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Evidence is mounting that mutation rates are sufficiently high for deleterious alleles to be a major evolutionary force
affecting the evolution of sex, the maintenance of genetic variation, and many other evolutionary phenomena. Though
point estimates of mutation rates are improving, we remain largely ignorant of the biological factors affecting these
rates at the individual level. Of special importance is the possibility that mutation rates are condition-dependent with
low-condition individuals experiencing more mutation. Theory predicts that such condition dependence would
dramatically increase the rate at which populations adapt to new environments and the extent to which populations
suffer from mutation load. Despite its importance, there has been little study of this phenomenon in multicellular
organisms. Here, we examine whether DNA repair processes are condition-dependent in Drosophila melanogaster. In
this species, damaged DNA in sperm can be repaired by maternal repair processes after fertilization. We exposed high-
and low-condition females to sperm containing damaged DNA and then assessed the frequency of lethal mutations on
paternally derived X chromosomes transmitted by these females. The rate of lethal mutations transmitted by low-
condition females was 30% greater than that of high-condition females, indicating reduced repair capacity of low-
condition females. A separate experiment provided no support for an alternative hypothesis based on sperm selection.
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Introduction

Germ-line mutation is the ultimate source of heritable
variation, but the vast majority of new mutations affecting
fitness are deleterious. The unremitting presence of delete-
rious mutations causes a reduction in mean fitness, a
phenomenon known as mutation load. Mutation load can
be substantial even if individual mutations are of small effect
and are held at low frequencies by natural selection. For
example, classic theory [1] predicts that mutation load will
reduce mean fitness by more than 60% if there is just one
deleterious germ-line mutation per genome per generation.

The constant influx of deleterious mutations may pose a
serious challenge to natural populations [2]. Mutation load
can accelerate the extinction of endangered species [3,4] and
may be an important public health concern in humans [5].
Large mutation loads have been invoked as a possible
explanation for a wide variety of other phenomena, such as
the maintenance of genetic variation [6], the evolution of
specialization [7,8], the evolution of outcrossing [9–11], and
the evolution of sexual reproduction [12–15].

Mutation rate (U) is the most important factor determining
the magnitude of mutation load. However, estimates of the
mutation rate vary over two to three orders of magnitude
[16–20]. While much of this variance may be due to
measurement error (especially in earlier studies), some of
this variance likely has real biological causes [17,21–23]. Of
special interest is the possibility that variance in mutation
rate arises from individual variation in condition, because
individuals of low condition may have elevated rates of
mutation. In a stable environment, condition dependence of
the mutation rate is expected to alter the mutation load [24]

because of the positive feedback loop it creates: individuals
with an excess of deleterious alleles tend to be in low
condition and so experience a high mutation rate. (Interest-
ingly, the mutation loads of sexual and asexual populations
are affected very differently by condition dependence [24].)
Condition dependence is also expected to accelerate adapta-
tion to new stressful environments if the mutational input is
elevated under poor condition [25,26].
Although mutation rate is often treated as though it is

constant and nonplastic, there is no compelling reason to
believe this should be true. Condition dependence is common
among other traits, including recombination, another ‘‘ge-
nomic’’ trait [27–29]. Moreover, there is evidence that
mutation rate varies across environments in some unicellular
organisms [30–32]. However, there are reasons to question
whether patterns observed in unicellular organisms apply to
multicellular organisms. First, the unicellular organisms cited
above are predominantly asexual, and theory [33,34] predicts
that facultative elevation of mutation rate in response to
stress is more likely to evolve for adaptive reasons in asexual
species than in sexual species. Second, unicellular organisms
may be particularly sensitive to environmental effects on
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DNA processes simply because they are unicellular. None-
theless, it is reasonable to predict that mutation rates are also
condition-dependent in multicellular organisms, though the
reasons may be different from those in unicellular organisms.
For instance, condition dependence may occur because
maintaining DNA with perfect fidelity is a costly enterprise
and low-condition individuals are less able to pay this cost.
Despite the potentially important consequences of this
phenomenon, there has been little effort to look for evidence
of condition dependence in multicellular organisms.

