.

We obtained the type and average number of mutational events observed from supplemental

data in most studies, but there was generally no possibility to link any individual resistance mutation

with a specific cost and benefit. Hence, we divided the overall costs and benefits by the average

number of observed (adaptive) mutations (i.e., mutations that were not observed in control lines),

assuming that each mutation provides a similar share to the overall magnitude. As most studies have

a very low number of mutational events linked to resistance, this assumption is not expected to lead

to strong biases. Overall, the results from all of the studies gave only a very weak positive linear cor-

relation between the log(benefit) and cost of a mutational event (Figure 1B). Mutations seem to be

more likely to incur costs than benefits. This result is largely determined by the large data set from

Spohn et al., 2019, which gives a very weak correlation between cost and benefit (Figure 1—figure

supplement 1), similar to the data points from Melnyk et al., 2015. The dataset from Spohn et al.,

2019 is the only one that fulfilled our criteria and directly compared AB and AMP mutational effects,

which we summarize in Figure 1—figure supplement 1. The calculated benefit and cost per muta-

tion for each individual AB and AMP in the Spohn et al., 2019 and Melnyk et al., 2015 data is given

in Figure 1—source data 1.

PD model
We combined a PD model, which connects the growth of bacterial (mutant) subpopulations to anti-

microbial drug concentration (Figure 1A; Nielsen and Friberg, 2013; Andersson et al., 2020;

Read et al., 2011; Clarelli et al., 2020; Yu et al., 2018; Regoes et al., 2004), with a population

model to predict the emergence of resistance mutations in individual bacterial cells.

In the population model, bacteria can grow up to a certain carrying capacity and can accumulate

mutations during replication at a certain rate. In order to simulate de novo mutation emergence, we

started most of our simulations from a completely susceptible population M0, but we also ran simula-

tions starting from neutral diversity (meaning that we ran the simulation for 50 hr without AB treat-

ment and then started from the observed neutral heterogeneity) (Figure 2—figure supplement 6,

Figure 3—figure supplement 7). We do not allow for reversion of resistance mutations, which has

been found to be rare (Dunai et al., 2019) and likely does not play a role in multi-step resistance

networks (over the time frame of a single treatment period). The population dynamics is captured by

the following deterministic equations (which were implemented in a stochastic manner):

dMi

dt
¼ r � 1� cð Þi�1�u �Mi�1 � 1�

M

K

� �

þ r � 1� cð Þi� 1� uð Þ �Mi � 1�
M

K

� �

� gþgið Þ �Mi

with i¼ 0;1;2; . . .

M ¼
i

X

Mi

Here, Mi is the bacterial subpopulation carrying i mutations, r the wildtype growth rate (set to 1

in our simulations), c the cost of each mutation, u the mutation rate, K the carrying capacity of the

system, g the natural death rate, and gi the death rate caused by drugs (which captures the PD

properties of a drug and the resistance level of the bacterial population via the mutational benefit).

The PD function
In our population model, cells die at a low intrinsic rate g, whereas death due to antimicrobials (gi) is

dependent on the properties of the antimicrobial applied, the benefit conferred by each mutation,

and the PK profile. Specifically, gi is calculated from the maximal and minimal growth rates  max and

 min (note that  min can be negative in the presence of drugs, meaning that we generally consider

bactericidal AB action), the (time-dependent) concentration of the drug a, the MIC of the mutation-

free population (set to 1 in our simulations), the benefit bi conferred by each mutation, and the sen-

sitivity of the dose–growth relationship k (the Hill coefficient or steepness of the curve):
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gi ¼
 max � minð Þ � a= MIC � bið Þð Þk

a= MIC � bið Þð Þk� min= max

 max ¼ r � 1� cð Þi�g

Considering bacteriostatic antimicrobial action can be achieved in our model by using a small

 min value and incorporating antimicrobial effect into the growth, not the death term. Note that

introducing antimicrobial action into the birth term here leads to density-dependent antimicrobial

effects. This is not entirely unrealistic, considering persister bacteria, whose dormant state protects

them from killing by ABs (Kussell et al., 2005). However, bacteriostatic action in itself would result

