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We present a fluorometric method for determining ABC transporter activity in the
pathogenic fungus C. albicans during different growth phases and in response to
glucose. The carbocyanine dye diS-C3(3) was previously used to monitor plasma
membrane potentials and test the influence of surface-active compounds in membrane
polarization. We used diS-C3(3) to show changes in fluorescence kinetics that
reflect changes in the activity of ABC transporters in C. albicans growth. Cdr1-GFP
fluorescence, revealed that Cdr1p relocates to the inside of the cell after the early-log
growth phase. Addition of glucose to the cell suspension resulted in Cdr1p transporter
expression in the CDR2-knockout strain. We confirmed the diS-C3(3) results by standard
RT-PCR and Western blotting.

Keywords: diS-C3(3) fluorescence, protein localization imaging, kinetics of efflux pump activity, Candida albicans,
CDR

INTRODUCTION

Candida albicans normally occurs as a relatively harmless organism in the human microbiome
(Koh, 2013); however, C. albicans infection can be triggered by various perturbations in
homeostasis, such as compromised immune defense or breaks in the epithelium–blood barriers
due to injury or surgery. Interestingly, the risk of infection is also increased in diabetic patients
(Perlroth et al., 2007), possibly due to the dramatic effects of glucose on C. albicans’ metabolism
(Brown et al., 2014) that increase virulence and drug resistance (Rodaki et al., 2009; Ene et al.,
2012; Mandal et al., 2014). Moreover, Mandal et al. (2014) found that glucose selectively interacts
with commonly used antifungal agents by forming complexes via hydrogen bonding, which, in
turn, lowers their efficacy. The growing number of C. albicans strains resistant to pharmaceuticals
is decreasing the already low number of drugs available to treat candidiasis. Due to C. albicans’
multiple mechanisms to adapt to and resist drugs, new experimental approaches must be developed
to define the in vivo and/or real-time behaviors of individual cells (Brown et al., 2014). Many of
C. albicans’ adaptations and resistance mechanisms are related to the supramolecular structure
formed by the cell wall and plasma membrane. Active transport through the plasma membrane
is driven by transporters powered by high energy compounds, such as ATP, and/or membrane
potential (Cannon et al., 2009). Thus, it is very important to develop methods to directly monitor
drug transporters and plasma membrane-related activity in C. albicans.

Candida albicans’ drug transporters were previously investigated via heterologous expression in
Saccharomyces cerevisiae, but growing evidence indicates that C. albicans’ metabolism is different
from that of S. cerevisiae, especially in terms of major transcriptional modifications and resistance
to osmotic stress and antifungal drugs (Garreau et al., 2000; Gasch et al., 2000; Ene et al., 2012;
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TABLE 1 | Candida albicans strains used in this study.

Strain Genotype Reference

CAF 2-1 ura3�::imm434/URA3 Fonzi and Irwin, 1993

DSY 448 cdr1�::hisG-URA3-hisG/cdr1�::hisG Sanglard and Ischer, 1996

DSY 653 cdr2�::hisG-URA3-hisG/cdr2�::hisG Sanglard et al., 1997

DSY 654 cdr1�::hisG/cdr1�::hisG
cdr2�::hisG-URA3-hisG/cdr2�::hisG

Sanglard et al., 1997

DSY 4-2 ura3�::imm434/ura3�::imm434 Fonzi and Irwin, 1993

ASCa1 ura3�::imm434/URA3 CDR1-GFP This study

Szczepaniak et al., 2015). Glucose, for example, enhances
oxidative stress resistance in C. albicans but decreases stress
resistance in S. cerevisiae (Garreau et al., 2000; Gasch et al., 2000).
Therefore, it is very important to account for many factors when
looking for new, efficient treatment strategies of candidiasis.

We developed a fluorescence method that allows in vivo real-
time monitoring of the activity of C. albicans’ drug efflux pumps,
Cdr1p, and Cdr2p, using a 3,3′-dipropylthiadicarbocyanine (diS-
C3(3)) probe (Szczepaniak et al., 2015). The method is based
on the property of diS-C3(3) to increase λmax after binding
to cell constituents (mostly proteins); since the maximum
fluorescence wavelength of the bound probe is about 10 nm
higher than that of the free probe in solution, it allows us
to observe its accumulation in cells and thereby monitor the
actions of the probe-expelling pumps. This method also allows
us to examine membrane potential differences in S. cerevisiae
based on the changes of the fluorescence spectra of diS-
C3(3) from equilibrium (Plášek et al., 2012). In this work,
we used diS-C3(3) to assess the scope of C. albicans ABC
transporter activity in response to membrane potential changes
and glucose.

