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Abstract: Brain-computer interface (BCI) studies based on electroencephalography (EEG) measured
around the ears (ear-EEGs) have mostly used exogenous paradigms involving brain activity evoked
by external stimuli. The objective of this study is to investigate the feasibility of ear-EEGs for
development of an endogenous BCI system that uses self-modulated brain activity. We performed
preliminary and main experiments where EEGs were measured on the scalp and behind the ears to
check the reliability of ear-EEGs as compared to scalp-EEGs. In the preliminary and main experiments,
subjects performed eyes-open and eyes-closed tasks, and they performed mental arithmetic (MA)
and light cognitive (LC) tasks, respectively. For data analysis, the brain area was divided into four
regions of interest (ROIs) (i.e., frontal, central, occipital, and ear area). The preliminary experiment
showed that the degree of alpha activity increase of the ear area with eyes closed is comparable to
those of other ROIs (occipital > ear > central > frontal). In the main experiment, similar event-related
(de)synchronization (ERD/ERS) patterns were observed between the four ROIs during MA and
LC, and all ROIs showed the mean classification accuracies above 70% required for effective binary
communication (MA vs. LC) (occipital = ear = central = frontal). From the results, we demonstrated
that ear-EEG can be used to develop an endogenous BCI system based on cognitive tasks without
external stimuli, which allows the usability of ear-EEGs to be extended.

Keywords: ear-EEG; brain-computer interface (BCI); electroencephalography (EEG); mental
arithmetic; endogenous BCI

1. Introduction

Neurological diseases, such as amyotrophic lateral sclerosis, brainstem strokes, and spinal cord
injuries, could lead to locked-in syndrome (LIS), which makes it impossible for LIS patients to have
full voluntary muscle control [1]. Recently, interest in brain-computer interfaces (BCIs) has increased
because they can replace the function of LIS patients” impaired bodies.

BCI allows LIS patients to communicate with the external environment using only brain
signals without any voluntary movements [2]. In other words, BCI systems can provide alternative
communication channels for LIS patients [3]. BCIs can be realized using various neuroimaging
modalities, such as electrocorticography (ECoG) [4,5], electroencephalography (EEG) [6,7],
magnetoencephalography (MEG) [8,9], functional near-infrared spectroscopy (fNIRS) [10,11],
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and functional magnetic resonance imaging (fMRI) [12,13]. An invasive signal recording technique,
such as ECoG, requires a surgical operation to place recording electrodes on the cortex. In contrast,
non-invasive techniques, such as EEG, MEG, fNIRS, and fMR], can provide safe recording of brain
activity without surgery. Thus, the majority of BCI systems have been implemented based on
non-invasive neuroimaging modalities [14]. Among the noninvasive modalities, EEG has been widely
used to develop BCls because it has high portability, reasonable cost, and high temporal resolution
compared to other noninvasive recording modalities [14].

Conventional EEG-based BCI systems have used brain signals measured using scalp electrodes
with conductive gels for accurate measurement of EEGs. However, the conventional measurement
system is relatively bulky because it consists of several components, such as an external amplifier, cap,
and electrode, which limits the value of BCI applications in terms of practical use. Recently, to overcome
the limitation of conventional EEG-based BCI systems, EEGs measured by electrodes attached around
the ears, called ear-EEGs, have been proposed as an alternative to the classical scalp-EEG [15,16]. It has
been proven that ear-EEG can be set-up within several minutes, and used for successive days [17-19].
Most importantly, the feasibility of ear-EEG-based BCI systems has been demonstrated even though
their performance is still lower than that of conventional EEG-based systems in general [18,20].

There are two approaches to develop EEG-based BCI systems according to whether external
stimuli are used or not [21]. The first is based on an exogenous BCI paradigm that uses external
stimuli to induce specific brain patterns, such as auditory steady-state responses (ASSRs) [22,23],
event-related potentials (ERPs) [17,24-28], and steady-state visual evoked potentials (SSVEPs) [29].
The other approach is based on an endogenous BCI paradigm that uses self-modulated EEG patterns
without external stimuli [30-33], such as sensorimotor rhythms [34] and slow cortical potential
(SCP) [35]. Irrespective of if an exogenous or endogenous BCI system is developed, the most
important factor to consider is practicality for clinical use and daily applications. Most previous
BCI studies based on ear-EEG have used exogenous paradigms with external stimuli because
of relatively high signal-to-noise ratio (SNR) compared to the SNR of endogenous paradigms.
However, repetitive presentation of external stimuli used in exogenous BCI paradigms can cause user
fatigue [36-38], and additional hardware is required to provide visual, auditory, or tactile external
stimuli. The mentioned disadvantages would make it difficult to use an exogenous BCI system over a
long period in daily life. Therefore, an endogenous BCI can be an alternative to the exogenous BCI in
terms of practical use, but the feasibility of using ear-EEG to develop an endogenous BCI system has
rarely been evaluated in previous BCI studies.

The objective of this study was to demonstrate the feasibility of ear-EEG for the development of an
endogenous BCI system. To this end, EEGs were measured around the ears as well as on the scalp while
subjects performed mental arithmetic (MA) and light cognitive (LC) tasks (imagining vocalization
of English letters from A to Z). We compared event-related (de)synchronization (ERD/ERS) patterns
induced by the MA and LC tasks between scalp-EEG and ear-EEG, and the classification accuracies of
the MA and LC tasks to test the feasibility of an ear-EEG-based endogenous BCI system. As a result,
similar ERD/ERS patterns were obtained between scalp- and ear-EEG during both MA and LC tasks.
Also, the mean classification accuracy of ear-EEG was comparable to those of other scalp areas, and it
was above 70% required for effective binary communication, demonstrating that the feasibility of using
ear-EEG for the development of an endogenous BCI system.

2. Materials and Methods

2.1. Subjects

Eighteen healthy individuals were recruited for this study (21-31 years of age; mean
24.5 £ 2.67 years, 10 males and eight females). They reported no history of neurological or psychiatric
conditions. All subjects were informed about the experimental procedure, and written consent was
obtained from each subject before the experiment. All subjects received financial reimbursement after
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the experiment. The experimental protocol of this study was approved by the Institutional Review
Board (IRB) of Kumoh National Institute of Technology (No. 6250). EEG data analysis was conducted
for fifteen subjects, excluding three subjects who reported excessive fatigue during the experiment,
and drinking alcohol in the previous day, which could affect experimental results.

