

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Metabolomic data of phenolic compounds from *Acer negundo* extracts

Hebert Jair Barrales-Cureño^{a,*}, Rafael Salgado-Garciglia^a, Luis Germán López-Valdez^b, Juan Luis Monribot-Villanueva^c, José Antonio Guerrero-Analco^c, Gonzalo Guillermo Lucho-Constantino^d,

Fabiola Zaragoza-Martínez^e, Braulio Edgar Herrera-Cabrera^f, César Reyes^g

^a Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, México

^b Laboratorio de Productos Naturales, Área de Química. AP74 Oficina de correos Chapingo, Universidad Autónoma Chapingo, Km 38.5 Carretera México-Texcoco, 56230, Texcoco, Estado de México, México

^c Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa, Ver., México ^d Universidad Tecnológica de Gutierrez Zamora, Veracruz. Prolongación Dr. Miguel Patiño S/N, Centro, 93556, Veracruz, México

^e Centro de Investigación y Estudios Avanzados del IPN. Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Ciudad de México, México

^f Colegio de Postgraduados, Campus Puebla. Km. 125.5, Carr. Federal México-Puebla, Santiago Momoxpan, 72760, Puebla, México

^g Universidad Intercultural del Estado de Puebla, Calle Principal a Lipuntahuaca S/N, 73475, Puebla, México

ARTICLE INFO

Article history: Received 16 March 2020 Revised 31 March 2020 Accepted 7 April 2020 Available online 21 April 2020

Keywords: Antioxidant flavonoids gentisic acid kaempferol-3-O-glucoside quercetin-3-glucoside

ABSTRACT

Phytochemical and metabolomic data were obtained for the most important phenolic compounds in ethanolic extracts from the endangered *Acer negundo* tree in Morelia, Michoacan. Samples of leaves and stems were subjected to ethanolic extraction with electric rotavapor. We developed a metabolomic analysis that encompassed the correlation between the leaf and stem extracts through principal component analysis. The data were obtained with an infinity Agilent ultrahigh resolution liquid chromatograph coupled to a Agilent triple quadrupole mass spectrometer. The protocol used was a dynamic MRM (Multiple Reaction Monitoring).

* Corresponding author.

E-mail addresses: hebert.jair@uiep.edu.mx, barrales.hebert@colpos.mx (H.J. Barrales-Cureño).

https://doi.org/10.1016/j.dib.2020.105569

2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

Clustering result shown as heatmap (distance measure using euclidean, and clustering algorithm using ward.D). © 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject	Botany, Phytochemistry, Plant biotechnology, Metabolomics, Food chemistry, Chemistry of natural products.
Specific subject area	Metabolomic analysis, liquid chromatography, mass spectrometry.
Type of data	Table, Figure, Image
How data were acquired	Leaf sample collection, stem sample collection, liquid chromatography, mass spectrometry.
Data format	Raw and Analysed
Parameters for data collection	Samples of leaves and stems of <i>Acer negundo</i> tree were collected and subjected to a dehydration process that required three days at a temperature of 50 °C in rotary evaporator.
Description of data	A botanical exploration of the samples was conducted to obtain the ethanolic extracts.
collection	The samples were filtered and then the solvent was evaporizated in an electric rotavapor to obtain the crude extracts. The samples were collected for metabolomic analysis by liquid chromatography and mass spectrometry. Identification and quantification of the analyzed phenolic compounds in leaf and stem extracts were obtained. A heat map was obtained. The equipment used was a UPLC coupled to a triple quadrupole mass spectrometer. The equipment was injected with 2 µL of ethanolic extract from leaves and 2 µL of ethanolic extract from stems.
Data source location	Morelia, Michoacán, México Country: México The GPS coordinates are Latitude and longitude for collected samples/data: West, 1920 m.a.s.l.
Data accessibility	Repository name: Mendeley Data Data identification number: 2 Direct URL to data: http://dx.doi.org/10.17632/hhp8z52n9t.2