in a high bacterial presence at the end of the treatment – even if bacteria are fully susceptible to the

antimicrobial – as intrinsic bacterial death is very low. Hence, we incorporated an extrinsic removal

rate �gcl �Mi, akin to immune system clearance of inert bacterial cells, with gcl ¼ 0:1h�1 being in a

realistic range (Roach et al., 2017). The model for bacteriostatic drug action is then given by

dMi

dt
¼ r � 1� cð Þi�1�gi�1

� �

� u �Mi�1 � 1�
M

K

� �

þ r � 1� cð Þi�gi

� �

� 1� uð Þ �Mi � 1�
M

K

� �

� gþgclð Þ �Mi

with i¼ 0;1;2; . . .

M¼
i

X

Mi

Benefits and costs of mutations
The main interest of our study is the comparison of AB resistance evolution via ‘typical’ single muta-

tions with complex, multi-step processes as shown in Jochumsen et al., 2016. The latter are charac-

terized by a network of mutations of small benefits in multiple genomic resistance loci that create

evolutionary pathways to high-level AB resistance (Jochumsen et al., 2016). We model this mutation

accumulation via sequential acquisition of mutations with a certain benefit and cost, that is,

decreases in drug-induced death and decreases in the maximum growth rate. Benefits and costs of

each mutation were taken from the positive correlation that was observed with literature values

(slope = 0.0087) – except for simulations testing the dependence of our results on this relationship,

where we took a steeper correlation (slope = 0.0467) (Figure 2—figure supplement 1).

As benefits and costs are likely to vary, we also confirmed that our results are robust with regard

to drawing benefits and costs of each mutation from a normal distribution. Similarly, we ran simula-

tions with ‘peak PK’, where only the first mutational benefit/cost was fixed (i.e., deciding if a single-

or multi-step pattern was necessary) and the other mutations were sampled from the whole range of

benefits and costs obtained from the literature, independently of each other (Figure 2—figure sup-

plement 5). We ignore the possibility of positive epistasis between these mutations (which would

speed up resistance evolution as fewer mutations would be required for higher levels of resistance),

as well as the possibility of negative epistasis, which would limit access to some mutations and the

available pathways to resistance (thereby slowing down resistance evolution as ‘effective’ mutation

rates might be lower than we assume in our model). Both of these processes are complex and not

well understood, hence by ignoring these possibilities we aim to provide a more fundamental and

intuitive comparison between single- and multi-step resistance evolution.

Resistance mutation rates were generally kept the same for each simulation run (i.e., regardless

of the benefit magnitude). In reality, there might be more mutations available that provide a low

benefit – which are likely to be less specific and therefore have a larger genomic target size, but

using higher mutation rates for mutations with lower benefits and costs – which was done propor-

tional to the number of steps needed to obtain resistance – did not change our results noticeably

(Figure 2—figure supplement 2).
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PK functions
In our simulations, we used three different PK functions to evaluate resistance evolution dynamics.

‘Peak PK’ describes the intake of a drug with a certain period t , which is absorbed instantaneously

and then decays exponentially at rate k (Yu et al., 2018):

a tð Þ ¼
n

X

d � e�k t� n�1ð Þt½ �
� �

with n = 1,2,. . . the number of times the treatment dose d is applied.

For ‘constant PK’, the drug concentration is independent of time and simplifies to a = d, whereas

for ‘ramp PK’, the drug concentration increases linearly over a time k2cmax (hence the rate of drug

concentration increase is given as d/k2cmax) and then stays constant for the rest of the treatment

period. The value for k2cmax used for most simulations (48 hr) was taken from literature and

describes an example of AMP production timing during a natural immune response (Haine et al.,

2008).

Implementation and simulation
The model was implemented in R using the package adaptivetau (Johnson, 2019) for stochastic

implementations via the Gillespie algorithm. We focused on stochastic simulations as we were partic-

ularly interested in the timing and probability of the de novo rise and fixation of multiple mutations.