Mutation rate is a function of two factors: (1) the rate at
which DNA damage occurs and (2) an organism’s ability to
repair that damage. Condition dependence in mutation rate
is expected if either of these factors is condition-dependent.
Using Drosophila melanogaster, we tested whether individuals in
low condition are less able to repair DNA damage without
inducing a mutation. When lesions in the DNA occur, these
must be repaired for the cell cycle to continue properly.
Some repair pathways are conservative and do not result in
mutation; other repair pathways are error-prone so that
mutations are generated in the process of removing DNA
lesions. Conservative pathways are thought to be more costly
than error-prone pathways [35]. The premise of our experi-
ment was simple: expose high- and low-condition individuals
to damaged DNA and assess their ability to repair the DNA
without introducing error.

One cannot simply expose flies to the same mutagen
treatment because high- and low-condition individuals might
respond differently (e.g., by eating or absorbing different
amounts of the mutagen) such that the level of damage differs
between the treatments. To circumvent this difficulty, we
took advantage of the maternal repair system in D.
melanogaster. When males are mutagenized, DNA damage in
sperm persists because there is little, if any, postmeiotic
repair in males [36,37]. However, premutational DNA lesions
can be repaired after fertilization by maternal repair
proteins. For example, Vogel et al [37] mated standard males
that had been mutagenized with methyl methanesulfonate
(MMS) to either wild-type or repair-deficient (Mei-9 mutant)
females. Repair-deficient females produced daughters carry-
ing recessive lethal mutations on their paternally derived (i.e.,
mutagen-exposed) X chromosomes almost eight times more
frequently than did wild-type females. This result indicates
repair-deficient females were less able to repair DNA damage

on chromosomes coming from mutagenized sperm without
producing a mutation. We used a similar design comparing
high- and low-condition females rather than wild-type and
repair-deficient females. Specifically, we used a larval diet
manipulation to create high- and low-condition females that
were genetically wild type with respect to DNA repair genes.
These females were mated to standard mutagenized males;
daughters were then screened for recessive lethals on the
paternally inherited X chromosome (Figure 1).
As reported below, low-condition females transmitted

more of these sex-linked recessive lethals (SLRLs) than did
high-condition females. An alternative interpretation to
condition-dependent repair is condition-dependent sperm
selection. In this scenario, heavily damaged sperm would be
less likely to fertilize eggs in high-condition females than in
low-condition females. We examined this possibility by doing
a separate sperm competition experiment in which we
measured selection against mutagenized sperm in both high-
and low-condition females. There is no evidence that
selection against mutagenized sperm is stronger in high-
condition females.

Results

Transmission Rate of Lethal-Bearing Paternal X
Chromosomes
A diet manipulation was used to produce flies of high and

low condition. Females emerging from the low-condition
treatment tended to be visibly smaller than females from the
high-condition treatment, but all flies were well within the

Figure 1. Crossing Design for Detection of Sex-Linked Recessive Lethal

Mutations

In the parental cross, high- or low-condition females of genotype Basc/X
were mated to wild-type males who had been mutagenized with MMS.
From each mother, four to ten F1 daughters were placed in individual
vials to lay eggs. Each of these daughters carried a paternally inherited
(mutagenized) X chromosome, denoted as Xi in grey. These females had
been allowed to mate with their brothers, which means they could
have mated to either X/Y or Basc/Y males though offspring arrays
indicate that it was usually the former as depicted here. Regardless of the
F1 male, 25% of the F2 offspring are expected to be Xi / Y (wild-type)
males (shown in dashed box). However, if there is a recessive lethal (or
near lethal) on Xi, then Xi / Y males will be absent or very rare. We
attempted to classify each Xi as carrying a (near) lethal or as not doing
so, depending on the likelihood of obtaining the observed frequency of
Xi / Y males when the expected frequency was 25% (no lethal) relative to
the likelihood when the expected frequency was 2.5% (near lethal). If
there was not sufficient evidence from the distribution of F2 progeny to
classify an Xi in either of these two categories, then that Xi was excluded
from further analysis. See Materials and Methods for details.
doi:10.1371/journal.pbio.0060030.g001
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Author Summary