Value of the data

- The data serve to identify and quantify the type and concentration of the metabolites present in the plant organs of *Acer negundo*.
- The data collected could increase the knowledge about the level of phenolic compounds in endangered trees such as *Acer negundo*.
- The distribution of the quantitative data could serve as a reference for metabolomic studies in other species of the genus *Acer negundo*.
- The data of quantification of metabolites type phenolic compounds with antioxidant power in food chemistry allows the standardization of quality products from *Acer negundo*.
- A correlation of metabolites and a database of metabolites of this species is obtained for metabolomics studies in trees of medical importance.
- Currently, no metabolomic studies have been conducted on this species, and therefore it is important for studies in biochemistry, biosynthesis, plant physiology, plant biotechnology, phytochemistry and food chemistry.

1. Data Description

The data set in this article describes the metabolomics that includes all phenolic compounds synthesized in the leaves and stems of the *Acer negundo* tree. Fig. 1 describes the extraction

Figure 1. a) Biological sample of Acer negundo leaves and stems; b) Incorporation of the solvent c) Filtration of the samples, and d) Rotaevaporization of the solvent to obtain the raw extract.

process obtained from our protocol in which 80% ethanolic solution is used and the raw extract is obtained from a rotavaporizer. Currently, metabolomics allows the identification and quantification of total metabolites in a plant cell, or plant tissue [1,2].

The protocol used was a dynamic MRM (Multiple Reaction Monitoring). The conditions for each compound are described in the Table 1. The retention time variation allowed for the search of the compounds were 2 min in each case. The cell accelerator voltage was 7 V for each compound. Dilutions were made if the concentration of some compounds were higher than the linearity range.

Phenolic compounds are powerful antioxidants [1, 2]. The 30 chemical structures of the analyzed phenolic compounds are presented in the extracts of leaves and stems of *A. negundo* (Fig. 2).

Thirty phenolic compounds were quantified, in leaf extracts there were 30 compounds and in stem extracts there were 25 compounds (Table 2).

Fig. 3 shows a heat map of differential metabolites found by metabolomic analysis. The blue color represents the decreasing trend, the red represents an increasing trend.

Fig. 4 shows the paired scorecards between the selected main components (PCs). The explained variance of each PC is shown in the corresponding diagonal cell.

Fig. 5 shows a score chart between the selected main components (PCs). The variations explained are shown in brackets.

In Fig. 6 a 3D score plot is shown between the selected main components (PCs). The explained variations are shown in brackets.

Fig. 7 shows a load plot for the selected main components (PCs).

Fig. 8 shows a biplot of the main components among the selected PCs.

2. Experimental Design, Materials, and Methods

2.1. Extraction data acquisition

The samples come from an *Acer negundo* mother tree free of pests and diseases. Ten leaf and stem samples of *A. negundo* were collected and then subjected to a dehydration process that required three days (72 h) a temperature of 50 °C. Then 100 mg of dry matter was dissolved in 100 mL of 80% ethanol. The mixture was filtered using Whatman No. 1 filter paper. To obtain the raw extracts, a rotary evaporator was used.

2.2. Identification and quantification of phenolic compounds

The identification and quantification of phenolic compounds was performed basically as it was previously reported in Juárez-Trujillo *et al.*, 2018 [3] and Monribot *et al.*, 2019 [4]. The equipment used was a UPLC coupled to a triple quadrupole mass spectrometer. The equipment was injected with 2 μ L of ethanolic extract from leaves and 2 μ L of ethanolic extract from stems.

Table 1

4

Conditions for the quantification of mass spectrometry data.