MATERIALS AND METHODS

Strains and Growth Media
The C. albicans strains used in this study (Table 1) were generous
gifts from D. Sanglard (Lausanne, Switzerland). All strains were
grown at 28◦C on YPD medium with 2% glucose, 1% Bacto
peptone (Difco), and 1% yeast extract (Difco) with shaking at
120 rpm. Solid medium was supplemented with 2% agar.

Strain Construction
Strain ASCa1 was constructed by integration of the CDR1-GFP-
URA3 cassette into the chromosomal locus of CDR1 in the CAF
4-2 strain, as described by Gerami-Nejad et al. (2001). CDR1-
specific sequences were added to universal primers to generate
primers AS001 and AS003.We used primers AS003 and AS004 to
verify integration into the chromosomal locus of CDR1 (Table 2).

Sample Preparation
Cells were prepared according to the method of Gásková et al.
(1998), with modifications. One hundred and fifty microliter of
overnight, stationary culture were added to 20 ml of fresh YPD
medium and incubated at 28◦C with shaking at 120 rpm for

TABLE 2 | Primers used in this study.

Primer name Sequence Reference

AS001 CATTCTTACGGTGATCTTTTATTGGT
TAGCCAGAGAGAATAGAGTTCCAAAG
GGTAAAAAAAATAAGAAAGGTGGT
GGTTCTAAAGGTGAAGAATTATT

Larsen et al., 2006

AS002 ACAACAACAATAGTCTAAAAACGTC
TATTATATTTTAGACGTTTGAGATACC
ACCATGTCAAAAAACAAATCTAGAAG
GACCACCTTTGATTG

AS003 ACATTAAATTTGCTGGTGGG This study

AS004 CCTTCTGGCATGGCAGACTTG

ACT1-F TTTAAGAATTGATTTGGCT Murzyn et al., 2010

ACT1-R GAAGATTGAGAAGAAGTTT

CDR1-F TGCCAAACAATCCAACAA Ricardo et al., 2009

CDR1-R CGACGGATCACCTTTCATACGA

10, 14, or 24 h. The cells were then harvested by centrifuging
at 110 × g for 3 min, washing twice with deionised water,
and resuspending in citrate-phosphate (CP) buffer (pH 6.0) at
OD600 = 0.1.

DiS-C3(3) Uptake into Cells
Samples (3 ml, OD600 = 0.1) were labeled with diS-C3(3)
at a final concentration of 5×10−8 M at room temperature.
Fluorescence spectra were measured every 4 min for 120 min,
with gentle stirring before each measurement, on a Fluorescence
Spectrophotometer (HITACHI F-4500) equipped with a xenon
lamp. The excitation wavelength was 531 nm and the fluorescence
range was 560–590 nm. Scattered light was eliminated by an
amber glass filter with a cut-off wavelength of 540 nm. If
indicated, glucose was added at a final concentration of 2%.

Microscopy Studies
Strains were grown for 24 h in YPDmedium at 28◦Cwith shaking
at 120 rpm. At indicated times, aliquots of cell culture were
pelleted by centrifuging, washed in deionised water, and 4 μl of
samples were visualized with a ZEISS AXIO IMAGER.A2.