A variety of evolutionary phenomena are affected by the rate at
which mutations enter a population and how those mutations are
distributed amongst individuals. Although it is typically assumed
that mutations occur randomly among individuals, this may not be
the case. Individuals in poor condition may experience elevated
mutation rates if they are more prone to experiencing DNA damage
or are less able to repair such damage. Using the fruit fly Drosophila
melanogaster, we tested whether individuals in poor condition had a
reduced capacity to efficiently repair mutagen-induced DNA
damage. Consistent with the prediction, we recovered approx-
imately 30% more mutations from low-condition individuals than
from high-condition individuals in two separate experiments. Such
condition dependence in mutation rate may cause populations to
carry considerably heavier loads of deleterious mutations than
otherwise expected.



normal range of body sizes observed in typical fly cultures.
Both high- and low-condition females were mated to males
that had been reared under standard conditions and then
mutagenized with alkylating agent MMS. As expected, the diet
manipulation affected condition: females from the low-
condition treatment produced approximately 32% fewer
offspring than females from the high-condition treatment
(F1,646 ¼ 82.0, p , 0.0001).

Averaging across all of Experiment 1, we found that
approximately 15% of paternally derived (i.e., mutagenized)
X chromosomes carried lethal (or near-lethal) mutations.
This frequency is consistent with other studies using a similar
dose of this mutagen and is about two orders of magnitude
greater than the spontaneous rate [38]. Our primary interest
is whether a mutagenized X chromosome was more likely to
eventually harbor a lethal mutation if it passed from a sperm
into an egg in a low-condition female rather than a high-
condition female. Such a pattern would be expected if low-
condition females were more likely than high-condition
females to employ error-prone pathways to repair damaged
DNA from sperm. The frequency at which high- and low-
condition females transmitted SLRL mutations from their
mutagenized mates to their offspring is given in Table 1. We
observed a higher frequency of lethal-bearing X chromo-
somes being transmitted by low-condition females than by
high-condition females. A randomization test revealed that
we were unlikely to observe this large a difference by chance
(n¼ 552, p¼ 0.04). Averaging over both blocks of Experiment
1, the rate at which low-condition females transmitted lethal-
bearing X chromosomes (0.159) was approximately 28%
higher than the rate at which high-condition females trans-
mitted lethal-bearing X chromosomes (0.124), i.e., 0.159/0.124
¼ 1.28.

We performed a second experiment similar to that
described above except that females were mated individually
to mutagenized males to prevent any effects of pre-
copulatory sexual selection. As in Experiment 1, the diet
manipulation in Experiment 2 affected condition: females
from the low-quality diet treatment produced significantly
fewer offspring than females from the high-quality diet
treatment (F1,851 ¼ 10.7, p , 0.001). In Experiment 2, the

overall rate of SLRLs was approximately 0.10, a lower
frequency than in Experiment 1 but within the normal range
expected for this type of mutagenesis [38]. As in Experiment
1, there was a difference in the frequency of SLRLs
transmitted by low- and high-condition females (low: 0.109;
high: 0.083). Relative to the daughters of high-condition
females, the daughters of low-condition females were
approximately 31% more likely to harbor a lethal mutation
on their paternally inherited X chromosome (n ¼ 595, p ¼
0.03).
The data shown in Table 1 indicate that our results are

consistent across both blocks of both experiments: low-
condition females transmit lethal-bearing paternally derived
X chromosomes at a higher rate than high-condition females.
Considering the evidence from both experiments together by
combining p-values [39] indicates this is a strongly significant
effect (weighted Z ¼�2.53, p ¼ 0.006).

Selection against Mutagenized Sperm in Low- and High-
Condition Females
It is possible that the results above could be due to sperm

selection rather than DNA repair capacity. Sperm carrying
more heavily damaged chromosomes might be less likely to
successfully fertilize eggs in high-condition females than in
low-condition females. In other words, it is possible that there
is stronger selection against mutagenized sperm in high-
condition females than in low-condition females. To test this
possibility, we measured the siring success of mutagenized
males and non-mutagenized males when mated to high- or
low-condition females.
Females were first mated to standard males and then mated