We used the package adaptivetau because it allows for time-varying reaction rates, which was neces-

sary in order to incorporate drug-concentration-dependent death rates. It also allows for determin-

istic simulation of a subset of rates as we did not want the AB concentration to be stochastic. For

increased accuracy, we changed the epsilon parameter (which describes the tolerance of relative

rate changes in step size selection) to 0.01, which we found gave the same results as exact

simulations.

We calculated treatment failure probability as the frequency of runs, in which bacteria were not

eradicated at the end of the treatment period (200 hr). Mutational diversity was calculated using the

Shannon index, which takes into account the richness and evenness of the distribution of mutant

subpopulations, and either averaging the maximum per treatment period (for most results) or the

end diversity (Figure 3—figure supplement 3) over all simulation runs. Treatment failure probability

and mutational diversity were plotted using the R function filled.contour, which, as far as we could

ascertain, interpolates linearly between (potentially irregularly) spaced grid points. To increase the

appeal of our figures, we increased the option nlevels from the default value of 20 to 50. The values

for treatment failure and diversity shown in the contour plots were then averaged over the whole

multi- or single-step area (colored triangles shown in Figure 2) in order to compare different treat-

ment strategies.

The difference in treatment failure and mutational diversity between the two antimicrobial classes

(PK profiles) was obtained by subtracting the corresponding values after every simulation of an AMP

treatment from the one obtained in a simulation for an AB treatment and plotting the individual

resulting differences (for 500 simulations) as well as the density via violin plots.

Model parameters other than benefit, cost, and drug dose are taken from Yu et al., 2018

(Supplementary file 1). The two different antimicrobial drug classes were defined based on previous

experimental and theoretical work (Yu et al., 2018; Rodrı́guez-Rojas et al., 2014; Yu et al., 2016)

by using two parameter sets: for the AB class, the mutation rate was 3 * 10�6 per division, k was 1.5

and  min was –5 h�1; whereas for the AMP class, the mutation rate was 10�6, k was 5 and  min was –

50 h�1.

The described code has been made available as an R package (Source code 1).

Selection coefficient analysis
Selection coefficients for our PD model were calculated under the assumption that the sensitive pop-

ulation is very small compared to the carrying capacity, which is a good approximation to the selec-

tion pressure at the start of an infection. This means that we can neglect the logistic growth term in

our calculations. As the results were very similar to assuming a population at the carrying capacity

(which is an approximation for an infection that has had time to establish itself), we will focus on the
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selection coefficients with a small starting population. Selection coefficients were determined

through eigenvalues obtained from the Jacobi matrix given by dM
dt

¼

dM0

dt

..

.

dMn

dt

2

6

4

3

7

5
¼ N ið Þ �M tð Þ:

N ið Þ ¼

r � 1� uð Þ� gþg0ð Þ 0

r � u r � 1� cð Þ1� 1� uð Þ� gþg1ð Þ
� � �
� � �

� � � 0

� � � ..
.

0 r � 1� cð Þ1�u . .
. ..

.

..

. . .
.

0 � � �

. .
. r � 1� cð Þn�1� 1� uð Þ� gþgn�1ð Þ 0

r � 1� cð Þn�1�u r � 1� cð Þn� 1� uð Þ� gþgnð Þ

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

The eigenvalues of N(i) are its diagonal entries, which correspond to the net growth of each pop-

ulation. We calculated selection coefficients for each of the mutational subpopulations in our model

as the difference in growth rates between bacteria with i mutations and bacteria with i–1 mutations

(i.e., the difference between their eigenvalues):

si ¼ growth Mið Þ� growth Mi�1ð Þ ¼ r � 1� cð Þi� 1� uð Þ� gþgið Þ
� �

� r � 1� cð Þi�1� 1� uð Þ� gþgi�1ð Þ
� �

The AB concentration over time was calculated deterministically using the R package deSolve

(Soetaert et al., 2010) in order to calculate the death rates due to antimicrobial treatment.

The difference between the parameter sets for the two antimicrobial classes used here lies in the

higher mutation rate u, lower k, and higher  min for AB treatments (Yu et al., 2018). Hence, we

investigated the importance of the two PD parameters k and  min by calculating the selection coeffi-

cients using the AMP parameter set and swapping either k or  min with that of the AB parameter

set.