2.2. EEG Measurement

EEG data were recorded in a sound-proof room, and subjects were seated in a comfortable
armchair in front of a 21-inch monitor about 1 m away. During the experiment, the subjects were
asked to refrain from any body movement to minimize physiological artifacts. A binaural audio
system (Britz, BR-1000A, Cuve Black2, Paju-si, South Korea) was placed on both sides of the monitor,
and it provided the subjects with auditory cues during the experiment. EEG data were recorded
using thirty-one electrodes of a multi-channel EEG apparatus (Brain Products, GmbH, Gilching,
Germany). Scalp-EEGs were measured using twenty-five electrodes attached to the scalp according
to the international 10-20 system (Fp1-2, Fz, F3-4, 7-8, FC5-6, Cz, C3-4, T7-8, CP1-2, Pz, P34, 7-8§,
PO7-8, O1, and O2), while ear-EEG data were measured using six electrodes attached behind the ears
(three electrodes for each ear). In order to measure ear-EEG, we first cleaned the skin behind the ears
using an alcohol, a double-sided sticker was attached on the skin, a rubber ring holder was mounted
on the sticker, and an electrode was inserted into the holder. Same types of electrodes were used to
measure both scalp- and ear-EEG. The detailed information of electrode positions for scalp-EEG and
ear-EEG is illustrated in Figure 1. Reference and ground electrodes were attached at FCz and Fpz,
respectively. The sampling rate was 1000 Hz, and impedance was maintained below 10 k() during
the entire experiment. The scalp- and ear-EEG were independently re-referenced before the analysis
(see Section 2.4 for details).
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Figure 1. Electrode positions used to record EEG data. (A) The brain area is divided into four regions of
interests (ROIs) for data analysis (frontal, central, occipital, and ear area). (B) The electrode placement
for ear-EEG.

2.3. Experimental Paradigm

Before the main experiment, we measured EEGs when the subjects kept their eyes closed (EC)
and eyes opened (EO) for 30 s each, which was repeated six times. The preliminary experiment was
conducted to check the feasibility of using ear-EEG by confirming the well-known neurophysiological
phenomenon that there is a significant increase in alpha power (8-13 Hz) when the eyes are closed
compared to when they are open.

Figure 2 shows the schematic diagram of the main experiment conducted to confirm whether an
endogenous BCI paradigm can be realized using only ear-EEG. Two cognitive tasks, MA and LC, were
employed in the main experiment. During MA, the subjects were instructed to sequentially subtract



Sensors 2018, 18, 2856 4 of 14

a single-digit number (between 5 and 9) from a three-digit number (e.g., 594 — 8) [31]. Fifty pairs of
3-digit and 1-digit numbers were randomly selected and presented to each subject, but the order of the
50 MA tasks was same between the subjects. We asked subjects to perform the consecutive subtraction
as quickly as possible during the task period. During LC, they were instructed to mentally imagine
vocalization of English letters from A to Z at 1 Hz without vocalization. The LC task was designed to
maintain a steady and constant level of light cognitive load, which was introduced because subjects
tend to randomly think something that might disturb the low loading state in a conventional resting
state [30,31]. All subjects completed five sessions. Each experimental session started with an initial
resting state in which a blank was first displayed for 5 s, which was followed by resting state where
the string “ABC’ with an asterisk were presented. The subjects imagined vocalization of the English
alphabet for 10 s while focusing on the asterisk at the center of a monitor screen that was used as a
fixation mark to prevent severe ocular movement. A single trial was comprised of a task instruction of
5 s, followed by a task period of 10 s with a black fixation cross, and a variable resting period ranging
from 10-15 s. During the task instruction period, either the MA problem or the “ABC’ string (LC)
was randomly displayed on the screen for 5 s. The task started by presenting a black fixation cross
that lasted for 10 s, during which the subjects performed either MA or LC according to an instruction
presented on the monitor. The task period was followed by rest. A short beep was presented for
300 ms at every screen transition to provide subjects with explicit information of screen transition.
Each session consisted of 10 MA and 10 LC trials, and a short break was given for several minutes
between sessions. All subjects performed 50 MA and 50 LC trials (10 trials x 5 sessions).

wims x| L
MA-LC
20 repetitions

ofamel [T [l
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I Blank A Rest Presentation | Task Rest End |
; } : YT {
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Figure 2. Experimental paradigm of one session used in the main experiment. In the beginning
of each session, a rest period of 10 s is performed. The string "ABC” and an asterisk are presented
to indicate a rest period and the subject is asked to fix the eyes to the asterisk to minimize ocular
movement. After the rest period, either mental arithmetic (MA) or light cognitive (LC) task is randomly
performed. For MA, a pair of a three-digit number and a single-digit number between 5 and 9 is
randomly presented, and the subject is asked to sequentially subtract the single-digit number from the
three-digit number (e.g., 477 — 8) for 10 s. For LC, the string ‘ABC’" is presented, and the subject is asked
to internally imagine vocalization of the English alphabet from A to Z with a 1 Hz speed for 10 s. Both
MA and LC are performed ten times in each session, and each subject completes five sessions (50 MA
and 50 LC in total). A short beep (300 ms) is presented at every screen transition (red speaker icons).

2.4. EEG Data Analysis

EEG data were analyzed using EEGLAB [39,40] and BBCI toolbox [39,40] based on MATLAB
(MathWorks, Natick, MA, USA). The EEG data were first bandpass-filtered between 1 and 50 Hz
using a zero-phase fourth-order Butterworth filter and then down-sampled to 200 Hz in order to
avoid introducing unwanted artifacts after downsampling. To compare neural characteristics and
classification performance of different brain areas, we divided the brain area into four regions of
interests (ROIs): frontal, central, occipital, and ear area (see Figure 1 for more detail about the four
ROIs). For fair comparison, we selected six electrodes for each RO], as follows: frontal (Fp1-2, F3-4,
7-8); central (FC5-6, C3—4, T7-8); occipital (P3—4, PO7-8, O1-2); and ear area (R1-3, L1-3). All ROIs
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were re-referenced to remove the impact of the original reference electrode (FCz). Three scalp ROIs
were independently re-referenced using a common average reference (CAR) method with six electrodes
each [41] while ear-area was re-referenced using a modified CAR in which the mean of three electrodes
attached on an opposite ear area was used as a reference signal [16]. Trials contaminated by eye blinks
and body movements were removed based on a peak-to-peak amplitude thresholding method [42].
Two samples showing the lowest and highest amplitudes were first found for each component caused
by eye blink and the difference between them was calculated. If the difference was higher than a certain
threshold at least once in the trial, a corresponding trial was removed. A threshold differed between
subjects because a baseline amplitude varied from one subject to others (126.67 & 22.95 uV for MA
and LC; 196 + 51.34 for EO/EC). The subjects blinked the eyes relatively strongly in the preliminary
experiment as compared to in the main experiment, in particular, during the transition between EC
and EO to get vision back. Note that EC was first performed, followed by EO. Thus, the threshold
for EO/EC was set to be higher than that of MA and LC. The numbers of rejected trials for MA, LC,
and EO/EC were 4 £ 1.66, 3.66 £ 1.06, 1.27 & 0.77 in average, respectively.

