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Cerebral ischemic stroke (IS) is a complex disease caused by multiple factors including
vascular risk factors, genetic factors, and environment factors, which accentuates
the difficulty in discovering corresponding disease-related genes. Identifying the genes
associated with IS is critical for understanding the biological mechanism of IS, which
would be significantly beneficial to the diagnosis and clinical treatment of cerebral
IS. However, existing methods to predict IS-related genes are mainly based on the
hypothesis of guilt-by-association (GBA). These methods cannot capture the global
structure information of the whole protein–protein interaction (PPI) network. Inspired by
the success of network representation learning (NRL) in the field of network analysis,
we apply NRL to the discovery of disease-related genes and launch the framework
to identify the disease-related genes of cerebral IS. The utilized framework contains
three main parts: capturing the topological information of the PPI network with NRL,
denoising the gene feature with the participation of a stacked autoencoder (SAE),
and optimizing a support vector machine (SVM) classifier to identify IS-related genes.
Superior to the existing methods on IS-related gene prediction, our framework presents
more accurate results. The case study also shows that the proposed method can
identify IS-related genes.

Keywords: cerebral ischemic stroke, network embedding, disease gene prediction, PPI network, network
representation learning

INTRODUCTION

Cerebral ischemic stroke (IS) is the most common type of stroke, which results from a sudden
cessation of adequate amounts of cerebral blood supply through vessels (Sacco et al., 2013). As
cerebral IS appears to be a complex disorder associated with both genetic and environmental
factors, it is highly demanding to demonstrate the underlying patterns of inheritance (Matarin et al.,
2010). Some IS-associated genes have been detected, verified, and recorded in recent studies (Cheng
et al., 2014). Nevertheless, many unknown cerebral IS-associated genes still need to be discovered.
Identifying such genes will significantly contribute to a more detailed understanding of the
inherent molecular mechanism of cerebral IS, and will aid the discovery of clinical biomarkers and

Frontiers in Genetics | www.frontiersin.org 1 September 2021 | Volume 12 | Article 728333

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.728333
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.728333
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.728333&domain=pdf&date_stamp=2021-09-01
https://www.frontiersin.org/articles/10.3389/fgene.2021.728333/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-728333 September 1, 2021 Time: 18:4 # 2

Liu et al. Cerebral Ischemic Stroke Gene Prediction

therapeutic targets. With the development of statistical and
machine learning methods in disease-gene discovery, it is
crucial to construct and implement a promising computational
algorithm for the task of effectively identifying the IS-
related genes.

In recent years, predicting disease-related genes has drawn
much attention in relative fields and many graph-based
computational methods have performed proficiency in
integrating large-scale omics data and disease phenotype
(Nguyen and Ho, 2012; Zemojtel et al., 2014; Kumar et al., 2018;
Wang T. et al., 2020; Peng et al., 2021b). It can be surmised
that the prime cost of discovering effective drug targets will be
decreased with the engagement of computational algorithms.
Under the hypothesis of guilt-by-association (GBA) that most
of the existing methods have relied on, it is practicable to
explore and even crystallize the unknown disease genes via
their connections with the known disease genes (Molet et al.,
2013). Based on the GBA hypothesis, disease-associated genes
are closely connected or share similar topological structure in the
protein–protein interaction (PPI) network. Thus, the effective
application of GBA and network-based algorithms largely
depends on correct calculation of the distance or similarity
between candidate genes and known disease genes.

Many network-based computational methods have also been
proposed in recent years (Wang et al., 2019a,b; Yang et al., 2019).
For predicting disease genes, one of the initial methods is to
simply count the number of disease-genes in the neighborhood
of a candidate gene (Oti et al., 2006). However, the direct
neighborhood counting methods fail to capture the distant
disease genes, i.e., the disease-genes not directly connecting to the
candidate gene will be ignored. In this regard, several methods
are proposed by considering the distances among genes in a
gene network. For instance, methods calculating the shortest path
length (SPL) between a candidate gene and the known disease
gene have been proposed to examine their biological relatedness.
However, Embar et al. (2016) have proved that the average SPL
of a gene set only reveals the degree distribution of the genes and
their network topology. Thus, methods relying on SPL failed to
demonstrate the functional coherence as supposed (Embar et al.,
2016). To overcome the shortage of single topological feature in
disease-gene prediction, Xu and Li (2006) proposed a method
to use multiple topological features together. They integrated
five types of local topological features, including degree, 1N
index, 2N index, average distance to disease-genes, and positive
topology coefficient, and utilized k-nearest neighbors (KNN)
as the classifier to distinguish novel disease genes (Xu and
Li, 2006). Although the above methods are proven useful, the
predicting performance is still not good enough. This is because
these methods merely consider local topological features while
ignoring the global information. The involvement of global
topological information is suggested as a way for obtaining
a more impressive gene node presentation and downstream
outcomes (Cao et al., 2014; Vuillon and Lesieur, 2015; Peng et al.,
2016, 2019).