Compound	dMRM transition			Mass spectrometric conditions			Quantification conditions		
	Precurso ion	r Product ion	Retention time	Collision energy	Fragmentor	Polarity	Quantification range (µM)	n Regression type	R ²
Shikimic acid	173.1	111.1	0.48	10	100	Negative	0.25 - 18	Quadratic	0.99
Gallic acid	169.0	125.2	1.17	10	100	Negative	0.25 - 18	Quadratic	0.99
L-Phenylalanine	166.1	131.0	1.85	10	100	Positive	0.25 - 18	Quadratic	0.99

Table 1 (continued)

Compound	dMRM tra	ansition		Mass spe	ctrometric cor	nditions	Quantification	conditions	
	Precursor ion	Product ion	Retention time	Collision energy	Fragmentor	Polarity	Quantification range (µM)	Regression type	R ²
Protocatechuic acid	153.0	109.1	2.23	10	100	Negative	0.25 - 18	Quadratic	0.99
4-Hydroxybenzoic acid	137.1	92.8	3.43	10	100	Negative	0.25 - 18	Quadratic	0.99
Gentisic acid	153.0	109.0	3.43	10	100	Negative	0.25 - 18	Quadratic	0.99
(-)-Epigallocatechin	305.1	125.0	4.27	20	140	Negative	0.25 - 18	Quadratic	0.99
4-Hydroxyphenylacetic acid	107.1	77.0	4.5	20	140	Positive	0.25 - 18	Quadratic	0.99
(+)-Catechin	291.0	138.9	4.58	10	100	Positive	0.25 - 18	Quadratic	0.99
Vanillic acid	169.0	93.0	4.75	10	100	Positive	0.25 - 18	Quadratic	0.99
Scopolin	355.1	193.0	4.83	20	100	Positive	0.25 - 18	Quadratic	0.99
Callele acid	181.0	163.0	4.90	10	100	Positive	0.25 - 18	Quadratic	0.99
Malvin	655.1	3311	4.90	40	100	Positive	0.25 - 18	Quadratic	0.99
Kuromanin	449.0	286.9	5.6	30	100	Positive	0.25 - 18	Quadratic	0.99
Procvanidin B2	577.1	425.1	5.89	10	100	Negative	0.25 - 18	Quadratic	0.99
Vanillin	153.0	124.9	6.16	10	100	Positive	0.25 - 18	Quadratic	0.99
Keracyanin	595.2	287.1	6.18	20	100	Positive	0.25 - 18	Quadratic	0.99
(-)-Epicatechin	291.0	138.8	6.44	10	100	Positive	0.25 - 18	Quadratic	0.99
Mangiferin	423.0	302.0	6.64	10	100	Positive	0.25 - 18	Quadratic	0.99
4-Coumaric acid	165.0	147.0	6.69	10	100	Positive	0.25 - 18	Quadratic	0.99
Umbelliferone	163.0	107.0	7.16	30	100	Positive	0.25 - 18	Quadratic	0.99
(-)-Gallocatechin gallate	458.9	139.0	7.29	20	80	Positive	0.25 - 18	Quadratic	0.99
Scopoletin	193.0	133.0	7.86	10	100	Positive	0.25 - 18	Quadratic	0.99
Ferulic acid	195.1	145.0	8.1	20	100	Positive	0.25 - 18	Quadratic	0.99
2 Cournerie acid	165.0	302.9 147.0	0.10 0.40	10	100	Positive	0.25 - 18	Quadratic	0.99
Sinanic acid	225.1	2071	0.49 8.58	10	100	Positive	0.25 - 18	Quadratic	0.99
Salicylic acid	137.0	93	8.97	10	100	Negative	0.25 - 18	Quadratic	0.99
Ellagic acid	300.5	145.0	9.0	30	170	Negative	0.25 - 18	Ouadratic	0.99
Epicatechin gallate	443.1	123.0	9.36	10	100	Positive	0.25 - 18	Quadratic	0.99