Real-time PCR
The assay was prepared from samples (5 ml, OD600 = 0.4)
after staining with 2×10−7 M diS-C3(3) probe for 40, 72, or
96 min, with 2% glucose added after 60 min if indicated.
Aliquots of cell suspensions were pelleted by centrifuging at
2260 × g for 5 min. Cells were resuspended in lysis buffer
(1 M sorbitol, 0.1 M EDTA, 1% β-mercaptoethanol, 2.5 mg/ml
zymolyase), incubated at 37◦C for 30 min, and centrifuged
at 2834 × g. Total RNA was extracted using a Total RNA
Mini kit (A&A Biotechnology) according to the manufacturer’s
instructions. The purity and concentration of RNA samples were
determined from A260/A280 readings and RNA integrity was
checked by electrophoresis. Samples were treated with DNAse I
(Fermentas) to remove genomic DNA contamination. The cDNA
was synthesized using 0.5 μg RNA with a High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems). Real-time PCR
reactions with performed with a DyNAmo HS SYBR Green
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qPCR Kit (Thermo Scientific) and a 7500 Real-Time PCR System
(Applied Biosystems). Gene-specific primers for actin (ACT1-F
and ACT1-R) and CDR1 (CDR1-F and CDR1-R) were used. The
thermal cycling conditions consisted of the initial step at 50◦C
for 2 min, then 95◦C for 10 min, followed by 35 cycles at 95◦C
for 20 s, 45◦C for 20 s, and 72◦C for 30 s. The gene expression
level of the wild-type strain at 40 min of incubation, relative to
that of the other time points, was calculated using the formula
2−��CT.

Western Blotting
The assay was performed according to the method of Hiller
et al. (2006), with modifications. Crude protein extract was
prepared from samples (5 ml, OD600 = 0.4) after staining
with 2×10−7 M diS-C3(3) probe for 10, 40, 72, or 96 min,
with 2% glucose added after 60 min if indicated. Aliquots of
cell suspensions were pelleted by centrifuging at 2260 × g
for 5 min and resuspended in 1 ml of deionised water. Cells
were lysed by the addition of 150 μl of 1.85 M NaOH-
7.5% β-mercaptoethanol and incubated on ice for 10 min.
Proteins were precipitated by the addition of 150 μl of 50%
trichloroacetic acid and incubated on ice for 10 min. Samples
were then centrifuged at 10,000 × g for 5 min at 4◦C, washed
in 1 ml of 1 M Tris-HCl (pH 8.0), and resuspended in 20 μl
sample buffer (40 mM Tris-HCl, 8 M urea, 5% SDS, 0.1 mM
EDTA, 1% β-mercaptoethanol, 0.1 mg/ml bromophenol blue),
followed by incubation at 37◦C for 30 min. Five microliter of
protein extract were loaded in a 10% sodium dodecyl sulfate-
polyacrylamide gel and electrophoresed in a Mini-PROTEAN
II electrophoresis cell (Bio-Rad). After the electrophoresis, the
samples were transferred onto a nitrocellulose membrane using
a Mini-PROTEAN Tetra System electrophoresis cell (Bio-Rad).
The membranes were stained with Ponceau S to check for
equal loading of the gels. Immunodetection of Cdr1p was
performed using a polyclonal rabbit anti-Cdr1p antiserum
(a generous gift from D. Sanglard, Lausanne, Switzerland)
and horseradish peroxidase-conjugated anti-rabbit antiserum
as a secondary antibody. Signals were detected using an
ECL kit from PerkinElmer according to the manufacturer’s
instructions.

RESULTS AND DISCUSSION

Membrane Potential, as Measured by
diS-C3(3) Fluorescence, is a Factor in
ABC Transporter Activity During Phases
of C. albicans Growth
As indicated by Plášek et al. (2012) and Plášek and Gášková
(2013), diS-C3(3) is a suitable probe to monitor real-time
changes in plasma membrane potential; here, we are the first
to describe this use in C. albicans. To monitor the changes
we measured the fluorescence λmax in the strain without ABC
transporters to remove their effect on probe efflux. Probe
accumulation took only 30 min in the early log-phase but
took 60 and 50 min, respectively, to accumulate after 14 and
24 h in culture (Figure 1). As cultures age, the cells and
the structure and function of their membranes change. The
kinetics of diS-C3(3) fluorescence (Figure 1) reflect changes
in the membrane potential of cells in different phases of
growth. An age-induced reduction in membrane potential
correlates with decreased polarization (Kumar et al., 2015).
Cell membrane depolarisation can cause lateral redistribution
of membrane proteins (Grossmann et al., 2007). Kumar
et al. (2015) found that membrane fluidity contributes to
drug diffusion and resistance. Higher membrane fluidity can
lead to incorrect localization of the Cdr1p pump and thus
lack of Cdr1p activity. The C. albicans strain with CDR1
overexpression and drug resistance had a more rigid membrane
than the drug-sensitive strain; this rigidity increased until the
late-log phase of growth. On the other hand, the wild-type
C. albicans SC5314 increased the fluidity of its membrane
during growth. In the C. albicans mutants with deletion
of a key component required during the biogenesis of
mitochondria, decreases in the cellular ergosterol level and
mis-sorting of Cdr1p into vacuoles were observed (Thomas
et al., 2013). Similar effects were observed in the S. cerevisiae
strain expressing C. albicans CDR1 with deletions in the
genes involved in ergosterol synthesis (Pasrija et al., 2008).
Mukhopadhyay et al. (2004) found that Cdr1p dislocated
from the cell membrane after incubating Saccharomyces cells