For the EEG data measured in the preliminary experiment with EC and EO, time-frequency
analysis was performed using a short-time Fourier transformation (window size: 1 s, 50% overlap).
Spectral powers in a frequency band from 5-15 Hz, containing the «-band (8-13 Hz), were used to
investigate alpha power changes between the EC and EO conditions. Relative changes of mean alpha
power from EO to EC (signal-to-noise ratio: SNR) were estimated in decibels for the four ROIs (frontal,
central, occipital, and ear area). The SNR is simply given as:

alphagc
SNR = 10 x log;, <alphan> 1)

For the EEG data measured during MA and LC in the main experiment, ERD/ERS analysis was
first performed [43], for which epochs from —2-10 s based on the task onset of MA and LC were
extracted. Baseline correction was performed by subtracting the mean value of the EEG data recorded
between —2-0 s from each data point. ERD/ERS patterns induced during MA and LC were calculated
for each channel, and averaged over the six channels contained in each ROL. Classification of MA and
LC was performed for each ROL. For feature extraction, a multi-band common spatial pattern (CSP) was
applied to the epochs of MA and LC [44,45], where five frequency bands were used: 6-band (1-3 Hz),
0-band (4-7 Hz), a-band (8-13 Hz), 3-band (14-29 Hz), and y-band (30-50 Hz). The log-variances of the
two first and last CSP components were calculated in each band as features for classification. Note that
the multi-band CSP was applied to each ROl individually. To estimate classification accuracy, ten-fold
cross-validation was performed ten times using shrinkage linear discriminant analysis (SLDA) [46,47].
All statistics were carried out using a Friedman test, and a Wilcoxon signed-rank sum test was used
for post-hoc analysis with Bonferroni correction (i.e., p = 0.05/number of post-hoc tests).

3. Results

3.1. Alpha Power Changes during EC and EO

Figure 3 illustrates grand-average time-frequency maps of scalp- and ear-EEG in the frequency
band from 5-15 Hz. As is well documented, a more significant increase in alpha power—around
10 Hz—is observed in the occipital area during EC than during EO (Figure 3C). Interestingly, a similar
pattern is also shown for ear-EEG (Figure 3D), which can be explained by the fact that ear-EEG is
measured close to the occipital lobe that mainly shows an alpha power increase during EC. Frontal and
central areas also show an alpha power increase during EC, but which is not as strong as occipital and
ear areas. The SNRs of the frontal, central, occipital, and ear area (EC/EO) are 0.74 £ 0.40, 1.55 £ 0.54,
4.20 & 3.38, and 2.48 + 1.32, respectively. As expected, the mean SNR of the occipital area is the highest
and is significantly higher than the other ROIs. The SNR of the ear area is also statistically higher
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than both frontal and central areas (Wilcoxson signed rank sum test; occipital > ear > central > frontal,
corrected p < 0.05).

(A) Frontal (B) Central (W)

Frequency (Hz)

0

Eyes close

0 Eyes close 30 Eyes open 60

Time (s)

Figure 3. Grand average time-frequency maps with eyes closed (EC) and eyes opened (EO) for
(A) frontal, (B) central, (C) occipital, and (D) ear area. The color scale was chosen to fit the range for
(D) ear area.

3.2. ERD/ERS Pattern Maps during MA and LC

Figure 4 shows grand average ERD/ERS maps of all electrodes during MA. Prominent ERS is
observed in the a-band around 10 Hz at most electrodes, while a wide ERD is observed in the 3-
and y-bands [32,33]. ERS is stronger in occipital and ear areas than fronto-central areas; an opposite
trend is observed for ERD. Grand average ERD/ERS patterns of all electrodes during LC are shown in
Figure 5. There are no distinct ERD/ERS patterns compared to those induced during MA. However,
natural o-oscillation is visibly observed around the parieto-occipital areas and their adjacent ear areas,
but it is not as strong as the alpha ERS induced during MA. Figure 6 presents grand average ERD/ERS
pattern maps during MA and LC along with the difference between MA and LC (denoted by ‘MA-LC’)
for the four ROIs.
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Figure 4. Grand average ERD/ERS maps of all electrodes during MA. The four regions of interest
(ROIs), frontal, central, occipital, and ear area, are denoted by four different colored lines and titles
for each map (green, orange, red, and gray), respectively. The x- and y-axis of each map indicate the
task time from —2-10 s based on task onset (t = 0 s), and the frequency band ranging from 1 to 50 Hz,
respectively. ERD and ERS are presented in blue and red, respectively. Note that scalp- and ear-EEG
are independently re-referenced using a CAR and a modified CAR, respectively.
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Figure 5. Grand average ERD/ERS maps of all electrodes during LC. The four regions of interest
(ROIs), frontal, central, occipital, and ear area, are denoted by four different colored lines and titles
for each map (green, orange, red, and gray), respectively. The x- and y-axis of each map indicate the
task time from —2-10 s based on task onset (t = 0 s), and the frequency band ranging from 1 to 50 Hz,
respectively. ERD and ERS are presented in blue and red, respectively. Note that scalp- and ear-EEG
are independently re-referenced using a CAR and a modified CAR, respectively.
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Figure 6. Grand average ERD/ERS maps of each ROI during MA and LC, and their differences
(MA-LC). The ERD/ERS maps of ear area (denoted by ‘Ear’) are obtained by averaging the six
electrodes attached behind both ears (three electrode for each side). The x- and y-axis of each map
indicate the task time from —2-10 s based on task onset (t = 0 s), and the frequency band ranging from
1 to 50 Hz, respectively. ERD and ERS are presented in blue and red, respectively.

The ERD/ERS patterns shown in Figures 4 and 5 can be similarly observed for each ROI, and
the difference between MA and LC is clearly seen (see ‘MA-LC’), leading to reasonable classification
between the two conditions. Interestingly, ERD/ERS patterns for the ear area are very similar to
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those for the central and occipital areas adjacent to the ear area, demonstrating the feasibility of using
ear-EEG to develop cognitive-task-based endogenous BCls.

3.3. Classification Performance

Figure 7 shows the electrode positions of each ROI and their mean classification accuracies.
The classification accuracy attained using all electrodes re-referenced using CAR, excluding the six
ear electrodes, is also presented as a reference accuracy. The mean accuracies of the frontal, central,
occipital, and ear areas are 81.26 & 9.72, 80.78 & 8.60, 84.55 & 5.75 and 78.36 &+ 10.36%, respectively (all
electrodes: 91.80 + 5.60%). The classification accuracy of the occipital area is higher than those of the

other ROIs, but there is no statistically significant difference between the four ROIs (Friedman test;
p =0.63).

A Frontal Central (B)
AN 100
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80 +
Occipital
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Figure 7. (A) Electrode positions used to create each ROI, and (B) the mean classification accuracies
of the four ROIs with that obtained using all electrodes (‘Scalp’), excluding the six ear electrodes.
Each ROI was individually re-referenced, where a CAR was used for the scalp ROIs (‘Scalp’, ‘Frontal’,
‘Central’, and ‘Occipital’) while the mean of three electrodes attached on an opposite ear area was
used as a reference signal for ear ROI (‘Ear’). Error bars indicate standard deviations of the estimated
classification accuracies of each ROI. There is no significant difference between the four ROIs (Friedman
test; p = 0.63).