Considering the global topology information during the
learning process is deemed to cause prohibitive computational
cost as well as low learning accuracy (Dai et al., 2020). Thus,

some studies have tried to develop cost-efficient methods to
improve the learning accuracy and explore the multidimensional
interactions between genes and proteins with random walk with
restart (Valdeolivas et al., 2017; Peng et al., 2019, 2021c). In a
recent study, inspired by the idea from random walk with restart,
we initiate further application of network representation learning
(NRL) that promotes the dimensional reduction of the gene
representation in the network and discover the disease-related
genes of cerebral IS (Peng et al., 2021a).

In this paper, we utilize the current NRL-based algorithms
to predict cerebral IS disease-related genes. Our contributions
are three-fold: (1) global topological features of nodes in the
PPI network are learned through three cutting-edge graph
embedding methods, such as DeepWalk, LINE, and Node2Vec,
and their performances are evaluated; (2) the node embeddings
are transformed into a low-dimensional space using the deep
learning model of a stacked auto-encoder; and (3) we show
the superior performance of NRL-based methods for IS gene
prediction, and novel genes associated with IS were nominated.

METHODOLOGY

We apply the NRL-based workflow, as shown in Figure 1,
to discover the disease-related genes of IS. The workflow
can be concluded into three main parts: extracting features
via node representation learning, reducing feature dimension
through a stacked autoencoder (SAE; Larochelle et al., 2014),
and classification using support vector machine (SVM; Chang
and Lin, 2011). First, we utilize three NRL-based algorithms,
Node2vec (Grover and Leskovec, 2016), DeepWalk (Perozzi et al.,
2014), and LINE (Jian et al., 2015) to collect the high-dimensional
feature representation of each gene node from PPI network
and compare those structural features captured by different
algorithms. In order to avoid the influence of high-dimensional
noise, next, we launch a SAE model to map corresponding feature
vectors into lower dimensional space. Finally, we use an SVM
classifier and convert the process of predicting disease-related
genes of IS into node classification problem.

Graph Embedding for the PPI Network
Based on the need for capturing the global features of
topological properties from the PPI network, three classic
algorithms (Node2vec, DeepWalk, and LINE) are introduced in
the following part. We learn the non-linear feature vectors for
genes in the PPI network and compare the performances of the
above algorithms.

DeepWalk serves as the first implemented NRL algorithm
and is managed to represent nodes from the PPI network as
novel latent feature vectors. At the outset, it runs the classic
stochastic process to generate multiple random paths with certain
length and this will formulate the topological structure. Then,
it can be attributed to a natural language learning process,
where the generated random paths are treated as sequences,
where nodes are considered as words. Next, the skip-gram
neuronal network model is utilized to maximize the probability
of neighbors of the nodes in the random walk sequence. In
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FIGURE 1 | The workflow of the proposed network representation learning (NRL) framework. The framework contains three main parts: Step 1, capturing the
topological information of the protein–protein interaction (PPI) network with NRL; Step 2, denoising the gene feature using a stacked autoencoder (SAE); Step 3,
training a support vector machine (SVM) classifier to predict IS-related genes.

FIGURE 2 | Illustration of Node2vec, LINE, and stacked autoencoder (SAE). (A) The biased random walk in Node2vec. (B) Illustration of first-order and second order
similarity in LINE. (C) Structure of SAE, where color represents different layer of the SAE.

the end, the weight matrix of hidden layer in the skip-gram
neuronal network is used as the low-dimensional representation
vectors. Node2vec improves DeepWalk algorithm by utilizing a
biased random walk process to generate the random paths. It sets
hyperparameters p and q to control the directions of random
walk in the manner of breadth-first search (BFS) or depth-
first search (DFS), thereby capturing local and global structural
features in the network. The function of super parameters p and
q in the random walk procedure is elucidated in Figure 2A.
Parameter p is called the return parameter, which mainly
determines the process of revisiting the nodes within random
walk. When p is relatively small, the random walk is more
inclined to revisit the nodes that have been visited. Parameter
q is called the in-out parameter, which affects the possibility of
capturing “local” or “global” nodes. When q > 1, the random
walk is inclined to BFS, and when q < 1, the random walk
is inclined to DFS. Intuitively, the in-out parameter q controls
the ratio of performing BFS or DFS. Particularly, if p and q

are both equal to 1, the Node2vec algorithm can be simply
reckoned as DeepWalk.