FIGURE 1 | DiS-C3(3) fluorescence staining of wild-type and CDR1� CDR2� strains during early log-phase (A), late log-phase (B), and stationary
phase (C). 2% glucose was added at the start of the experiment (n = 3). Pictures: Cdr1-GFP localization during (A–C).
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FIGURE 2 | DiS-C3(3) fluorescence staining of wild-type (A) and CDR2� (B) strains during early log-phase. Glucose was added after 60 min of staining.
(C) Expression of CDR1 during the experiment. Samples were taken at 40, 72, or 96 min from the beginning of the experiment. (D) Cdr1 protein levels during the
experiment. Samples were taken at 40, 72, or 96 min from the beginning of the experiment (n = 3).

with filipin, which interacts with the 3-hydroxyl group of
membrane sterols. In this study, we observe that the Cdr1p
pump fused with GFP is located in the plasma membrane in
the early logarithmic phase (Figure 1A). Starting from the 14 h
late log-phase, the movement of Cdr1p from the membrane
to inside the cells becomes noticeable; strong fluorescence
can be observed there in the stationary phase of growth
(Figures 1B,C), although we do not see drop in pumps
activity.

Glucose Causes de Novo Synthesis of
Cdr1p in CDR2�

The most important factor in the activity of ABC transporters is
ATP energy. C. albicans is a Crabtree-negative yeast and retains
respiratory activity during growth at high glucose concentrations.
Cdr1p and Cdr2p are up-regulated in the presence of glucose and
this process probably increases resistance to azoles (Rodaki et al.,
2009). To see if diS-C3(3) export can be facilitated by glucose
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we added it at the beginning of the experiment. In the early
log-phase of growth (Figure 1A) glucose promotes dye efflux
but this effect fades in further stages of culture (14 h late-log
and 24 h stationary phase; Figures 1B,C). Interestingly the most
marked change could be observed in cdr2� strain (Figure 2B).
In the experiment without glucose CDR1 pump was inactive
(Figure 2B) and the difference in λmax between it and after the
addition of glucose was more pronounced than in the strain
with both pumps (Figures 2A,B). This fact indicates that Cdr2p
actively participates in removing diS-C3(3) from the fungal cells.

We used standard molecular methods to assess if the increased
activity of Cdr1 under the influence of glucose was due to pump
activation or pump overexpression. As shown in Figure 2D,
western blot showed high levels of Cdr1 protein after induction
of glucose in a strain lacking Cdr2p, whereas Cdr1p was observed
at very low levels in control conditions (Figure 2D). In contrast,
in the wild-type strain, Cdr1p was detected after 72 min but
the level of this protein appeared to be the same, regardless of
whether glucose was added (Figure 2D); this was reflected in both
strains’ diS-C3(3) efflux. As shown in Figure 2C, cdr2� expresses
CDR1 continuously at a very low level. Glucose addition in
cdr2� causes a twofold increase in CDR1 expression after 12 min
and fourfold increase after 36 min. Interestingly, under the
same conditions in the wild-type strain, CDR1 transcript level
change is not detectable at 12 min after addition of glucose; after
36 min we observe a fivefold increase in transcript which do
not correlate with protein level at this time point. This delayed
response of wild-type strain to glucose may be a natural lag
in between the gene expression and protein levels. Although
cdr2� faster reaction could be a result of this strain need to
complement deleted CDR2. Both gene expression and Western
blotting suggested that glucose caused de novo synthesis of the
Cdr1 pump in C. albicans cdr2�.