Classification Accuracy (%)

4. Discussion

In recent years, ear-EEG has been introduced to develop a more practical BCI system as
an alternative to the classical scalp-EEG; its feasibility has been demonstrated in many previous
studies [15-17,23,25-27,48-53]. Most of previous studies have used exogenous BCI paradigms
that take advantage of brain activity evoked by external stimuli, such as ASSR [16,18,23,48,54-57],
SSVEP [23,51,55,57], and ERP [15,17,23,25-27,48,49,58], while few studies based on ear-EEG have
developed endogenous BCI systems based on self-modulated brain activity. Development of an
endogenous BCI system is important because continuous external visual or auditory stimulation can
readily cause fatigue [29,59,60], and the performance of these BCI systems is significantly degraded
when the user has deficits in visual or auditory function [59,61]. The goal of this study was to investigate
whether ear-EEG can be used to develop an endogenous BCI system with reliable performance. To this
end, we conducted preliminary and main experiments to check the feasibility of using an ear-EEG
based on the EC/EOQ task and an endogenous BCI paradigm (MA vs. LC), respectively.

In the preliminary experiment, we compared changes in alpha activity induced during EC and
EO for each ROI, and we confirmed that the SNR of ear-EEG was comparable even though it was
smaller than that of the occipital area, which showed the highest increase of alpha activity during EC.
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This result demonstrated the feasibility of using ear-EEG as compared to traditional scalp-EEG, and is
in line with previous reports [17,25,57]. Even though the previous studies investigated alpha power
changes induced during EC and EO, they only checked them using ear-EEG without direct comparison
between ear-EEG and scalp-EEG. So, it should be noted that this study is first to quantitatively compare
the SNR of ear-EEG with those of other brain areas in terms of alpha activity increase related to EC.
The comparison presented in this study could provide more detailed information about the degree
of utilization of ear-EEG as compared to scalp-EEG in developing EEG applications based on alpha
activity, such as brain authentication based on the resting state [62], attention monitoring [63,64],
and sleep detection [65].

In the main experiment, we used a MA task that is one of the widely employed cognitive tasks for
developing an endogenous BCI system [31,33,66-69]. A significant alpha ERS and a wide-band
ERD in the - and y-bands were observed for most electrodes during MA, which is consistent
with previous studies [32,33]. Most importantly, similar ERD/ERS patterns were also shown for
ear-EEG during MA. Also, the ERD/ERS pattern maps of the ear area were more similar to those
of centro-occipital areas than those of frontal areas, which was also indirectly proved in a previous
study showing that centro-occipital EEGs can be more predicted using ear-EEG than frontal EEG [70].
As documented in related studies [33,71], the strongest alpha ERS was observed during MA on
occipital areas that are most sensitive to cognitive tasks [33], thereby showing the highest classification
accuracy between MA and LC (84.55 & 5.75%). Importantly, the classification performance of the ear
area was comparable to the other ROIs from the statistical point of view (Friedman test; p = 0.63).
In addition, the mean classification accuracy of ear-EEG exceeded the marginal accuracy of 70% that
determines whether a binary BCI system can be practically used [72]. The ERD/ERS and classification
results could demonstrate that ear-EEG can be used to develop an endogenous BCI system with
acceptable performance.

In this study, we used MA and LC (mental vocalization task) tasks to confirm the feasibility of
ear-EEG for the development of an endogenous BCI system. So far, various mental tasks have been
used to develop endogenous BCI systems, such as motor imagery [34,73], mental rotation [74], spatial
navigation [75], mental vocalization [76,77], and word association [78]. Thus, further studies for other
mental tasks should be performed to more generally address the feasibility of ear-EEG for developing
an endogenous BCI system, which could also provide the information about proper combinations of
mental tasks for implementing ear-EEG-based BCIs. On the other hand, we used one of the language
tasks as a LC task because it was confirmed that the LC task used in this study can maintain constant
level of low cognitive loading [31]. However, considering that a mental subtraction task was used
as a main task in this study in order to actively induce self-modulated EEGs, an easy subtraction
task (e.g., 100 — 1) might be a more proper selection as a LC task instead of the language task for the
sake of task unity. Investigating the difference between the language task used in this study and an
easy subtraction task will be considered in terms of neural characteristics and task performance in
future studies.

A multi-band CSP and sLDA were used for feature extraction and classification, respectively,
in this study. However, because there is no guarantee that sLDA is always most suitable for
classification of given EEG data, another classifier can be considered. For example, random forest,
k-nearest neighbor, and Gaussian mixture model showed better classification performance than LDA
for sleep EEGs [79]. Because a most suitable classifier highly depends on the characteristics of given
dataset, trial and error with different classifiers should be undergone to find a better classifier [80].
In this study, SLDA was a better choice than other two classifiers tested, random forest and support
vector machine, in terms of classification accuracy (not shown here in detail).

As mentioned above, most ear-EEG studies have used external auditor/visual stimuli and have
demonstrated that ear-EEG can reliably capture evoked brain potentials, such as SSVEP [23,51,55,57],
ASSR [16,18,23,48,54-57], and ERP [15,17,23,25-27,48,49,58]. In this study, we demonstrated that
ear-EEG can also measure self-modulated brain activity (Figure 6). Thus, it can be thought that
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spontaneous brain activity generated without the repetitive use of external stimuli and the execution
of mental tasks might be captured using ear-EEG. Thus, investigation of spontaneous brain activity
measured around the ears would be an interesting future research topic to expand the application
areas of ear-EEG, such as emotion recognition and epileptic seizure detection.

Author Contributions: S.-1.C., H.-].H., and C.-H.I. designed the experiment, S.-1.C., and G.-Y.C. acquired the data,
and S.-1.C., and ].S. performed data analysis. C.-H.H., C.-H.I,, and K.S.S. reviewed the draft. All authors wrote
the manuscript.

Funding: This work was supported by Institute for Information & Communications Technology Promotion (IITP)
grant funded by the Korea government (MSIT) (No. 2017-0-00451), and by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIP; Ministry of Science, ICT & Future Planning)
(No. 2017R1C1B5017909).

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be constructed as a potential conflict of interest.

References

1.  Bauer, G.; Gerstenbrand, F.; Rumpl, E. Varieties of the locked-in syndrome. ]. Neurol. 1979, 221, 77-91.
[CrossRef] [PubMed]

2. He,S,; Zhang, R.; Wang, Q.; Chen, Y,; Yang, T.; Feng, Z.; Zhang, Y.; Shao, M.; Li, Y. A P300-based threshold-free
brain switch and its application in wheelchair control. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 715-725.
[CrossRef] [PubMed]

3. Allison, B.Z,; Dunne, S.; Leeb, R.; Millan, J.; Nijholt, A. Recent and upcoming BCI progress: Overview,
analysis, and recommendations. In Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research
to Real-World Applications; Springer: Berlin, Germany, 2013; pp. 1-13.

4. Eric, C.L.; Gerwin, S.; Jonathan, RW.; Jeffrey, G.O.; Daniel, WM. A brain-computer interface using
electrocorticographic signals in humans. J. Neural Eng. 2004, 1, 63.

5. Alan, D.D.; Shivayogi, V.H.; Ying, Y.; Stephen, F.; Jennifer, L.C.; Michael, B.; Elizabeth, C.T.-K.; Wei, W.
Remapping cortical modulation for electrocorticographic brain-computer interfaces: A somatotopy-based
approach in individuals with upper-limb paralysis. J. Neural Eng. 2018, 15, 026021.