to either mutagenized or non-mutagenized males. We
measured the proportion of offspring sired by the second
male (P2), thus allowing for estimates of the P2 abilities of
mutagenized and non-mutagenized sperm against a standard
competitor. Mean P2 scores are shown in Table 2. Analysis of
these data with a generalized linear mixed model revealed a
significant negative effect of mutagenesis on P2 score (F1,18894
¼ 9.92, p ¼ 0.002), i.e., mutagenized sperm was less successful
than non-mutagenized sperm. There was no significant effect
of female condition (F1,18894¼0.00, p¼0.96), and there was no
significant interaction between female condition and whether
sperm had been mutagenized (F1,18894 ¼ 0.31, p ¼ 0.58).
In addition to the analysis described above, we performed a

different likelihood analysis that allowed us to model the
strength of selection against mutagenized sperm in low- and
high-condition females as separate parameters that are more
easily interpreted. Consistent with the previous analysis, this

Table 1. Average Frequency of X Chromosomes Bearing Sex-
Linked Recessive Lethal Mutations Recovered from High- and
Low-Condition Females Mated to Mutagenized Males

Experiment Block High / Low / % Increase

Freq SLRL (n) Freq SLRL (n)

1 1 13.3 (155) 16.2 (130) þ22

2 11.3 (128) 15.6 (139) þ38

2 1 8.7 (124) 11.0 (113) þ26

2 8.0 (187) 10.8 (174) þ35

The numbers of high and low females are given in parentheses. The last column, %
increase, is calculated as ((Low Female Freq SLRL)/(High Female Freq SLRL) – 1)*100%.
Randomization tests verify that the average frequency of paternal X chromosomes
bearing SLRL mutations was higher among those chromosomes that had been
transmitted by low-condition females rather than high-condition females (Experiment
1: n¼ 552, p¼ 0.04; Experiment 2: n¼ 595, p¼ 0.03). Considering the evidence from both
experiments together, there is strong support for this result (p¼ 0.006).
doi:10.1371/journal.pbio.0060030.t001

Table 2. Competitive Ability of Non-Mutagenized and Muta-
genized Sperm against a Standard Competitor, Measured as P2

Female

Condition

P2 Selection

Non-Mutagenized (n) Mutagenized (n)

Low / 95.5% (64) 89.9% (130) sL ¼ 0.038

High / 93.6% (83) 93.4% (93) sH ¼ 0.007

The number of females examined is given in parentheses. Selection against mutagenized
sperm was estimated from a likelihood model described in the text.
doi:10.1371/journal.pbio.0060030.t002
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likelihood analysis indicated selection against mutagenized
sperm in low-condition females (sL¼ 0.038) was considerably
stronger than in high-condition females (sH ¼ 0.007).
Although sL was found to be significantly greater than sH in
this analysis, these point estimates are primarily of heuristic
value as this latter analysis ignores variation among individual
females so that the model will tend to underestimate the
uncertainty in the parameter estimates. Nonetheless, the
results of both analyses show that whereas there is weak
selection against mutagenized sperm, there is no indication
that selection is stronger in high-condition females than in
low-condition females—the evidence is in the opposite
direction.

Discussion

According to classic theory, deleterious alleles can have
large effects on a population if the mutation rate is
sufficiently large, i.e., on the order of U¼ 1. Though estimates
of U have varied considerably, recent studies [16,17] employ-
ing modern techniques indicate that mutation rates are likely
to be high enough to create large loads.

As estimates of the mutation rate continue to improve, we
can begin to acknowledge and study the variation in this
genomic property. It is well known that transposable element
activity increases in response to extrinsic stress [40,41], but
much less is known about variation in the rates of more
traditional types of mutation. There is recent evidence that
repair capacity and net mutation rate are temperature-
dependent [23,42,43], though this may not be too surprising
since both DNA and protein stability are sensitive to
temperature. Some recent mutation-accumulation studies
have found evidence that mutation rates vary between closely
related species and even among lines of the same species
[17,22]. One study reported that the mutation rate accel-
erated within a line over the duration of a long mutation-
accumulation experiment [21]. The reasons for this variation
are unclear. In some cases, the variation in mutation rate can
be attributed to genetic differences among lines because all
lines accumulated mutations in the same environment [22].
Even so, it is unknown whether the important genetic
differences occur at loci that are directly involved in DNA
replication and/or repair, or alternatively, whether genetic
differences affecting condition indirectly lead to differences
in mutation.