More generally, we can consider the Jacobi matrix for the resistant populations invading at the

mutant-free equilibrium:

N ið Þ ¼

r � 1� cð Þ1� 1� uð Þ � 1�
M�

0

K

� �

� gþg1ð Þ 0

r � 1� cð Þ1�u � 1�
M�

0

K

� �

r � 1� cð Þ2� 1� uð Þ � 1�
M�

0

K

� �

� gþg2ð Þ

� � �
0

� � � 0

� � � ..
.

0 � � � . .
.

. .
. ..

.

..

. . .
.

0 � � �
� � �

r � 1� cð Þn�1� 1� uð Þ � 1�
M�

0

K

� �

� gþgn�1ð Þ 0

r � 1� cð Þn�u � 1�
M�

0

K

� �

r � 1� cð Þn� 1� uð Þ � 1�M�

K

� �

� gþgnð Þ
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B

@
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The criteria for invasion of a mutant into the susceptible population is then that the eigenvalue of

the mutant has to be bigger than zero, that is,

ln ¼ r � 1� cð Þn� 1� uð Þ � 1�
M�

0

K

� �

� gþgnð Þ>0

Inserting the mutant-free equilibrium M�
0
¼K � 1� gþg0

r� 1�uð Þ

� �

yields

gþg0>
gþgn

1� cð Þn

which means that bacterial cells with n mutations can invade if the death rate of the sensitive strain

is higher than the death rate of the mutant normalized by the cost of the mutation(s).

Horizontal gene transfer
We added HGT to the model by allowing for an additional resistance gene (with benefit bp and cost

cp) to be acquired, which gives resistance in a single step. Hence, the benefit bp and the correspond-

ing cost cp were adjusted with respect to the drug dose applied by using a benefit that would

increase the MIC 20% above the applied drug dose and calculating the cost accordingly through the

linear correlation obtained from Table 1. We assume that the bacterial population under investiga-

tion has not yet acquired the HGT element, and initial transfer has to come from the environment,

that is, initial conditions were the same as for simulations without HGT and Mp 0ð Þ = 0. This gene can
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be acquired at a low rate a from the environment or at a density-dependent rate b, which we

assumed to be on the same order of magnitude as the mutation rate (Bakkeren et al., 2019).

The horizontally transferred gene can be acquired by sensitive or mutant bacterial populations,

and cells containing HGT resistance can still acquire further mutations (but not further HGT resis-

tance). Hence, we assume that HGT resistance is, for example, acquired via a specific resistance

gene on a plasmid (typically a plasmid can only be acquired once per cell) and that the resistance

gene from this plasmid (e.g., using enzymatic drug inactivation) acts through a different mechanism

than resistance by chromosomal mutation (e.g., modification of the drug target) (van Hoek et al.,

2011).

The equations were modified as follows:

dMi

dt
¼ r � 1� cð Þi�1�u �Mi�1 � 1�

M

K

� �

þ r � 1� cð Þi� 1� uð Þ �Mi � 1�
M

K

� �

� gþgið Þ �Mi � aþb �Mp

� �

�Mi

dMpi

dt
¼ r � 1� cð Þi�1�cp

� �

� u �Mpi�1 � 1�M
K

� �

þ r � 1� cð Þi�cp
� �

� 1� uð Þ �Mpi � 1�M
K

� �

�

gþgpi

� �

�Mpi þ aþb �Mp

� �

�Mi

M ¼
i

X

Mi þ
i

X

Mpi

Mp ¼
i

X

Mpi

Here, Mpi is the bacterial subpopulation carrying the HGT gene and i mutations, Mp the total

number of HGT subpopulations, and M the total number of all bacterial populations. Relative popu-

lation frequencies were calculated at the end of the treatment period by dividing the cell number of

each subpopulation through the whole population size.

Adaptive treatment
In adaptive treatment, the goal is not to eradicate the bacterial population entirely but to adjust the

treatment dose continuously in order to keep the pathogen level below a certain upper limit.