6.  Wolpaw, ].R,; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for
communication and control. Clin. Neurophysiol. 2002, 113, 767-791. [CrossRef]

7. Shu, X,; Chen, S;; Yao, L.; Sheng, X.; Zhang, D.; Jiang, N.; Jia, J.; Zhu, X. Fast recognition of BCI-inefficient
users using physiological features from EEG signals: A screening study of stroke patients. Front. Neurosci.
2018, 12. [CrossRef] [PubMed]

8. Mellinger, J.; Schalk, G.; Braun, C.; Preissl, H.; Rosenstiel, W.; Birbaumer, N.; Kubler, A. An MEG-based
brain-computer interface (BCI). Neurolmage 2007, 36, 581-593. [CrossRef] [PubMed]

9. Corsi, M.-C.; Chavez, M.; Schwartz, D.; Hugueville, L.; Khambhati, A.N.; Bassett, D.S.; Fallani, ED.V.
Integrating EEG and MEG signals to improve motor imagery classification in brain-computer interface. Int. J.
Neural Syst 2018, 38, 1850014. [CrossRef] [PubMed]

10. Sitaram, R.; Zhang, H.; Guan, C.; Thulasidas, M.; Hoshi, Y.; Ishikawa, A.; Shimizu, K.; Birbaumer, N.
Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing
a brain-computer interface. Neurolmage 2007, 34, 1416-1427. [CrossRef] [PubMed]

11.  Naseer, N.; Hong, K.-S. {NIRS-based brain-computer interfaces: A review. Front. Hum. Neurosci. 2015, 9, 3.
[CrossRef] [PubMed]

12.  Weiskopf, N.; Mathiak, K.; Bock, SSW.; Scharnowski, E; Veit, R.; Grodd, W.; Goebel, R.; Birbaumer, N.
Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging
(fMRI). IEEE Trans. Biomed. Eng. 2004, 51, 966-970. [CrossRef] [PubMed]

13.  Sokunbi, M.O. Using real-time fMRI brain-computer interfacing to treat eating disorders. J. Neurol. Sci. 2018,
388, 109-114. [CrossRef] [PubMed]

14. Hwang, H.-J.; Kim, S.; Choi, S.; Im, C.-H. EEG-based brain-computer interfaces: A thorough literature survey.
Int. J. Hum. Comput. Interact. 2013, 29, 814-826. [CrossRef]


http://dx.doi.org/10.1007/BF00313105
http://www.ncbi.nlm.nih.gov/pubmed/92545
http://dx.doi.org/10.1109/TNSRE.2016.2591012
http://www.ncbi.nlm.nih.gov/pubmed/27416603
http://dx.doi.org/10.1016/S1388-2457(02)00057-3
http://dx.doi.org/10.3389/fnins.2018.00093
http://www.ncbi.nlm.nih.gov/pubmed/29515363
http://dx.doi.org/10.1016/j.neuroimage.2007.03.019
http://www.ncbi.nlm.nih.gov/pubmed/17475511
http://dx.doi.org/10.1142/S0129065718500144
http://www.ncbi.nlm.nih.gov/pubmed/29768971
http://dx.doi.org/10.1016/j.neuroimage.2006.11.005
http://www.ncbi.nlm.nih.gov/pubmed/17196832
http://dx.doi.org/10.3389/fnhum.2015.00003
http://www.ncbi.nlm.nih.gov/pubmed/25674060
http://dx.doi.org/10.1109/TBME.2004.827063
http://www.ncbi.nlm.nih.gov/pubmed/15188865
http://dx.doi.org/10.1016/j.jns.2018.03.011
http://www.ncbi.nlm.nih.gov/pubmed/29627003
http://dx.doi.org/10.1080/10447318.2013.780869

Sensors 2018, 18, 2856 11 of 14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Bleichner, M.G.; Lundbeck, M.; Selisky, M.; Minow, E; Jager, M.; Emkes, R.; Debener, S.; De Vos, M. Exploring
miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see? Physiol. Rep. 2015,
3, e12362. [CrossRef] [PubMed]

Mikkelsen, K.B.; Kappel, S.L.; Mandic, D.P.; Kidmose, P. EEG recorded from the ear: Characterizing the
ear-EEG method. Front. Neurosci. 2015, 9, 438. [CrossRef] [PubMed]

Debener, S.; Emkes, R.; De Vos, M.; Bleichner, M. Unobtrusive ambulatory EEG using a smartphone and
flexible printed electrodes around the ear. Sci. Rep. 2015, 5, 16743. [CrossRef] [PubMed]

Looney, D.; Kidmose, P,; Park, C.; Ungstrup, M.; Rank, M.; Rosenkranz, K.; Mandic, D. The in-the-ear
recording concept: User-centered and wearable brain monitoring. IEEE Pulse 2012, 3, 32—42. [CrossRef]
[PubMed]

Zibrandtsen, I; Kidmose, P.; Otto, M.; Ibsen, J.; Kjaer, T.W. Case comparison of sleep features from ear-EEG
and scalp-EEG. Sleep Sci. 2016, 9, 69-72. [CrossRef] [PubMed]

Mikkelsen, K.B.; Villadsen, D.B.; Otto, M.; Kidmose, P. Automatic sleep staging using ear-EEG.
Biomed. Eng. Online 2017, 16, 111. [CrossRef] [PubMed]

Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211-1279.
[CrossRef] [PubMed]

Kim, D.W.; Hwang, H.J.; Lim, J.H.; Lee, YH.; Jung, K.Y.; Im, C.H. Classification of selective attention to
auditory stimuli: Toward vision-free brain-computer interfacing. J. Neurosci. Methods 2011, 197, 180-185.
[CrossRef] [PubMed]

Kidmose, P; Looney, D.; Ungstrup, M.; Rank, M.L.; Mandic, D.P. A study of evoked potentials from ear-EEG.
IEEE Trans. Biomed. Eng. 2013, 60, 2824-2830. [CrossRef] [PubMed]

Hwang, H.-J.; Ferreria, V.Y,; Ulrich, D.; Kilic, T.; Chatziliadis, X.; Blankertz, B.; Treder, M. A gaze independent
brain-computer interface based on visual stimulation through closed eyelids. Sci. Rep. 2015, 5, 15890.
[CrossRef] [PubMed]

Norton, J.J.S.; Lee, D.S.; Lee, JW.; Lee, W.; Kwon, O.; Won, P; Jung, S.-Y.; Cheng, H.; Jeong, ].-W.; Akce, A.;
et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer
interface. Proc. Natl. Acad. Sci. USA 2015, 112, 3920-3925. [CrossRef] [PubMed]

Bleichner, M.G.; Mirkovic, B.; Debener, S. Identifying auditory attention with ear-EEG: cEEGrid versus
high-density cap-EEG comparison. . Neural Eng. 2016, 13, 066004. [CrossRef] [PubMed]

Fiedler, L.; Wostmann, M.; Graversen, C.; Brandmeyer, A.; Lunner, T.; Obleser, J. Single-channel in-ear-EEG
detects the focus of auditory attention to concurrent tone streams and mixed speech. J. Neural Eng. 2017,
14, 036020. [CrossRef] [PubMed]