Despite the important consequences of condition depend-
ence for mutation load [24] and adaptation to stressful
environments [25,26], there has been little effort to test for
this type of mutational plasticity in multicellular organisms.
We investigated whether DNA repair ability is condition-
dependent by exploiting the maternal repair system in D.
melanogaster. When fertilized with mutagenized sperm, low-
condition females were approximately 30% more likely than
high-condition females to produce daughters carrying pater-
nally derived X chromosomes that harbored recessive lethals.
This result was consistent across two separate experiments.

The mutagen used in this experiment, MMS, causes lesions
by alkylation of N atoms in the DNA [44]. These lesions can be
repaired, without error, by excision repair. If a lesion is not
repaired by excision prior to DNA replication, alternative
error-prone repair mechanisms may be employed to remove
the lesion, resulting in mutation [45]. Our data suggest that

females in low condition are less able to efficiently repair
DNA lesions without creating a mutation. This may be
because low-condition females are more likely to employ
error-prone repair pathways than are high-condition females
or because low-condition females use error-free repair
pathways less efficiently than do high-condition females.
We considered an alternative hypothesis based on sperm

selection though there are several reasons to doubt this
possibility. First, it is unlikely that the DNA lesions that lead
to mutations causing lethality are the direct targets of
selection, because only a very small fraction of genes are
expressed in sperm [46]. However, the mutagen may cause
physiological effects on sperm performance such that sperm
exposed to heavier doses of mutagen would have both
reduced performance and a higher likelihood of DNA
damage at potentially lethal sites. In other words, lethal
mutations may be eliminated via a correlated response to
selection against other effects of the mutagen. Effective
removal of X-linked lethal recessives through a correlated
response would require either strong selection or a large
covariance between the true target of selection (e.g.,
physiological effects of the mutagen) and the occurrence of
X-linked lethal recessives.
Most importantly, sperm selection alone is not sufficient to

explain the observed pattern. Rather, selection against
mutagenized sperm must be stronger in high-condition
females than in low-condition females. We tested this
possibility and found no evidence for it. In fact, our data
indicated that selection against mutagenized sperm was
stronger in low-condition females. The reasons for this latter
result are unclear but need not be adaptive. It is possible that
the reproductive tract of a low-condition female is simply a
harsher environment for sperm and imposes stronger
selection. Finally, it is worth noting that, although we did
detect significant selection against mutagenized sperm in the
sperm competition experiment, this selection was weak.
Moreover, this weak selection represents the selective differ-
ence between two extremes: mutagenized and non-mutagen-
ized sperm. In contrast, any sperm selection that might have
occurred in Experiments 1 and 2 would have been among
sperm that experienced varying degrees of exposure to the
mutagen, i.e., quantitative differences in exposure rather
than qualitative differences as in the sperm competition
experiment. Thus, any such selection in Experiments 1 and 2
would be expected to be even weaker than what we measured
in the sperm competition experiment. In sum, we can infer
that sperm selection was very weak in Experiments 1 and 2,
and most likely worked in a direction opposite to the
observed pattern with respect to sex-linked lethals.
Our data match the prediction expected under condition-

dependent repair. Theory indicates that under most con-
ditions, selection should favor reduced mutation rates in
sexually reproducing organisms [47]. The direct costs of
maintaining perfect DNA fidelity (i.e., the costs of perfect
replication and error-free repair) are thought to prevent
mutation rates from evolving to extremely low levels. This
implies that repair mechanisms are expected to operate at a
level that is somewhat costly. As has been discussed in other
contexts (most notably for life history traits and secondary
sexual characters), the expression of costly traits may often
differ between individuals in high versus low condition [48–
50]. Low-condition individuals may have higher mutation
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rates, not because selection favors more mutations, but
simply because low-condition individuals cannot afford to
invest as heavily in efficient repair.