ABC transporter upregulation in C. albicans can be caused by
antifungal drugs (Henry et al., 1999; Coste et al., 2004; Schneider
and Morschhäuser, 2015), antibiotics (Vogel et al., 2008), or
human steroid hormones (Larsen et al., 2006; Banerjee et al.,
2007). C. albicans is a human pathogen; environmental glucose
may be another sign that yeast cells have entered the bloodstream
and to adapt express a virulence phenotype. One of the virulence
factors of C. albicans, its ability to form hyphal forms, can be

triggered by addition of serum to cultures at 37◦C (Hudson et al.,
2004). The active component starting this process is glucose;
changes in C. albicans transcriptome, including CDR1 and CDR2
(Rodaki et al., 2009), start as early as 30 min after the addition
of no more than 0.01% glucose – a concentration much lower
than that in human serum (0.06–0.1%). Our results using diS-
C3(3) also suggest that activation of Cdr1p under the influence of
glucose results in overexpression of this pump, especially in case
where CDR2 is deleted.

CONCLUSION

In this study, we showed that the diS-C3(3) carbocyanine probe
can be used as a multipurpose fluorescent assay.

• DiS-C3(3) can be used to assess both membrane polarization
and ABC transporter activity in C. albicans.

• Increase of the export diS-C3(3) by glucose depends on growth
phase and is the strongest at the beginning of the log-phase.

• In case of cdr2� strain observed increase in diS-C3(3) export
is caused de novo synthesis of Cdr1p.

AUTHOR CONTRIBUTIONS

JS execution of experiments; ML conceptual work; AK conceptual
work and and writing publication.

FUNDING

This work was supported by Wroclaw Centre of Biotechnology,
programme: The Leading National Research Centre (KNOW) for
years 2014–2018.

ACKNOWLEDGMENTS

We thank Prof. Dominique Sanglard for kindly providing
C. albicans strains and antibodies and Prof. Cheryl Gale and
Fungal Genetics Stock Center for GFP plasmid.

REFERENCES

Banerjee, D., Martin, N., Nandi, S., Shukla, S., Dominguez, A., Mukhopadhyay, G.,
et al. (2007). A genome-wide steroid response study of the major human fungal
pathogen Candida albicans. Mycopathologia 164, 1–17. doi: 10.1007/s11046-
007-9025-8.

Brown, A. J. P., Brown, G. D., Netea, M. G., and Gow, N. A. R. (2014). Metabolism
impacts upon Candida immunogenicity and pathogenicity at multiple levels.
Trends Microbiol. 22, 614–622. doi: 10.1016/j.tim.2014.07.001

Cannon, R. D., Lamping, E., Holmes, A. R., Niimi, K., Baret, P. V., Keniya, M. V.,
et al. (2009). Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev.
22, 291–321. doi: 10.1128/CMR.00051-58

Coste, A. T., Karababa, M., Bille, J., and Sanglard, D. (2004). TAC1, transcriptional
activator of CDR genes, is a new transcription factor involved in the regulation
of Candida albicans ABC Transporters CDR1 and CDR2 †. Eukaryot Cell 3,
1639–1652. doi: 10.1128/EC.3.6.1639

Ene, I. V., Adya, A. K., Wehmeier, S., Brand, A. C., Maccallum, D. M., Gow,
N. A. R., et al. (2012). Host carbon sources modulate cell wall architecture, drug
resistance and virulence in a fungal pathogen. Cell. Microbiol. 14, 1319–1335.
doi: 10.1111/j.1462-5822.2012.01813.x

Fonzi, W., and Irwin, M. (1993). Isogenic strain construction and gene mapping in
Candida albicans. Genetics 134, 717–728.