Won, D.O.; Hwang, H.J.; Kim, D.M.; Miiller, K.R.; Lee, S.W. Motion-based rapid serial visual presentation
for gaze-independent brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 334-343.
[CrossRef] [PubMed]

Hwang, HJ].; Lim, . H,; Jung, YJ.; Choi, H.; Lee, SW.; Im, C.H. Development of an SSVEP-based BCI spelling
system adopting a QWERTY-style LED keyboard. |. Neurosci. Methods 2012, 208, 59-65. [CrossRef] [PubMed]
Power, S.D.; Kushki, A.; Chau, T. Towards a system-paced near-infrared spectroscopy brain-computer
interface: Differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control
state. J. Neural Eng. 2011, 8, 066004. [CrossRef] [PubMed]

Shin, J.; Miiller, K.R.; Hwang, H.J. Near-infrared spectroscopy (NIRS)-based eyes-closed brain-computer
interface (BCI) using prefrontal cortex activation due to mental arithmetic. Sci. Rep. 2016, 6, 36203. [CrossRef]
[PubMed]

Friedrich, E.V.; Scherer, R.; Neuper, C. The effect of distinct mental strategies on classification performance
for brain-computer interfaces. Int. . Psychophysiol. 2012, 84, 86-94. [CrossRef] [PubMed]

Shin, J.; Miiller, K-R.; Schmitz, C.H.; Kim, D.-W.; Hwang, H.-J. Evaluation of a compact hybrid
brain-computer interface system. Biomed. Res. Int. 2017, 2017, 11. [CrossRef] [PubMed]

Hwang, H.-J.; Kwon, K.; Im, C.-H. Neurofeedback-based motor imagery training for brain-computer interface
(BCI). J. Neurosci. Methods 2009, 179, 150-156. [CrossRef] [PubMed]

Mensh, B.D.; Werfel, ].; Seung, H.S. BCI competition 2003-data set Ia: Combining gamma-band power with
slow cortical potentials to improve single-trial classification of electroencephalographic signals. IEEE Trans.
Biomed. Eng. 2004, 51, 1052-1056. [CrossRef] [PubMed]


http://dx.doi.org/10.14814/phy2.12362
http://www.ncbi.nlm.nih.gov/pubmed/25847919
http://dx.doi.org/10.3389/fnins.2015.00438
http://www.ncbi.nlm.nih.gov/pubmed/26635514
http://dx.doi.org/10.1038/srep16743
http://www.ncbi.nlm.nih.gov/pubmed/26572314
http://dx.doi.org/10.1109/MPUL.2012.2216717
http://www.ncbi.nlm.nih.gov/pubmed/23247157
http://dx.doi.org/10.1016/j.slsci.2016.05.006
http://www.ncbi.nlm.nih.gov/pubmed/27656268
http://dx.doi.org/10.1186/s12938-017-0400-5
http://www.ncbi.nlm.nih.gov/pubmed/28927417
http://dx.doi.org/10.3390/s120201211
http://www.ncbi.nlm.nih.gov/pubmed/22438708
http://dx.doi.org/10.1016/j.jneumeth.2011.02.007
http://www.ncbi.nlm.nih.gov/pubmed/21335029
http://dx.doi.org/10.1109/TBME.2013.2264956
http://www.ncbi.nlm.nih.gov/pubmed/23722447
http://dx.doi.org/10.1038/srep15890
http://www.ncbi.nlm.nih.gov/pubmed/26510583
http://dx.doi.org/10.1073/pnas.1424875112
http://www.ncbi.nlm.nih.gov/pubmed/25775550
http://dx.doi.org/10.1088/1741-2560/13/6/066004
http://www.ncbi.nlm.nih.gov/pubmed/27705963
http://dx.doi.org/10.1088/1741-2552/aa66dd
http://www.ncbi.nlm.nih.gov/pubmed/28384124
http://dx.doi.org/10.1109/TNSRE.2017.2736600
http://www.ncbi.nlm.nih.gov/pubmed/28809703
http://dx.doi.org/10.1016/j.jneumeth.2012.04.011
http://www.ncbi.nlm.nih.gov/pubmed/22580222
http://dx.doi.org/10.1088/1741-2560/8/6/066004
http://www.ncbi.nlm.nih.gov/pubmed/21975364
http://dx.doi.org/10.1038/srep36203
http://www.ncbi.nlm.nih.gov/pubmed/27824089
http://dx.doi.org/10.1016/j.ijpsycho.2012.01.014
http://www.ncbi.nlm.nih.gov/pubmed/22289414
http://dx.doi.org/10.1155/2017/6820482
http://www.ncbi.nlm.nih.gov/pubmed/28373984
http://dx.doi.org/10.1016/j.jneumeth.2009.01.015
http://www.ncbi.nlm.nih.gov/pubmed/19428521
http://dx.doi.org/10.1109/TBME.2004.827081
http://www.ncbi.nlm.nih.gov/pubmed/15188877

Sensors 2018, 18, 2856 12 of 14

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Kim, Y.-J.; Lee, E.C. EEG based comparative measurement of visual fatigue caused by 2D and 3D
displays. In Proceedings of the International Conference on Human-Computer Interaction, Berlin, Germany,
9-14 July 2011; pp. 289-292.

Khan, M.].; Hong, K.S. Passive BCI based on drowsiness detection: An fNIRS study. Biomed. Opt. Express
2015, 6, 4063—4078. [CrossRef] [PubMed]

Myrden, A.; Chau, T. Effects of user mental state on EEG-BCI performance. Front. Hum. Neurosci. 2015,
9, 308. [CrossRef] [PubMed]

Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including
independent component analysis. J. Neurosci. Methods 2004, 134, 9-21. [CrossRef] [PubMed]

Blankertz, B.; Acqualagna, L.; Dahne, S.; Haufe, S.; Schultze-Kraft, M.; Sturm, I.; Us¢umlic, M.; Wenzel, M.A.;
Curio, G.; Miiller, K.-R. The Berlin Brain-Computer Interface: Progress beyond communication and control.
Front. Neurosci. 2016, 10, 530. [CrossRef] [PubMed]

McFarland, D.J.; McCane, LM.; David, S.V.; Wolpaw, J.R. Spatial filter selection for EEG-based
communication. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 386-394. [CrossRef]

Zhang, J.; Lau, E.Y.Y. Sleep deprivation compromises resting-state emotional regulatory processes: An EEG
study. J. Sleep Res. 2018, 27. [CrossRef] [PubMed]

Pfurtscheller, G. Graphical display and statistical evaluation of event-related desynchronization (ERD).
Electroencephalogr. Clin. Neurophysiol. 1977, 43, 757-760. [CrossRef]

Lemm, S.; Blankertz, B.; Curio, G.; Muller, K.R. Spatio-spectral filters for improving the classification of
single trial EEG. IEEE Trans. Biomed. Eng. 2005, 52, 1541-1548. [CrossRef] [PubMed]

Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined
hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441-446. [CrossRef] [PubMed]

Peck, R.; Ness, ].V. The use of shrinkage estimators in linear discriminant analysis. IEEE Trans. Pattern Anal.
Mach. Intell. 1982, 4, 530-537. [CrossRef] [PubMed]

Schifer, J.; Strimmer, K. A shrinkage approach to large-scale covariance matrix estimation and implications
for functional genomics. Stat. Appl. Genet. Mol. Biol. 2005, 4, 32. [CrossRef] [PubMed]

Kidmose, P.; Looney, D.; Mandic, D.P. Auditory evoked responses from Ear-EEG recordings. In Proceedings
of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
San Diego, CA, USA, 28 August-1 September 2012; pp. 586-589.