Large-scale Information Network Embedding (LINE) is a NRL
method based on the assumption of neighborhood similarity,
which can be used to learn the low-dimension representation of
nodes in a graph. To store network structural information, there
are two different definitions of similarity between vertices in a
graph. For example, in Figure 2B, there is a strong tie between
vertex 6 and 7, so they are two similar vertices. Even if there is
no direct correlation between vertex 5 and 6, they share many
common neighbors (vertex 1, 2, 3, and 4), which make them
the similar nodes.

The two kinds of similarity are described as first-order
proximity and second-order proximity. The first-order proximity
considers that the greater the edge weight of two vertices,
the more similar the two vertices are. Second-order proximity
considers that the more common neighbors two vertices have, the
more similar the two vertices are.
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FIGURE 3 | AUROC, AUPRC, and F1 values of node2vec, LINE, and deepwalk using features in different numbers of dimensions. The error bar shows performance
variation during the five-fold cross-validation.

The first-order proximity in a network is the local pairwise
proximity between two vertices. The first-order proximity
between u and v is equal to the weight on that edge, wuv. If no
edge is observed between u and v, their first-order proximity is
0. For each undirected edge (i, j), the joint probability between
vertex vi and vj is defined as follows:

p1
(
vi, vj

)
=

1

1+ exp (−−→u T
i ·
−→u j)

(1)

FIGURE 4 | Best performance comparison among three algorithms in the
task of IS-related gene prediction.

The empirical probability is defined as p̂1
(
i, j
)
=

wij
W , where W =∑

(i,j)∈E wij. The objective function is as follows:

O1 = d(p̂1 (·, ·) , p1 (·, ·)) (2)

The training process is to minimize the KL-divergence of
two probability distributions. After replacing d( · , · ) with KL-
divergence and omitting some constants, the loss function is:

O1 = −
∑

(i,j)∈E

wijlog p1(vi, vj) (3)

The second-order proximity between a pair of vertices (u, v) in
a network is the similarity between their neighborhood network
structures. Mathematically, let pu = (wu,1, ...,wu,|V|) denote the
first-order proximity of u with all the other vertices, then the
second-order proximity between u and v is determined by the
similarity between pu and pv. If no vertex is linked from/to both u
and v, the second-order proximity between u and v is 0. For each
directed edge (i, j), the probability of “context” vj generated by
vertex vi can be defined as:

p2
(
vj | vi

)
=

exp (−→u ′j
T
·
−→u i)∑|V|

k=1 exp (−→u ′k
T
·
−→u i)

(4)

where |V| is the number of vertices or “contexts.”−→ui is the
representation of vi when it is treated as a vertex. −→ui

′ is the
representation of vi when it is treated as a specific “context.” The
empirical distribution is p̂2( · |vi). So, the objective function is as
follows:

O2 =
∑
i∈V

λid(p̂2 (·|vi) , p2 (·|vi)) (5)
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FIGURE 5 | The model performance varies as the hyperparameters (p, q)
change in node2vec.

λi in the objective function represents the prestige of vertexi in
the network, which can be measured by the degree or estimated
through algorithms such as PageRank. The empirical distribution
p̂2( · |vi) is defined as p̂2

(
vj
∣∣ vi) = wij

di
, where wij is the weight

of the edge (i, j) and di is the out-degree of vertex i, i.e.,
di =

∑
k∈N(i) wik, where N(i) is the set of out-neighbors of vi.

After replacing d( · , · ) with KL-divergence, setting λi = di and
omitting some constants, the loss function is:

O2 = −
∑

(i,j)∈E

wijlog p2
(
vj|vi

)
(6)

The method in this paper is to train the LINE model which
preserves the first-order proximity and second-order proximity
separately and then concatenate the embeddings trained by the
two methods for each vertex.

