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COVID-19, an infectious disease caused by a novel coronavirus (SARS-CoV-2) has emerged

as global pandemic. Here, we described the changes in microbiota of upper respiratory

tract by analyzing the publically available RNA sequencing data of SARS-CoV-2-infected

ferrets. The bacterial dysbiosis due to SARS-CoV-2 was largely inversely proportional to

the dysbiosis caused by influenza-A virus. The bacterial taxa which are defined as healthy

ecostate were significantly reduced during SARS-CoV-2 infection. Altogether, this pre-

liminary study provides a new insight on the possible role of bacterial communities of

upper respiratory tract in determining the immunity, susceptibility, and mortality for

COVID-19.
During the past few decades, the world has witnessed the

change in major causes of human mortality from communi-

cable diseases to non-communicable diseases [1]. But still, the

respiratory tract infection due to viruses continues to be one

of the top five reasons for mortality [2]. These viruses

continuously undergo evolution and transmission between

different species probably due to deforestation, habitat

destruction, loss of biodiversity and global warming [3,4]. In

this 21st century, the important viral epidemics includes se-

vere acute respiratory syndrome (SARS) virus in 2002,
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influenza epidemic in 2009 and Middle East respiratory syn-

drome (MERS) virus in 2012 [5]. The whole world is currently

(2020e2021) witnessing the epidemic of a novel coronavirus

that shares maximum sequence homology with SARS virus

and termed as SARS-CoV-2 virus and the disease condition as

COVID-19 [6]. The transmission, morbidity andmortality rates

of SARS-CoV-2 virus are extremely higher and hence declared

as global pandemic by WHO. As the molecular details of this

newly evolved virus are not completely understood, different

antiviral, antimalarial and antibacterial drugs are being
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repurposed for COVID-19 [6,7]. As a result, the incidence and

mortality due to COVID-19 are dramatically increasing world-

wide. The major risk factors associated with COVID-19 mor-

tality are ageing, smoking and metabolic complications like

hypertension and diabetes [8]. The secondary bacterial in-

fections are the leading cause for mortality in other respira-

tory viral infections including influenza. The role of secondary

bacterial infections on mortality of COVID-19 patients is not

completely understood on comparison to other respiratory

viral infections [8,9].

The upper respiratory tract is a natural microbial niche in

the human body, which is largely comprised of commensal

bacterial communities and pathogenic bacteria like Staphylo-

coccus and Streptococcus [10]. These genera remains dormant

during healthy condition but microbial dysbiosis leads to

domination of these pathogens causing bacterial pneumonia.

The disturbance of upper respiratory tract microbiota by

continuous use of antibiotics lead to higher susceptibility for

viral infections in humans [11]. A recent study showed the

association of variation in nasopharyngeal microbiota with

influenza infection and vaccination [12]. A recent study

revealed the changes in gut microbiota induced by SARS-CoV-

2 is different from influenza patients [13,14]. Though

numerous efforts are being executed in understanding the

viral genome, vaccine development and host response to

SARS-CoV-2, the effect of this viral infection on microbiota of

respiratory tract is less unexplored [15,16]. This study is aimed

at analyzing the bacterial diversity of upper respiratory tract

by mining into the publically available metatranscriptomics

data generated from the SARS-CoV-2-infected ferrets.
Methods

The RNA-Seq data from the SARS-CoV-2-infected ferrets were

downloaded from NCBI-SRA database (SRP253951) [17]. The

downloaded FASTQ files were checked for quality using

fastQC program. Subsequently, to determine the microbial

taxonomy, the reads were analyzed by using Kaiju tool [18].

The output files from Kaiju were normalized to total read

counts and the percentage of abundance of microbial taxa at

different levels were calculated. All statistical analyses were

performed using the statistical softwares SPSS version 20.0

and GraphPad Prism version 6.01. (The methods are described

elaborately in the Supplementary file 1).
Results

Blanco-Melo et al. [16] reported the unique transcriptional

signature in cell lines and nasal washes of ferrets infected

with SARS-CoV-2 (strain USAeWA1/2020) and influenza A

virus (IAV; pH1N1; A/California/04/2009 strain). The nasal

washes were collected from the infected and control animals

on specific days and bulk RNA sequencing was performed by

Blanco-Melo et al. group and the raw data files were deposited

in NCBI-SRA (Accession No. SRP253951; The experimental

details were described in Fig. 1A & Supplementary Fig. 1). We

downloaded the raw FASTQ files and subjected them to bac-

terial diversity analysis by using Kaiju [17] tools (see
supplementary file 1 for methods). Kaiju tool matches

sequencing reads to the microbial pangenome comprised of

protein sequences from bacteria, virus and archaea and it is

more sensitive than 16S rRNA-based taxonomic profiling [17].

All the sequence files had 9e15% of reads mapping to micro-

bial pangenome. The unnormalized read counts matching the

microbial pangenome are provided in supplementary file 2 for

all samples.