Fiedler, L.; Obleser, J.; Lunner, T.; Graversen, C. Ear-EEG allows extraction of neural responses in
challenging listening scenarios—A future technology for hearing aids? In Proceedings of the 38th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL,
USA, 16-20 August 2016; pp. 5697-5700.

Mirkovic, B.; Bleichner, M.G.; De Vos, M.; Debener, S. Target speaker detection with concealed EEG around
the ear. Front. Neurosci. 2016, 10, 349. [CrossRef] [PubMed]

Wang, Y.T.; Nakanishi, M.; Wang, Y.; Wei, C.S.; Cheng, C.K.; Jung, T.P. An online brain-computer interface
based on SSVEPs measured from non-hair-bearing areas. IEEE Trans. Neural Syst. Rehabil. Eng. 2017,
25,11-18. [CrossRef] [PubMed]

Floriano, A.; Diez, PF,; Bastos-Filho, T.F. Evaluating the influence of chromatic and luminance stimuli on
SSVEPs from behind-the-ears and occipital areas. Sensors 2018, 18, 615. [CrossRef] [PubMed]

Wei, C.S.; Wang, Y.T,; Lin, C.T.; Jung, T.P. Toward drowsiness detection using non-hair-bearing EEG-based
brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 400-406. [CrossRef] [PubMed]
Kidmose, P.; Looney, D.; Jochumsen, L.; Mandic, D.P. Ear-EEG from generic earpieces: A feasibility study.
In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Osaka, Japan, 3-7 July 2013; pp. 543-546.

Goverdovsky, V.; Looney, D.; Kidmose, P.; Mandic, D.P. In-ear EEG from viscoelastic generic earpieces:
Robust and unobtrusive 24/7 monitoring. IEEE Sens. |. 2016, 16, 271-277. [CrossRef]

Bech Christensen, C.; Harte, ].M.; Lunner, T.; Kidmose, P. Ear-EEG based objective hearing threshold
estimation evaluated on normal hearing subjects. IEEE Trans. Biomed. Eng. 2017, 99, 28796603. [CrossRef]
[PubMed]

Goverdovsky, V.; von Rosenberg, W.; Nakamura, T.; Looney, D.; Sharp, D.J.; Papavassiliou, C.; Morrell, M.].;
Mandic, D.P. Hearables: Multimodal physiological in-ear sensing. Sci. Rep. 2017, 7, 6948. [CrossRef]
[PubMed]


http://dx.doi.org/10.1364/BOE.6.004063
http://www.ncbi.nlm.nih.gov/pubmed/26504654
http://dx.doi.org/10.3389/fnhum.2015.00308
http://www.ncbi.nlm.nih.gov/pubmed/26082705
http://dx.doi.org/10.1016/j.jneumeth.2003.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15102499
http://dx.doi.org/10.3389/fnins.2016.00530
http://www.ncbi.nlm.nih.gov/pubmed/27917107
http://dx.doi.org/10.1016/S0013-4694(97)00022-2
http://dx.doi.org/10.1111/jsr.12671
http://www.ncbi.nlm.nih.gov/pubmed/29493041
http://dx.doi.org/10.1016/0013-4694(77)90092-X
http://dx.doi.org/10.1109/TBME.2005.851521
http://www.ncbi.nlm.nih.gov/pubmed/16189967
http://dx.doi.org/10.1109/86.895946
http://www.ncbi.nlm.nih.gov/pubmed/11204034
http://dx.doi.org/10.1109/TPAMI.1982.4767298
http://www.ncbi.nlm.nih.gov/pubmed/21869073
http://dx.doi.org/10.2202/1544-6115.1175
http://www.ncbi.nlm.nih.gov/pubmed/16646851
http://dx.doi.org/10.3389/fnins.2016.00349
http://www.ncbi.nlm.nih.gov/pubmed/27512364
http://dx.doi.org/10.1109/TNSRE.2016.2573819
http://www.ncbi.nlm.nih.gov/pubmed/27254871
http://dx.doi.org/10.3390/s18020615
http://www.ncbi.nlm.nih.gov/pubmed/29462975
http://dx.doi.org/10.1109/TNSRE.2018.2790359
http://www.ncbi.nlm.nih.gov/pubmed/29432111
http://dx.doi.org/10.1109/JSEN.2015.2471183
http://dx.doi.org/10.1109/TBME.2017.2737700
http://www.ncbi.nlm.nih.gov/pubmed/28796603
http://dx.doi.org/10.1038/s41598-017-06925-2
http://www.ncbi.nlm.nih.gov/pubmed/28761162

Sensors 2018, 18, 2856 13 of 14

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

Pacharra, M.; Debener, S.; Wascher, E. Concealed around-the-ear EEG captures cognitive processing in a
visual simon task. Front. Hum. Neurosci. 2017, 11, 290. [CrossRef] [PubMed]

Hong, B.; Lou, B.; Guo, J.; Gao, S. Adaptive active auditory brain computer interface. In Proceedings of the
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis,
MN, USA, 3-6 September 2009; pp. 4531-4534.

Allison, B.; Luth, T.; Valbuena, D.; Teymourian, A.; Volosyak, I.; Graser, A. BCI demographics: How many
(and what kinds of) people can use an SSVEP BCI? IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 107-116.
[CrossRef] [PubMed]

Brunner, P; Joshi, S.; Briskin, S.; Wolpaw, J.R.; Bischof, H.; Schalk, G. Does the ‘P300” speller depend on eye
gaze? J. Neural Eng. 2010, 7, 056013. [CrossRef] [PubMed]

Choi, G.Y,; Choi, S.I; Hwang, H.J. Individual identification based on resting-state EEG. In Proceedings of the
6th International Conference on Brain-Computer Interface (BCI), Seoul, Korea, 15-17 January 2018; pp. 1-4.
Benedek, M.; Schickel, R.J.; Jauk, E.; Fink, A.; Neubauer, A.C. Alpha power increases in right parietal cortex
reflects focused internal attention. Neuropsychologia 2014, 56, 393—400. [CrossRef] [PubMed]

Katahira, K.; Yamazaki, Y.; Yamaoka, C.; Ozaki, H.; Nakagawa, S.; Nagata, N. EEG correlates of the flow state:
A combination of increased frontal theta and moderate frontocentral alpha rhythm in the mental arithmetic
task. Front. Psychol. 2018, 9, 300. [CrossRef] [PubMed]

Jiao, Y;; Lu, B.L. Detecting driver sleepiness from EEG alpha wave during daytime driving. In Proceedings
of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas, MO, USA,
13-16 November 2017; pp. 728-731.