Myricitrin	465.0	318.9	9.38	10	100	Positive	0.25 - 18	Quadratic	0.99
Quercetin 3-D-galactoside	465.0	302.9	9.58	10	100	Positive	0.25 - 18	Quadratic	0.99
Rutin	611.0	302.9	9.74	10	100	Positive	0.25 - 18	Quadratic	0.99
Quercetin 3-glucoside	465.0	303.0	9.91	10	100	Positive	0.25 - 18	Quadratic	0.99
Luteolin 7-O-glucoside	449.0	287.0	10.24	10	100	Positive	0.25 - 18	Quadratic	0.99
p-Anisic acid	153.1	109.0	10.26	5	120	Positive	0.25 - 18	Quadratic	0.99
2,4-Dimethoxy-o-	197.0	179.0	11.11	Э	80	Positive	0.25 - 18	Quadratic	0.99
acid									
Penta-O-gallovl-B-D-glucose	771.1	153.0	11.23	20	100	Positive	0.25 - 18	Ouadratic	0.99
Kaemperol 3-O-glucoside	449.0	286.9	11.27	10	100	Positive	0.25 - 18	Quadratic	0.99
Quercitrin	449.1	303.1	11.34	10	100	Positive	0.25 - 18	Quadratic	0.99
Myricetin	317.0	179.0	11.49	10	100	Negative	0.25 - 18	Quadratic	0.99
Naringin	273.0	153.0	11.89	10	120	Positive	0.25 - 18	Quadratic	0.99
trans-Resveratrol	229.1	135.1	11.94	10	100	Positive	0.25 - 18	Quadratic	0.99
Rosmarinic acid	361.1	163.0	12.35	10	100	Positive	0.25 - 18	Quadratic	0.99
Resperidin	262.2	301.1 1271	12.48	20	100	Negative	0.25 - 18	Quadratic	0.99
Phloridzin	435.0	137.1 272.0	12.30	10	100	Negative	0.25 - 18	Quadratic	0.99
trans-Cinnamic acid	1491	131.0	13 93	10	100	Positive	0.25 - 18	Quadratic	0.99
Psoralen	187.0	131.1	14.24	20	100	Positive	0.25 - 18	Ouadratic	0.99
Quercetin	302.9	153.1	14.47	35	100	Positive	0.25 - 18	Quadratic	0.99
Luteolin	287.1	153.0	14.56	30	100	Positive	0.25 - 18	Quadratic	0.99
Cirsimarin	477.0	314.9	14.93	10	100	Positive	0.25 - 18	Quadratic	0.99
Angelicin	187.0	131.1	15.03	20	100	Positive	0.25 - 18	Quadratic	0.99
Naringenin	271.0	151	16.2	10	100	Negative	0.25 - 18	Quadratic	0.99
Apigenin	271.0	153.0	16.72	30	100	Positive	0.25 - 18	Quadratic	0.99
Citropten	207.0	192.0	16.92	20	100	Positive	0.25 - 18	Quadratic	0.99
wiatairesinoi Kaompforol	339.2 2071	157.1	17.02	10	100	POSITIVE	0.25 - 18	Quadratic	0.99
Hesperatin	207.1	155.0	17.09	20	100	Positive	0.25 - 18	Quadratic	0.99
Podophyllotoxin	415 1	3971	17.5	20 10	100	Positive	0.25 - 18	Quadratic	0.99
Methyl cinnamate	163.1	131.0	20.92	6	100	Positive	0.25 - 18	Quadratic	0.99
Chrysin	255.1	153.0	22.53	40	100	Positive	0.25 - 18	Quadratic	0.99
Nordihydroguaiaretic acid	303.0	193.1	22.91	10	100	Positive	0.25 - 18	Quadratic	0.99
Kaempferide	301.0	258.2	24.05	20	100	Positive	0.25 - 18	Quadratic	0.99
Emodin	269.0	225.0	27.29	20	150	Negative	0.25 - 18	Quadratic	0.99
Chrysophanol	255.1	153.0	30.89	40	100	Positive	0.25 - 18	Quadratic	0.99