The changes in microbiota of upper respiratory tract after

seven days was prominent during IAV than SARS-CoV-2

infection [Fig. 1B]. This was in correlation with the host tran-

scriptomics response [16], where the elicitation of cytokines

and other immune responses were higher in IAV treatment

and muted during SARS-CoV-2 treatment. As previously re-

ported [11,12], we observed proliferation of betaproteobacteria

particularly Pseudomonadales during IAV infection. Though no

significant changes were observed in most bacterial phyla

during SARS-CoV-2 infection, significant reduction in Bacter-

oides, Chlamydiae and Actinobacteria was noted [Fig. 1B]. The

composition of bacterial orders exhibited an inverse correla-

tion between IAV and SAR-CoV-2 infection [Fig. 1C and D].

Among the proteobacterial orders, the level of only Bur-

kholderiales were significantly increased during SARS-CoV-2

infection [Fig. 1C].

While other bacterial orders like Lactobacillales, Chlamy-

diales and Flavobacteriales were significantly reduced during

SAR-CoV-2 [Fig. 1D]. Subsequently, analyses were performed

to understand the progressive changes in the level of bacterial

orders after SARS-CoV-2 infection from day 1 to day 14. On

contrast to blooming of Pseudomonadales during IAV infection,

a significant fall in Pseudomonadales was observed after seven

days of SARS-CoV-2 infection [Fig. 1D]. The other bacterial

orders that significantly reduced as the days of infection

increased included Lactobacillales, Flavobacteriales, Bacillales,

Clamydiales, Corynebacteriales, Chromatiales. The reduced or-

ders constituted largely the commensal bacteria including

Corynebacterium and Lactobacillus. It is important to note that

Bacillales that includes bacterial genera Streptococcus and

Staphylococcus were decreased during SARS-CoV-2 but in

contrast were increased during IAV infection leading to bac-

terial pneumonia [9e13].
Discussion

A drastic fall in the level of commensal bacteria during SARS-

CoV-2 indicates the loss of beneficial bacteria that co-

ordinate lungegut axis and play a major role in pulmonary

health and diseases. We have reported the changes in

microbiota as the days of infection increases. The viral load

in nasal washes showed a progressive depletion from day 7

onwards and reached zero on day 14 [17] but still the nasal

microbiota disturbed persists. This indicates that the mi-

crobial dysbiosis caused by viral infection may continue to

play a key role during post-COVID recovery on the pulmo-

nary health.

It is important to note that the abundant bacterial genera,

which are defined as healthy ecostate is lost during both viral

infections [Fig. 1]. The bacteria comprising the healthy ecos-

tate plays a major role in boosting the immunity and also
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Fig. 1 Effect of SARS-CoV-2 and influenza A virus infection on the upper respiratory tract microbiota of ferrets. (A) Workflow of

selection of datasets and analysis (B) Abundance of microbial groups and bacterial phyla in the nasal washes on day seven post-

infection. (C) Abundance of bacterial orders belonging to proteobacterial phylum on day seven post-infection. (D) Abundance of

bacterial orders belonging to other phyla on day seven post-infection. (E). Bacterial orders displaying inverse correlation with

the days of SARS-CoV-2 post-infection. (F). Bacterial orders displaying direct correlation with the days of SARS-CoV-2 post-

infection. Horizontal lines represent (CeF) represent mean; error bars represent standard deviation. Asterisks (C&D) represent

statistical significance by one-way ANOVA with Tukey post-hoc analysis. ****p < 0.001 ***p < 0.001, **p < 0.01, *p < 0.05, ns - no

significance. The blue, red and green asterisks (C& D) represent comparison between Ctrl vs IFA, Ctrl vs CoV2 and IFA vs CoV2

respectively. The experiments were performedwith 8 replicates. Abbreviations used: Ctrl: Control; IAV: Influenza A virus; CoV2:

SARS-CoV-2 virus.

b i om e d i c a l j o u r n a l 4 4 ( 2 0 2 1 ) 5 0 4e5 0 7506
produces anti-pathogenic metabolites and prevents the dis-

ease incidence and mortality during viral infections [19,20]. In

an ecological study among forest frogs (Rana temporaria), a

community of frogs with a specific skin microbiome devel-

oped resistance to viral infections during an epidemic [21].

Thus the commensal bacteria seem to play a vital role in de-

fense against viral infections but the molecular mechanisms

are not understood.

This study has some limitations including the non-

availability of health status and clinical outcomes of ferrets
infected with SARS-CoV-2 Altogether, despite of these limi-

tations this preliminary bioinformatics investigation showed

the changes in microbiota of upper respiratory tract during

SARS-CoV-2 infection. The microbiota changes are inversely

proportional to the changes induced by IAV but loss of healthy

ecostate is common during both infections. At present,

studies are initiated to investigate themicrobiota of COVID-19

patients at different stages to explore their role in immunity,

susceptibility to infection, response to repurposed drugs and

mortality. Based on this knowledge, novel therapeutics for
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COVID-19 can be framed by targeting the abundant bacteria

via specific antibiotics or bacteriophages and recovery of

healthy ecostate via nasal administration of probiotics for-

mulations made of commensal and beneficial bacteria.
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