Garreau, H., Hasan, R. N., Renault, G., Estruch, F., Boy-Marcotte, E., and
Jacquet, M. (2000). Hyperphosphorylation of Msn2p and Msn4p in response
to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces
cerevisiae.Microbiology 146, 2113–2120. doi: 10.1099/00221287-146-9-2113

Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B.,
Storz, G., et al. (2000). Genomic expression programs in the response of
yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257. doi:
10.1091/mbc.11.12.4241

Gásková, D., Brodská, B., Herman, P., Vecer, J., Malínský, J., Sigler, K., et al.
(1998). Fluorescent probing of membrane potential in walled cells: diS-C3(3)

Frontiers in Microbiology | www.frontiersin.org 5 December 2015 | Volume 6 | Article 1382

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Szczepaniak et al. Candida albicans ABC Transporter Behavior

assay in Saccharomyces cerevisiae. Yeast 14, 1189–97. doi: 10.1002/(SICI)1097-
0061(19980930)14:13<1189::AID-YEA320>3.0.CO;2-K

Gerami-Nejad, M., Berman, J., and Gale, C. A. (2001). Cassettes for PCR-mediated
construction of green, yellow, and cyan fluorescent protein fusions in Candida
albicans. Yeast 18, 859–864. doi: 10.1002/yea.738

Grossmann, G., Opekarová, M., Malinsky, J., Weig-Meckl, I., and Tanner, W.
(2007). Membrane potential governs lateral segregation of plasma membrane
proteins and lipids in yeast. EMBO J. 26, 1–8. doi: 10.1038/sj.emboj.7601466

Henry, K. W., Cruz, M. C., Katiyar, S. K., and Edlind, T. D. (1999).
Antagonism of azole activity against Candida albicans following induction of
multidrug resistance genes by selected antimicrobial agents. Antimicrob. Agents
Chemother. 43, 1968–1974.

Hiller, D., Sanglard, D., and Morschhäuser, J. (2006). Overexpression of the
MDR1 gene is sufficient to confer increased resistance to toxic compounds
in Candida albicans. Antimicrob. Agents Chemother. 50, 1365–1371. doi:
10.1128/AAC.50.4.1365-1371.2006

Hudson, D. A., Sciascia, Q. L., Sanders, R. J., Norris, G. E., Edwards, P. J. B.,
Sullivan, P. A., et al. (2004). Identification of the dialysable serum inducer of
germ-tube formation in Candida albicans. Microbiology 150, 3041–3049. doi:
10.1099/mic.0.27121-27120

Koh, A. Y. (2013). Gastrointestinal colonization of fungi. Curr. Fungal Infect. Rep.
7, 144–151. doi: 10.1007/s12281-013-0133-2

Kumar, A., Radhakrishnan, V. S., Singh, R., Kumar, M., Mishra, N. N., and
Prasad, T. (2015). “A clinical resistant isolate of opportunistic fungal pathogen,
Candida albicans revealed more rigid membrane than its isogenic sensitive
isolate,” inMultidisciplinary Approaches for Studying and Combating Microbial
Pathogens, ed. A. Méndez-Vilas (Boca Raton, FL: BrownWalker Press), 1–7.

Larsen, B., Anderson, S., Brockman, A., Essmann, M., and Schmidt, M. (2006).
Key physiological differences in Candida albicans CDR1 induction by steroid
hormones and antifungal drugs. Yeast 23, 795–802.

Mandal, S. M., Mahata, D., Migliolo, L., Parekh, A., Addy, P. S., Mandal, M., et al.
(2014). Glucose directly promotes antifungal resistance in the fungal pathogen
Candida spp. J. Biol. Chem. 289, 25468–25473. doi: 10.1074/jbc.C114.5
71778

Mukhopadhyay, K., Prasad, T., Saini, P., Pucadyil, J., Chattopadhyay, A.,
Prasad, R., et al. (2004). Membrane sphingolipid-ergosterol interactions are
important determinants of multidrug resistance inCandida albicansmembrane
sphingolipid-ergosterol interactions are important determinants of multidrug
resistance in Candida albicans. Antimicrob. Agents Chemother. 48, 1778–1787.
doi: 10.1128/AAC.48.5.1778

Murzyn, A., Krasowska, A., Stefanowicz, P., Dziadkowiec, D., and Łukaszewicz, M.
(2010). Capric acid secreted by S. boulardii inhibits C. albicans filamentous
growth, adhesion and biofilm formation. PLoS ONE 5:e12050. doi:
10.1371/journal.pone.0012050