We do not know whether the condition dependence in
repair capacity reported here reflects condition dependence
in mutation rates under natural conditions. If there is a
relationship, we can speculate on how this would affect
mutation load. Let us assume, as recent data suggest [17], that
individuals in good condition have a mutation rate of Umin¼
1. In our study, females reared on the low-quality diet had
20%–30% lower fecundity and transmitted approximately
30% more recessive lethals than females reared on high-
condition food. If we assume that a 30% reduction in
condition translates into a 30% increase in mutation rate and
that the relationship between condition and mutation rate is
linear, we can calculate the mean fitness using previously
developed theory [24]. Under these conditions, the mean
fitness of a population at equilibrium is expected to be
approximately 57% lower than expected if mutation was not
condition-dependent (i.e., if U ¼ 1 for all individuals
regardless of condition). Obviously, this calculation is based
on a number of untested assumptions, but nonetheless, it
serves to illustrate that condition dependent mutation could
have large effects on populations. Further work is required to
explore these assumptions and evaluate the magnitude of
condition dependence in mutation rate under natural
conditions.

Materials and Methods

Sex-linked recessive lethal assay. Experiment 1: females of high
and low condition were produced through a larval diet manipulation.
High-condition flies were created by rearing larvae on 7.5 ml of
standard sugar-yeast-agar media at a low density (40 larvae per 8-dr
[32-ml] vial). In the low-condition treatment, larvae were reared
under identical conditions, but the media contained 25% of the
standard concentration of sugar and yeast. Adult virgin females were
collected within 8 h of eclosion. Both high- and low-condition adult
females were held in vials containing standard media, but high-
condition females were also given live yeast immediately. Females of
both treatments received additional live yeast 3 d prior to mating.
Females were mated to mutagenized males (described below) when
they were 4 d (block 2) or 5 d (block 1) old. All of the females used
were heterozygous for the balancer X chromosome Basc that is
marked with the dominant eye mutation B (bar eyes). The Basc
chromosome had been crossed into our standard large outbred
population (Dah) more than ten generations prior to the experiment;
the balancer chromosome was maintained in this stock by selection.
The Dah outbred population was originally collected in 1970 in
Dahomey (now Benin), West Africa. It has been maintained at large
population size in various labs since that time and most recently in
the current lab for over 3 y. Thus, the Basc heterozygous females used
in this experiment had wild-type outbred genotypes other than the
presence of the Basc chromosome.

Wild-type males (from the Dah population) were kept without
access to food or water for several hours then exposed to sugar water
with 1.5 mM MMS. The following day, males were transferred to
recovery bottles for 2 h before allowing them to mate with the high-
and low-condition females described above. Matings occurred in vials
containing approximately 20 flies of each sex. The next day, females
were transferred to individual vials to lay eggs for 1 d. All vials
contained standard medium and live yeast. We counted the number
of offspring emerging from these vials, allowing us to examine how
the diet manipulation of mothers affected their production of
offspring.

We used these F1 offspring to look for SLRL mutations. Our assay
for SLRLs is very similar to traditional designs [38] and is shown in
Figure 1. From each of the original Basc heterozygous females, four to
eight (nonvirgin) Basc/Xi daughters (F1), which had mated with their
brothers prior to collection (see Figure 1 for details), were placed in
individual vials to lay eggs so that their offspring could be scored. The

symbol ‘‘Xi’’ represents a paternally inherited (i.e., mutagen-exposed)
X chromosome. Regardless of her mate, a Basc/Xi female should
produce two types of sons, Basc/Y and Xi/Y, in equal frequency.
However, if a recessive lethal mutation has occurred on this
chromosome, then the Basc/Xi daughter will be unable to produce
wild-type sons (Xi/Y).

If there is no recessive lethal on Xi, then the expected frequency of
wild-type males among the F2 progeny is 25%, assuming no viability
differences among genotypes. If Xi contains a recessive lethal (or
near-lethal) mutation, then the frequency of wild-type males among
the F2 progeny should be much less than 25%. We determined
whether a given Xi was likely to contain such a mutation by
examining the observed frequency of wild-type males among a set
of F2 progeny relative to the expectations if there was no mutation
and if there was a mutation. Specifically, for each set of F2 offspring
originating from a single F1 female, we calculated R¼L1/40/L1/4. L1/4 is
the likelihood (assuming a binomial distribution) of the observed
offspring array if the true frequency of wild-type males among all
possible sets of viable progeny of the family is 25%, i.e., the expected
frequency if there is no mutation. Similarly, L1/40 is the likelihood of
the observed offspring array if the true frequency of wild-type males
among all possible sets of viable progeny of the family is 2.5% (as
expected if the viability of wild-type males was approximately 10% of
normal). A low value of R indicates it is unlikely that the Xi in
question contains a recessive lethal (or near lethal), whereas a high
value of R indicates the opposite. When R � 10, we classified the Xi as
carrying a recessive lethal; when R � 0.1, we classified the Xi as not
carrying a recessive lethal. For intermediate values, 0.1 , R , 10, we
were unable to clearly assign Xi to either category, and these data
were excluded.