Reducing Feature Dimensions Using a
Stacked Autoencoder
An autoencoder is an unsupervised model which is well
known for its function of extracting features and reducing
dimensionality. Aiming at minimizing the reconstruction errors
between input and output, an autoencoder consists of two main
parts, an encoder and a decoder. The hidden layer encoded
features are the final low-dimensional output that plays a vital
role in the downstream tasks. If the input node vector is x,
the reconstructed node vector can be represented as z(x) =
g(w′ · f

(
w · xb

)
b′), where f and g are active functions, w,w′are

weights, and b, b′ are biases. Hence, the objective function can
be represented as Eq. 7, where represents the parameters, and L
represents the loss function.

θ = argmin
θ

L (X,Z) (7)

The SAE is a neural network composed of a multi-layer
sparse autoencoder, which is used to boost performance of deep

TABLE 1 | Top 10 genes predicted associated with ischemic stroke.

Gene ID Gene name Gene description Score

51181 DCXR Dicarbonyl and L-xylulose reductase 0.9854

22953 P2RX2 Purinergic receptor P2X 2 0.9762

57104 PNPLA2 Patatin like phospholipase domain
containing 2

0.9723

3766 KCNJ10 Potassium inwardly rectifying channel
subfamily J member 10

0.9645

3955 LFNG LFNG O-fucosylpeptide
3-beta-N-acetylglucosaminyltransferase

0.9631

10382 TUBB4A Tubulin beta 4A class IVa 0.9543

2261 FGFR3 Fibroblast growth factor receptor 3 0.9532

84126 ATRIP ATR interacting protein 0.9451

2182 ACSL4 Acyl-CoA synthetase long chain family
member 4

0.9435

57511 COG6 Component of oligomeric Golgi complex 6 0.9410

networks, and its structure is shown in Figure 2C. In SAE, the
output of the previous layer of autoencoder is used as the input
of the next layer of autoencoder. There are three steps to train
a SAE. Firstly, a sparse autoencoder is trained on raw input and
the trained sparse autoencoder is used to transform the raw input
into a feature vector. Secondly, it uses the output of the former
layer as input for the subsequent layer and repeats this process
until the end of the training. Thirdly, after all the hidden layers
are trained, back propagation algorithm is used to minimize the
cost function and the pre-trained neural network can be fine-
tuned with a labeled training set. SAE has achieved effective
outcomes in many areas to extract feature vectors and reduce
dimensionality. Alongside this trend, we enroll the SAE model in
this proceeding for more impressive performance of predicting IS
disease-related genes.

Predicting Genes Associated With IS
Using SVM
After low-dimensional gene features are generated, the SVM
algorithm is trained to predict the disease-related genes of IS.
The process of predicting such genes is considered as a node
classification task. SVM has gained plenty of affirmations for its
stability, simplicity, and effectiveness in the way of classification
task. Therefore, SVM is engaged in our model analysis. We treat
disease-related genes of IS as positive samples, then from the PPI
network we randomly designate unlabeled genes of equivalent
size as negative samples.

We use five-fold cross validation to evaluate the performance
of the SVM classifier in the task of predicting IS disease-related
genes. During the experiments, the standard Gaussian kernel is
selected for performing the SVM classifier. Besides, we use the
grid search method to select the optimal hyper-parameters.

RESULTS

Datasets
During the experiments, we downloaded two datasets, the
disease-related genes of IS and the PPI network from public
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FIGURE 6 | Enrichment analysis of top 10 predicted IS-related genes based on GO, KEGG, and DisGeNet.

resources. The PPI network is originated from Menche et al.
(2015), including 13,460 nodes and 141,296 edges. The genes
associated with IS were downloaded from the DisGeNet
database.1 After analyzing and classifying corresponding genes
related to IS or cerebral infarction as stated, we finally obtained
1195 IS-related genes.

Impact of Feature Dimensions on
Predicting Performance
In order to explore the optimized dimension of NRL-based
algorithms for predicting the disease-related genes of IS, we

1https://www.disgenet.org/browser/0/1/1/C0026769

evaluated the performance of three NRL-based algorithms,
i.e., DeepWalk, LINE, and Node2vec, using multiple levels of
feature dimensions. Specifically, we run these NRL algorithms to
generate features vectors in different dimension-levels, including
64, 128, 256, and 512. All features will be further processed by
autoencoder to reduce noise; afterward, the autoencoder will
output features in 64 dimensions for downstream predicting
tasks. We compared their performance using five-fold cross
validation; the results are presented in Figure 3.