Hansen et al., 2017 calculated the threshold of resistant cells that are necessary at the beginning of

the treatment for adaptive treatment to outperform aggressive treatment (i.e., giving the full dose

right away), which is based on the idea that sensitive cells provide a risk for becoming resistant

through mutation and a benefit through growth competition with the resistant cells at the same

time. Hansen et al., 2017 only considered one mutation to resistance, which means that their risk

subpopulation and competitor subpopulation was the same. If we consider however sequential

mutational steps, then the risk population only consists of the subpopulation one mutation away

from full resistance (which will be the mth mutation), whereas the competitor population for the fully

resistant strain contains all (partially) sensitive bacteria (i.e., including mutant strains, which are not

fully resistant to the highest possible treatment dose). Therefore, the threshold of resistant bacteria

is given by (compare to [4] in Hansen et al., 2017):

Competitive benefit of ðpartiallyÞ sensitives ¼ Mutational risk fromMm�1

r � 1� cð Þm�Mm � d � Pmax�Mmð Þ ¼ u � r � 1� cð Þm�1� 1� dPmaxð Þ �Mm�1

Mm ¼
u � 1� dPmaxð Þ �Mm�1

1� cð Þ � d �
Pm�1

j¼0
Mj

with Pmax �Mmð Þ ¼
X

m�1

j¼0

Mj

Here, d describes the strength of competition and Pmax the upper limit of acceptable pathogen

burden. Note that here it is assumed that all pathogens (regardless of drug sensitivity) contribute

equally to competition (Hansen et al., 2017). This leads to a quadratic equation for the subpopula-

tion with m mutations, Mm, which we used to calculate how the resistant population threshold for

Igler et al. eLife 2021;10:e64116. DOI: https://doi.org/10.7554/eLife.64116 19 of 24

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.64116


adaptive treatment (i.e., the initial density Mm0 above which adaptive treatment is more favorable)

differs between multi- and single-step resistance patterns (Figure 4).

We implemented adaptive treatment in our model by setting a defined upper bound of accept-

able pathogen cells, which was equal to the starting density in these simulations (Hansen et al.,

2017) (i.e., assuming that the bacterial infection already progressed to a level at which treatment

becomes necessary). We used a relatively low acceptable burden of 105 CFU, which is supported by

bacterial loads in, for example, urinary tract infections (Schmiemann et al., 2010). Note that defining

an acceptable limit of pathogen burden in clinical settings is far more intricate as a patient’s individ-

ual biology will play a significant role and is beyond the scope of this paper. We adjusted the treat-

ment dose in order to keep the pathogen load at or below this threshold value but the

subpopulations of at least partially sensitive cells as big as possible (Figure 4—figure supplement

1): specifically, we increased the treatment dose to the MIC of the highest resistant subpopulation

when its frequency exceeded 1% of the total population and the total pathogen load was higher

than our set acceptable burden – until the maximum dose set for a specific treatment simulation was

reached; after which the maximum dose was applied continuously. The (partially) sensitive cells serve

as competitors for the resistant strain that carries a mutational growth cost and can be outcompeted

at low drug doses (Hansen et al., 2017). At the same time, subpopulations that are one step away

from the resistant population provide a risk population as they are likely to gain resistance.

For simulations of adaptive and aggressive treatment, we started from a population with neutral

heterogeneity, meaning that we calculated the steady-state number of cells with a specific number

of mutations given a certain cost (and benefit) in the absence of drug selection. As we want to com-

pare the time difference to treatment failure between adaptive and aggressive treatment for single-

and multi-step patterns, we initially add to this ‘neutral population’ the predicted number of resis-

tant cells necessary to make adaptive treatment superior to aggressive treatment. The drug dose in

adaptive treatments was then adjusted to keep the number of pathogens below the acceptable bur-

den as described above. The time of treatment failure was determined as the time where the total

pathogen population crossed 108 CFUs. We compared adaptive and aggressive treatment by divid-

ing the time to treatment failure obtained from the adaptive strategy by the one obtained with the

aggressive strategy, yielding the fold difference in treatment success duration.
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