Using this criteria, we calculated the frequency of lethal-bearing,
paternally inherited X chromosomes transmitted by each of the
original high- and low-condition females. Over 78,000 flies from 2,470
sets of F2 offspring were scored in Experiment 1. From these 2,470
sets of F2 offspring, we were able to classify 1,461 Xi chromosomes as
being unlikely to carry a recessive lethal (R � 0.1) and 236 Xi
chromosomes as being likely to carry a recessive lethal (R � 10); the Xi
chromosomes from the remaining 773 sets of F2 offspring were not
classifiable (0.1 , R , 10). For these 1,461þ236¼1,697 classifiable Xi
chromosomes, the average number of F2 offspring upon which each
classification had been based was 43.9 (standard error [SE] ¼ 0.75).
These 1,697 classifiable Xi chromosomes had been transmitted by 552
parental generation females (283 high condition þ 269 low
condition), giving an average of 3.1 classifiable Xi chromosomes per
parental generation female. For each of these 552 parental
generation females, we calculated the frequency of her classifiable
Xi chromosomes that were likely to carry a recessive lethal.

The average frequency of lethal transmission was compared
between females from the two diet treatments. The true value of
the difference in average frequency of lethal transmission was
compared to a null distribution created by randomizing the data
across treatments but within blocks; 10,000 randomizations were
performed. The reported p-values for both Experiment 1 and 2 are
for one-tailed tests because we had a clear a priori prediction about
the direction of effect.

Experiment 2: several months later, we performed a second
experiment that was very similar to the one described above except
that mutagenized males were mated individually to experimental
females, thereby suppressing the opportunity for sexual selection. In
this experiment, females were 4 d old (block 1) or 3 d old (block 2) at
the time of mating. Up to ten Basc/Xi daughters were tested per
female.

Over 130,000 flies from 4,857 sets of F2 offspring were scored in
Experiment 2. From these 4,857 sets of F2 offspring, we were able to
classify 2,648 Xi chromosomes as being unlikely to carry a recessive
lethal (R � 0.1) and 291 Xi chromosomes as being likely to carry a
recessive lethal (R � 10); the Xi chromosomes from the remaining
1,918 sets of F2 offspring were not classifiable (0.1 , R , 10). For
these 2,648 þ 291 ¼ 2,939 classifiable Xi chromosomes, the average
number of F2 offspring upon which each classification had been
based was 41.6 (SE ¼ 0.43). These 2,939 classifiable Xi chromosomes
had been transmitted by 595 parental generation females (309 high
conditionþ286 low condition), giving an average of 4.9 classifiable Xi
chromosomes per female. For each of these 595 parental generation
females, we calculated the frequency of her classifiable Xi chromo-
somes that were likely to carry a recessive lethal. As in Experiment 1,
we used a randomization test to compare the average frequency of
lethal transmission between high- and low-condition females.

To assess the total evidence for an effect of female condition on
the rate of sex-linked lethal mutation, we used the weighted Z-
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transform method [39] to obtain a combined p-value from Experi-
ments 1 and 2. Each study was weighted by its sample size. The
unweighted Z-transform method provided a very similar result.

Sperm competition experiment. High- and low-condition females
were created as described above. All of the females for this
experiment were homozygous for a recessive bw� allele that causes
brown eyes. Virgin females were mated to standard red-eyed males
(homozygous wild-type at the bw locus) when they were 2 d (block 1), 3
d (block 2), or 4 d (block 3) old. After 2–4 h, males were removed, and
females were placed in individual vials to lay eggs for 4 d. Females
that did not produce viable eggs during this period were discarded.
Females were then mated to bw�/bw� males. Prior to mating, these
males had either been mutagenized with 1.5 mM MMS as described
above or put through an equivalent sham treatment without any
mutagen. After 1 d, the males were discarded, and the females were
transferred to new, individual vials to lay eggs for 2 d (egg-laying vial
1). Females were then flipped into new vials for another 2 d of egg
laying (egg-laying vial 2). Offspring emerging from both egg-laying
vials 1 and 2 were scored for eye color to determine paternity.