Pasrija, R., Panwar, S. L., and Prasad, R. (2008). Multidrug transporters
CaCdr1p and CaMdr1p of Candida albicans display different lipid specificities:
both ergosterol and sphingolipids are essential for targeting of CaCdr1p
to membrane rafts. Antimicrob. Agents Chemother. 52, 694–704. doi:
10.1128/AAC.00861-867

Perlroth, J., Choi, B., and Spellberg, B. (2007). Nosocomial fungal infections:
epidemiology, diagnosis, and treatment. Med. Mycol. 45, 321–346. doi:
10.1080/13693780701218689

Plášek, J., and Gášková, D. (2013). Complementary methods of processing diS-
C3(3) fluorescence spectra used for monitoring the plasma membrane potential
of yeast: their pros and cons. J. Fluoresc. 24, 1–7. doi: 10.1007/s10895-013-1323-
6

Plášek, J., Gášková, D., Lichtenberg-Fraté, H., Ludwig, J., and Höfer, M. (2012).
Monitoring of real changes of plasma membrane potential by diS-C3(3)
fluorescence in yeast cell suspensions. J. Bioenerg. Biomembr. 44, 559–569. doi:
10.1007/s10863-012-9458-8

Ricardo, E., Costa-de-Oliveira, S., Dias, A. S., Guerra, J., Rodrigues, A. G., and Pina-
Vaz, C. (2009). Ibuprofen reverts antifungal resistance on Candida albicans
showing overexpression of CDR genes. FEMS Yeast Res. 9, 618–625. doi:
10.1111/j.1567-1364.2009.00504.x

Rodaki, A., Bohovych, I. M., Enjalbert, B., Young, T., Odds, F. C., Gow, N. A. R.,
et al. (2009). Glucose promotes stress resistance in the fungal pathogen Candida
albicans.Mol. Biol. Cell 20, 4845–4855. doi: 10.1091/mbc.E09-01-0002

Sanglard, D., and Ischer, F. (1996). Susceptibilities of Candida albicans multidrug
transportermutants to various antifungal agents and other metabolic inhibitors.
Antimicrob. Agents Chemother. 40, 2300–2305.

Sanglard, D., Ischer, F., Monod, M., and Bille, J. (1997). Cloning of Candida
albicans genes conferring resistance to azole antifungal agents: characterization
of CDR2, a new multidrug ABC transporter gene. Microbiology 143, 405–416.
doi: 10.1099/00221287-143-2-405

Schneider, S., and Morschhäuser, J. (2015). Induction of Candida albicans drug
resistance genes by hybrid zinc cluster transcription factors. Antimicrob. Agents
Chemother. 59, 558–569. doi: 10.1128/AAC.04448-4414

Szczepaniak, J., Łukaszewicz, M., and Krasowska, A. (2015). Detection of inhibitors
of Candida albicans Cdr transporters using a diS-C3(3) fluorescence. Front.
Microbiol. 6:176. doi: 10.3389/fmicb.2015.00176

Thomas, E., Roman, E., Claypool, S., Manzoor, N., Pla, J., and Panwar, S. L. (2013).
Mitochondria influence CDR1 efflux pump activity, Hog1-mediated oxidative
stress pathway, iron homeostasis, and ergosterol levels in Candida albicans.
Antimicrob. Agents Chemother. 57, 5580–5599. doi: 10.1128/AAC.00889-813

Vogel, M., Hartmann, T., Köberle, M., Treiber, M., Autenrieth, I. B., and
Schumacher, U. K. (2008). Rifampicin induces MDR1 expression in Candida
albicans. J. Antimicrob. Chemother. 61, 541–7. doi: 10.1093/jac/dkm513

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Szczepaniak, Łukaszewicz and Krasowska. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 6 December 2015 | Volume 6 | Article 1382

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Estimation of Candida albicans ABC Transporter Behavior in Real-Time via Fluorescence
	Introduction
	Materials And Methods
	Strains and Growth Media
	Strain Construction
	Sample Preparation
	DiS-C3(3) Uptake into Cells
	Microscopy Studies
	Real-time PCR
	Western Blotting

	Results And Discussion
	Membrane Potential, as Measured by diS-C3(3) Fluorescence, is a Factor in ABC Transporter Activity During Phases of C. albicans Growth
	Glucose Causes de Novo Synthesis of Cdr1p in CDR2

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References