We used area under the ROC curve (AUROC), area under the
PR curve (AUPRC), and F1 scores to evaluate the performance
of deepwalk, LINE, and node2vec in predicting IS-related genes
using various feature dimensions. For LINE, the prediction
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FIGURE 7 | Visualization of gene interactions between predicted IS-genes and existing IS-genes.

performance drops gradually as the feature dimension increases.
For DeepWalk, the prediction performance drops from dim-64
to dim-256, while it increases when feature dimension is up to
512. For node2vec, the best performance is achieved at dim-64
and much better than the other two methods, while other feature
dimensions achieve average performance.

For intuitional comparison, we summarized the best
performance of these three algorithms as shown in Figure 4.
We can see that Node2vec with dim-64 provides the most
effective outcomes. Therefore, in the final predicting model,
we adopt node2vec to learn the graph embedding with 64
feature dimensions.

Effects of Hyper-Parameters on Ischemic
Stroke-Related Gene Prediction
As mentioned above, the computational workflow use node2vec
to capture the topological structure information from the PPI
network, followed by extracting low-dimensional features, and
predicting disease-related genes based on the SVM classifier.

It has been shown in relative researches that the hyper-
parameters used in node2vec have considerable impact on the
prediction performance. In order to explore the optimized hyper-
parameters, we performed a grid search for the hyper-parameters
of node2vec, namely p and q, to test the performance. We
randomly select parameters p ∈ {0.1, 1, 10} and q ∈ {0.1, 1, 10}.
When p is relatively small, the random walk is more inclined to
visit the nodes that have been visited. When q > 1, the random
walk is biased to BFS, and when q < 1, the random walk clings
to DFS. The standard deviation of 50% cross validation and the
results are shown in Figure 5.

From the data, when p = 0.1 and q = 10, the AUROC value
of the node2vec algorithm achieves its maximum (0.731), which
elucidates the optimized choice of hyper-parameters.

Top Genes Related to Ischemic Stroke
In order to verify the performance of the algorithm in predicting
novel genes related to IS, we use existing all-known genes related
to IS as the training set and the unknown genes as the test set.
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Then we rank the probability of final prediction. We select the top
10 genes and list their gene ID and name in Table 1.

Recent studies have shown the correlation between these
discovered genes and IS. Cui et al. (2021) utilized lentivirus
in vitro infection and in vivo administration methods to prove
that knockdown of ACSL4 alleviated brain injury after IS. Zhao
et al. (2020) performed real-time polymerase chain reaction
(PCR) to analyze the association between PNPLA2 rs1138693
(T > C) genotype and the risk of IS. Wang J.F. et al. (2020) proved
P2RX2 as an up-regulated gene in myocardial infarction using
gene ontology (GO) analysis and pathway enrichment analysis in
a comparative study of gene expression profiles rooted in acute
ischemia and infarction.

Functional Analysis of the Top Predicted
IS-Genes
We performed enrichment analysis for the top 10 IS-genes
predicted by our method based on GO, KEGG, and DisGeNet,
and the results are illustrated in the Figure 6. The most GO
biological process enriched is the glycerolipid metabolic process.
Wang et al. (2021) has proved that the glycerophospholipid
metabolism plays a role in IS. KEGG analysis revealed the
importance of potassium transport channels in IS, and this
also was demonstrated in the work of Chen et al. (2016),
where they found that potassium channels can be a potential
pharmacological target for IS to slow down cerebral edema
formation. The enrichment results from DisGeNet show that
the top 10 IS-related genes we predicted are related to language
development, intellectual disability, hearing impairment, and
motor delays, and these symptoms happen a lot in clinic
after occurring IS.

We also visualized the gene network between the top 10
predicted IS-genes and the known IS = related genes from
DisGeNet in Figure 7. We can see that the top 10 genes predicted
by our method are closely connected to the known IS-genes. The

gene with highest degree is FGFR3, and the fibroblast growth
factors have shown great therapeutic potential in treatment of IS.

CONCLUSION

It is quite crucial to discover the disease-related genes of IS
for future medical treatment and more accurate diagnosis. In
this paper, we utilize NRL methods for the task of identifying
disease-related genes and test the novel NRL-based framework
to discover IS-related genes. There are three main components
in the whole operating process: capturing the global topological
information of the PPI, utilizing a SAE to represent vectors into
low-dimensional feature space, and training an SVM classifier to
predict disease-related genes. The experimental results show that
the proposed NRL-based algorithm could achieve considerable
accuracy in predicting the genes of IS. Furthermore, the
introduced NRL-based algorithms are exploiting and stable to be
forwarded to many other fields of potential gene prediction.
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