Figure 2. Chemical structure of the phenolic compounds analyzed in extracts of *Acer negundo*. 1) Shikimic acid; 2) Gallic acid; 3) L-phenylalanine; 4) Protocatechuic acid; 5) 4-Hydroxybenzoic acid; 6) Gentisic acid; 7) (-)-Epigallocatechin; 8) Caffeic acid; 9) (+)-Catechin; 10) Vanillic acid; 11) Chlorogenic acid; 12) Procyanidin B2; 13) Vanillin; 14) (-)-Epicatechin; 15) 4-Coumaric acid; 16) Scopoletin; 17) Ferulic acid; 18) Quercetin-3,4:di-O-glucoside; 19) Sinapic acid; 20) Salicylic acid; 21) Ellagic acid; 22) Quercetin-3-D-galactoside; 23) Rutin trihydrate; 24) Quercetin-3-glucoside; 25) Luteolin-7-O-glucoside; 26) Kaempferol-3-O-glucoside; 27) Naringin; 28) Secoisolariciresinol; 29) trans-Cinnamic acid; and 30) Luteolin.

Figure 4. Pairwise score plots between the selected PCs.

 ∞

Table 2

Concentration of phenolic compounds from A. negundo leaf and stem extracts.

Phen	olic Compound			Leafs		Stems	
		Molecular Formula	Molecular Weight (g/mol)	mg/g MS	Desvest	mg/g MS	Desvest
1	Shikimic acid	C ₇ H ₁₀ O ₅	174.15	311.64	11.93	0.00	0.00
2	Gallic acid	$C_7H_6O_5$	170.12	4.10	0.23	1.86	0.07
3	L-phenylalanine	$C_9H_{11}NO_2$	165.19	173.17	3.14	42.84	0.30
4	Protocatechuic acid	$C_7H_6O_4$	154.12	1.32	0.88	1.82	0.03
5	4-Hydroxybenzoic acid	$C_7H_6O_3$	138.12	8.84	0.14	2.24	0.06
6	Gentisic acid	$C_7H_6O_4$	154.12	181.39	4.08	4.21	0.12
7	(-)-Epigallocatechin	C ₁₅ H ₁₄ O ₇	306.27	3.65	0.12	8.20	0.25
8	Caffeic acid	$C_9H_8O_4$	180.15	1.49	0.03	0.27	0.01
9	4-Hydroxyphenylacetic acid	$C_8H_8O_3$	152.14	0.00	0.00	0.00	0.00
10	(+)-Catechin	$C_{15}H_{14}O_{6}$	290.26	5.82	0.05	65.62	1.33
11	Vanillic acid	$C_8H_8O_4$	168.14	7.36	0.16	3.83	0.04
12	Scopolin	C ₁₆ H ₁₈ O ₉	354.31	0.00	0.00	0.00	0.00
13	Chlorogenic acid	C ₁₆ H ₁₈ O ₉	354.31	9.56	0.25	0.57	0.03
14	Malvin chloride	C ₂₉ H ₃₅ ClO ₁₇	691.03	0.00	0.00	0.00	0.00
15	Kuromanin chloride	C ₂₁ H ₂₁ ClO ₁₁	484.84	0.00	0.00	0.00	0.00
16	Procyanidin B2	C ₃₀ H ₂₆ O ₁₂	578.52	4.94	0.06	12.31	0.20
17	Vanillin	C ₈ H ₈ O ₃	152.15	6.35	0.04	3.56	0.04