Bauernfeind, G.; Scherer, R.; Pfurtscheller, G.; Neuper, C. Single-trial classification of antagonistic
oxyhemoglobin responses during mental arithmetic. Med. Biol. Eng. Comput. 2011, 49, 979-984. [CrossRef]
[PubMed]

Harrison, A.H.; Noseworthy, M.D.; Reilly, ].P.; Guan, W.; Connolly, ].F. EEG and fMRI agree: Mental
arithmetic is the easiest form of imagery to detect. Conscious Cogn. 2017, 48, 104-116. [CrossRef] [PubMed]
Shin, J.; Lithmann, A.v.; Blankertz, B.; Kim, D.W.; Jeong, J.; Hwang, H.J.; Miiller, K.R. Open access dataset for
EEG + NIRS single-trial classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1735-1745. [CrossRef]
[PubMed]

Shin, J.; von Lithmann, A.; Kim, D.-W.; Mehnert, J.; Hwang, H.-J.; Miiller, K.-R. Simultaneous acquisition
of EEG and NIRS during cognitive tasks for an open access dataset. Sci. Data 2018, 5, 180003. [CrossRef]
[PubMed]

Mikkelsen, K.B.; Kidmose, P.; Hansen, L.K. On the keyhole hypothesis: High mutual information between
ear and scalp EEG. Front. Hum. Neurosci. 2017, 11, 341. [CrossRef] [PubMed]

Guay, S.; De Beaumont, L.; Drisdelle, B.L.; Lina, J.-M.; Jolicoeur, P. Electrophysiological impact of multiple
concussions in asymptomatic athletes: A re-analysis based on alpha activity during a visual-spatial attention
task. Neuropsychologia 2018, 108, 42-49. [CrossRef] [PubMed]

Perelmouter, J.; Birbaumer, N. A binary spelling interface with random errors. IEEE Trans. Rehabil. Eng. 2000,
8,227-232. [CrossRef] [PubMed]

Park, S.A.; Hwang, H.J.; Lim, ].H.; Choi, J.H.; Jung, H.K.; Im, C.H. Evaluation of feature extraction methods
for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations.
Med. Biol. Eng. Comput. 2013, 51, 571-579. [CrossRef] [PubMed]

So, WK.Y.;; Wong, SW.H.; Mak, ].N.; Chan, R H.M. An evaluation of mental workload with frontal EEG.
PLoS ONE 2017, 12, €0174949. [CrossRef] [PubMed]

Curran, E.; Sykacek, P.; Stokes, M.; Roberts, S.J.; Penny, W.; Johnsrude, I.; Owen, A.M. Cognitive tasks for
driving a brain-computer interfacing system: A pilot study. IEEE Trans. Neural Syst. Rehabil. Eng. 2004,
12, 48-54. [CrossRef] [PubMed]

Naito, M.; Michioka, Y.; Ozawa, K; Ito, Y.; Kiguchi, M.; Kanazawa, T. A communication means for totally
locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light.
IEICE Trans. Inf. Syst. 2007, 7, 1028-1037. [CrossRef]

Power, S.D.; Falk, T.H.; Chau, T. Classification of prefrontal activity due to mental arithmetic and music
imagery using hidden Markov models and frequency domain near-infrared spectroscopy. J. Neural Eng.
2010, 7, 26002. [CrossRef] [PubMed]


http://dx.doi.org/10.3389/fnhum.2017.00290
http://www.ncbi.nlm.nih.gov/pubmed/28642695
http://dx.doi.org/10.1109/TNSRE.2009.2039495
http://www.ncbi.nlm.nih.gov/pubmed/20083463
http://dx.doi.org/10.1088/1741-2560/7/5/056013
http://www.ncbi.nlm.nih.gov/pubmed/20858924
http://dx.doi.org/10.1016/j.neuropsychologia.2014.02.010
http://www.ncbi.nlm.nih.gov/pubmed/24561034
http://dx.doi.org/10.3389/fpsyg.2018.00300
http://www.ncbi.nlm.nih.gov/pubmed/29593605
http://dx.doi.org/10.1007/s11517-011-0792-5
http://www.ncbi.nlm.nih.gov/pubmed/21701852
http://dx.doi.org/10.1016/j.concog.2016.10.006
http://www.ncbi.nlm.nih.gov/pubmed/27855346
http://dx.doi.org/10.1109/TNSRE.2016.2628057
http://www.ncbi.nlm.nih.gov/pubmed/28113943
http://dx.doi.org/10.1038/sdata.2018.3
http://www.ncbi.nlm.nih.gov/pubmed/29437166
http://dx.doi.org/10.3389/fnhum.2017.00341
http://www.ncbi.nlm.nih.gov/pubmed/28713253
http://dx.doi.org/10.1016/j.neuropsychologia.2017.11.022
http://www.ncbi.nlm.nih.gov/pubmed/29162458
http://dx.doi.org/10.1109/86.847824
http://www.ncbi.nlm.nih.gov/pubmed/10896195
http://dx.doi.org/10.1007/s11517-012-1026-1
http://www.ncbi.nlm.nih.gov/pubmed/23325145
http://dx.doi.org/10.1371/journal.pone.0174949
http://www.ncbi.nlm.nih.gov/pubmed/28414729
http://dx.doi.org/10.1109/TNSRE.2003.821372
http://www.ncbi.nlm.nih.gov/pubmed/15068187
http://dx.doi.org/10.1093/ietisy/e90-d.7.1028
http://dx.doi.org/10.1088/1741-2560/7/2/026002
http://www.ncbi.nlm.nih.gov/pubmed/20168001

Sensors 2018, 18, 2856 14 of 14

78. DPetersen, S.E.; Fox, P.T.; Posner, M.I; Mintun, M.; Raichle, M.E. Positron emission tomographic studies of the
cortical anatomy of single-word processing. Nature 1988, 331, 585. [CrossRef] [PubMed]

79. Boostani, R.; Karimzadeh, F.; Nami, M. A comparative review on sleep stage classification methods in
patients and healthy individuals. Comput. Methods Programs Biomed. 2017, 140, 77-91. [CrossRef] [PubMed]

80. Alimardani, F.; Cho, J.H.; Boostani, R.; Hwang, H.]J. Classification of bipolar disorder and schizophrenia
using steady-state visual evoked potential based features. IEEE Access 2018, 6, 40379—-40388. [CrossRef]

® © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1038/331585a0
http://www.ncbi.nlm.nih.gov/pubmed/3277066
http://dx.doi.org/10.1016/j.cmpb.2016.12.004
http://www.ncbi.nlm.nih.gov/pubmed/28254093
http://dx.doi.org/10.1109/ACCESS.2018.2854555
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Subjects 
	EEG Measurement 
	Experimental Paradigm 
	EEG Data Analysis 

	Results 
	Alpha Power Changes during EC and EO 
	ERD/ERS Pattern Maps during MA and LC 
	Classification Performance 

	Discussion 
	References