Because of the strong last-male precedence in Drosophila, it is likely
that females producing no brown-eyed offspring had not mated with
the second male; these females were excluded from the analysis. We
also excluded vials containing fewer than ten offspring. Data were
analyzed with a generalized linear mixed model using PROC
GLIMMIX in SAS with a logit link function and a binomial error
structure where female condition and male mutagen treatment were
included as fixed factors, and block and vial were included as random
effects.

In addition to the analysis above, we also used a likelihood
framework to model the proportion of offspring sired by the second
male, P2, as a function of block, female condition, and selection
against mutagenized sperm. Separate parameters modeled the
strength of selection occurring in low-condition females and in
high-condition females, though the model can be constrained so that
selection is the same in both types of females. This analysis ignores
variation among vials and so may underestimate the uncertainty in
parameter estimates. Nonetheless, the parameters are easily inter-
preted biologically and thus have heuristic value.

Specifically, the likelihood analysis worked as follows. Let X be an
indicator variable specifying whether a female’s second mate had
been mutagenized (X¼ 1) or not (X¼�1). For low-condition females,
the proportion of offspring sired by the second male is modeled as
P2,low(X)¼ ki(1� f)(1� X tlow); for high-condition females, P2,high(X)¼
ki(1 þ f)(1 � X thigh). The parameters ki, f, tlow, and thigh describe the
effect of different factors on P2: ki is approximately the average level
of P2 in block i (i 2f1, 2, 3g), f is the effect of female condition on P2,
tlow is the disadvantage of mutagenized sperm in low females, and thigh
is the disadvantage of mutagenized sperm in high females.

Let mij be the observed number of offspring from female j in block i
that were sired by the second male; let nij be the total observed
number of offspring from this female. If the true expected siring
success of the second male is p, the probability that m out of the n
offspring produced by a female will be sired by the second male is
given by the binomial distribution, Pr(mjn,p)¼ (n!/(m!(n-m)!))pm(1�p)n-m

where p is P2,low(X) or P2,high(X), as appropriate depending on the
female’s condition and the mutagen status of her second mate.

Considering the data from all females, the negative log likelihood
of parameter set x ¼ fk1, k2, f, tlow, thighg is given by

lðxÞ ¼ �
X3

i¼1

XNi

j¼1
logðPrðmij jnij ; pijÞjx ð1Þ

where Ni is the total number of females in block i. A modified
simulated annealing procedure, originating from 25 different
random parameter combinations, was used to find the parameters
that minimized the value of l(x), i.e., the maximum likelihood
parameter estimates.

We calculated the maximum likelihood of the unconstrained
model and the maximum likelihood of a constrained model in which
the disadvantage of mutagenized sperm was assumed to be the same
in both high- and low-condition females, i.e., tlow ¼ thigh. The
maximum likelihood parameters of the unconstrained model gave
l(xmax, unconstrained) ¼1,587.8, whereas for the constrained model,
l(xmax, constrained) ¼1,596.4. The unconstrained model had a signifi-
cantly higher likelihood than the constrained model (likelihood ratio
test, v2¼ 17.4, df¼ 1, p¼ 3 3 10�5) indicating that strength of sperm
selection differed significantly between high- and low-condition
females. The maximum likelihood parameter estimates for the
constrained model were k1 ¼ 0.96, k2 ¼ 0.93, k3 ¼ 0.95, f ¼ �0.002,
tlow¼ 0.019, and thigh¼ 0.003; the latter two values indicating selection
against mutagenized sperm is stronger in low-condition females than
in high-condition females. The standard population genetic param-
eterization of selection s comes from the reduction in fitness of the
less fit type relative to the more fit type, i.e., wless¼ (1� s)wmore. In this
case, the less fit type are mutagenized males and the more fit type are
non-mutagenized males. The parameter t is related to s by the
equation s ¼ 2t/(1 þ t). This relationship was used to produce the
values of sL and sH given in the Results.
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