18	Keracyanin chloride	C ₂₇ H ₃₁ ClO ₁₅	630.98	0.00	0.00	0.00	0.00
19	(-)-Epicatechin	$C_{15}H_{14}O_6$	290.26	10.36	0.08	37.90	0.38
20	Mangiferin	C19H18O11	422.33	0.00	0.00	0.00	0.00
21	4-Coumaric acid	C ₀ H ₈ O ₃	164.16	5.65	0.12	1.20	0.03
22	Umbelliferone	C ₀ H ₆ O ₃	162.14	0.00	0.00	0.00	0.00
23	(-)-Gallocatechin gallate	C22H18O11	458.37	0.00	0.00	0.00	0.00
24	Scopoletin	C10H8O4	192.16	95.70	1.18	2.48	0.05
25	Ferulic acid	$C_{10}H_{10}O_4$	194.18	3.98	0.08	0.90	0.03
26	Quercetin-3,4 ² di-O-	$C_{27}H_{30}O_{17}$	626.40	33.32	0.51	0.22	0.03
27	Cvanidin	C15 H11 Oc	28724	0.00	0.00	0.00	0.00
28	3-Coumaric acid	CoHoOo	164 16	0.00	0.00	0.00	0.00
29	Sinanic acid	C11 H12 Or	224 21	145	0.00	0.28	0.02
30	Salicylic acid	C ₇ H ₂ O ₂	138 12	32.01	107	5.97	0.11
31	Fllagic acid	CirtheOo	302.19	173 51	14 40	0.00	0.00
32	(-)-Enicatechin Gallate		442 37	0.00	0.00	0.00	0.00
33	Myricitrin	C22H18O10	464 37	0.00	0.00	0.00	0.00
34	Pelargonidin chloride	C15 H11 ClOs	306.70	0.00	0.00	0.00	0.00
35	Quercetin_3_D_		464 38	1557.66	25.93	99.68	118
26	galactoside Butin tribudrate		66456	1776 19	25.55	124.12	1.10
20		3H ₂ O	464.30	1770.10	7.34	154.12	1.15
/د مد	Quercetin-3-glucoside	$C_{21}H_{20}U_{12}$	404.38	1910.18	27.08	81.27	0.84
38	Luteolin-7-O-glucoside	$C_{21}H_{20}O_{11}$	448.38	264.11	5.34	0.00	0.00
39	p-Anisic acid	C ₈ H ₈ O ₃	152.14	0.00	0.00	0.00	0.00
40	Malvidin chloride	C ₁₇ H ₁₅ ClO ₇	366.75	0.00	0.00	0.00	0.00
41	2,4-Dimethoxy-6- methylbenzoic	$C_{10}H_{12}O_4$	196.20	0.00	0.00	0.00	0.00
47	Penta-O-gallovi- β -D-		940.68	0.00	0.00	0.00	0.00
42	glucose	xH ₂ O	940.08	0.00	0.00	0.00	0.00
43	Kaempferol-3-O- glucoside	$C_{21}H_{20}O_{11}$	448.37	4238.41	27.55	34.87	0.45
44	Quercitrin	C ₂₁ H ₂₀ O ₁₁	448.38	0.00	0.00	0.00	0.00
45	Myricetin	$C_{15}H_{10}O_{8}$	318.24	0.00	0.00	0.00	0.00
46	Naringin	C ₂₇ H ₃₂ O ₁₄	580.54	9.60	0.30	0.00	0.00
47	trans-Resveratrol	C ₁₄ H ₁₂ O ₃	228,25	0.00	0.00	0.00	0.00
48	Rosmarinic acid	C ₁₈ H ₁₆ O ₈	360,31	0.00	0.00	0.00	0.00

(continued on next page)

Table 2 (continued)

10

Phenolic Compound			Leafs		Stems		
		Molecular Formula	Molecular Weight (g/mol)	mg/g MS	Desvest	mg/g MS	Desvest
49	Hesperidin	C ₂₈ H ₃₄ O ₁₅	610,18	0.00	0.00	0.00	0.00
50	Secoisolariciresinol	$C_{20}H_{26}O_{6}$	362.17	16.18	0.15	0.58	0.06
51	Phloridzin	$C_{21}H_{24}O_{10}$	436.413	0.00	0.00	0.00	0.00
52	trans-Cinnamic acid	$C_9H_8O_2$	148.16	0.44	0.01	0.32	0.01
53	Psoralen	$C_{11}H_6O_3$	186.16	0.00	0.00	0.00	0.00
54	Quercetin	C ₁₅ H ₁₀ O ₇	302,236	0.00	0.00	0.00	0.00
55	Luteolin	C ₁₅ H ₁₀ O ₆	286.24	41.27	0.94	0.00	0.00
56	Cirsimarin	C ₂₃ H ₂₄ O ₁₁	476.4	0.00	0.00	0.00	0.00
57	Angelicin	$C_{11}H_6O_3$	186.166	0.00	0.00	0.00	0.00
58	Naringenin	C ₁₅ H ₁₂ O ₅	272,25	0.00	0.00	0.00	0.00
59	Apigenin	$C_{15}H_{10}O_5$	270.05	0.00	0.00	0.00	0.00
60	Citropten	$C_{11}H_{10}O_4$	206.19	0.00	0.00	0.00	0.00

Figure 5. Scores plot between the selected PCs.

2.3. Sample preparation

Samples were filtered with 0.5 μ m PTFE membranes and placed in 2 mL UPLC vials.

2.4. Chromatographic conditions

The data were obtained with a 1290 infinity Agilent ultrahigh resolution liquid chromatograph coupled to a 6460 Agilent triple quadrupole mass spectrometer. The mobile phases were

Figure 6. 3D score plot between the selected PCs.

Figure 7. Loadings plot for the selected PCs.

water with 0.1% of formic acid (A) and acetonitrile with 0.1% formic acid (B), both in MS grade. The gradient elution profile is presented in the Table 3.

The flow was 0.3 mL/min. The injection volume was 2 μ L. The column was a Waters, BEH, 2.1 \times 50 mm, 1.7 Microns. The column temperature was 40 °C.

Figure 8. PCA biplot between the selected PCs.

Table 3

12

Time (min)	Solution A (%)	Solution B (%)
0	99	1
30	50	50
35	1	99
39	1	99
40	99	1
45	99	1

Table 4

Parameter	Value
Gas Temp Gas Flow Nebulizer Sheath Gas Temp Sheath Gas Flow Capillary voltage (positive and negative)	300 °C 5 L/min 45 psi 250 °C 11 L/min 3500 V
Nozzie voltage (positive and negative)	300 v

2.5. Mass spectrometry conditions

The conditions of mass spectrometry is presented in the Table 4.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at http://dx.doi.org/10.17632/hhp8z52n9t.2 (Mendeley Data).

Acknowledgments

We thank the National Council of Science and Technology of Mexico (CONACYT) for the postdoctoral fellowship grant for the realization of this project.

References

- A.M. Rodriguez, C. Miguel, I. Chaves, C. Antonio, Mass spectrometry-based forest tree metabolomics, Mass Spectrom Rev. (2019) 1–32 https://doi.org/, doi:10.1002/mas.21603.
- [2] C. Tanase, S. Cosarca, D.L. Muntean, A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity, Molecules 24 (2019) 1182 https://doi.org/, doi:10.3390/ molecules24061182.
- [3] N. Juárez-Trujillo, J.L. Monribot-Villanueva, V.M. Jiménez-Fernández, R. Suárez-Montaño, A. Sahid Aguilar-Colorado, J.A. Guerrero-Analco, M. Jiménez, Phytochemical characterization of Izote (Yucca elephantipes) flowers, J Appl Bot Food Qual 91 (2018) 202–210 https://doi.org/, doi:10.5073/JABFQ.2018.091.027.
- [4] J.L. Monribot-Villanueva, J.M. Elizalde-Contreras, M. Aluja, A. Segura-Cabrera, A. Birke, J.A. Guerrero-Analco, E. Ruiz-Maya, Endorsing and extending the repertory of nutraceutical and antioxidant sources in mangoes during postharvest shelf life, Food Chem. 285 (2019) 119–129 https://doi.org/, doi:10.1016/j.foodchem.2019.01.136.