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Trainable joint bilateral filters 
for enhanced prediction stability 
in low‑dose CT
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Stefan Ploner, Noah Maul, Laura Pfaff, Yixing Huang & Andreas Maier

Low‑dose computed tomography (CT) denoising algorithms aim to enable reduced patient dose in 
routine CT acquisitions while maintaining high image quality. Recently, deep learning (DL)‑based 
methods were introduced, outperforming conventional denoising algorithms on this task due to their 
high model capacity. However, for the transition of DL‑based denoising to clinical practice, these data‑
driven approaches must generalize robustly beyond the seen training data. We, therefore, propose a 
hybrid denoising approach consisting of a set of trainable joint bilateral filters (JBFs) combined with 
a convolutional DL‑based denoising network to predict the guidance image. Our proposed denoising 
pipeline combines the high model capacity enabled by DL‑based feature extraction with the reliability 
of the conventional JBF. The pipeline’s ability to generalize is demonstrated by training on abdomen 
CT scans without metal implants and testing on abdomen scans with metal implants as well as on 
head CT data. When embedding RED‑CNN/QAE, two well‑established DL‑based denoisers in our 
pipeline, the denoising performance is improved by 10%/82% (RMSE) and 3%/81% (PSNR) in regions 
containing metal and by 6%/78% (RMSE) and 2%/4% (PSNR) on head CT data, compared to the 
respective vanilla model. Concluding, the proposed trainable JBFs limit the error bound of deep neural 
networks to facilitate the applicability of DL‑based denoisers in low‑dose CT pipelines.

Minimizing patient dose in computed tomography (CT) is necessary to avoid radiation-related  diseases1, espe-
cially with the number of conducted diagnostic CT scans increasing every  year2. Low-dose CT acquisitions 
reduce patient  dose3,4 but contain higher noise levels in the measured  data5,6. To enhance the image quality 
of low-dose CT acquisitions, image-based denoising approaches have been proposed, which aim to preserve 
clinically relevant features compromised with noise. Classical approaches are based on physically motivated 
conventional filters, considering the inherent properties of the image  features7–11. Although such filters produce 
reliable results through a clear algorithmic formulation, their performance is restricted by a limited capabil-
ity to extract complex features. In addition, conventional filters often require hyperparameters that have to be 
tuned by hand. Therefore, deep learning (DL)-based denoising methods gained interest due to their flexibility, 
strong performance, and data-driven  optimization12–17. However, deep neural networks usually do not robustly 
generalize beyond their finite training data distribution, which so far limits clinical applications of DL-based 
denoising for low-dose  CT18,19.

Previously, Maier et al. proved that including physical knowledge in terms of known operators in neural 
networks reduces the absolute error bound of the  model20–22. Consequently, different image processing pipelines 
were proposed, employing physical assumptions about noise characteristics to leverage prediction reliability of 
DL-based methods in the context of image  denoising23,24. The joint bilateral filter (JBF) is a conventional denois-
ing filter that allows edge-preserving denoising while considering additional information in terms of a guidance 
image during its filter operation. Imitating the JBF with a shallow convolutional network led to a reduction of 
trainable parameters in the  JBFnet23 and the MJBF  architecture25. Although both network architectures are 
inspired by the JBF operation, they both learn filter operations through fully convolutional neural networks 
with a relatively large number of free parameters compared to the JBF. Therefore, both architectures can learn 
any possible filter kernels and are not enforced to perform the well-know JBF operation, which raises questions 
on data integrity and interpretability likewise to other DL  methods24. A different approach employs a custom 
bilateral filter approximation built from neural network building blocks that can be  optimized26, but it does not 
allow integration of additional learned information into the filter process. Other works presented methods to find 
optimal  filter27 or  training28 hyperparameters by predicting them through external neural networks. However, 
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such approaches do not allow for direct integration into DL models as they can not compute gradients toward 
those hyperparameters.

In our previous work, we presented a trainable bilateral filter with competitive denoising performance that 
can be included in a differentiable pipeline and optimized in a data-driven  fashion29. However, the prediction 
of bilateral filter layers is solely dependent on three learned spatial parameters and one intensity  parameter9. 
Therefore, the bilateral filter operation is conceptually different from the joint bilateral filter algorithm, as JBFs 
allow considering additional information in terms of a guidance image in their denoising  algorithm30. In this 
work, we extend our research on bilateral filtering by proposing a fully differentiable, trainable joint bilateral filter 
that allows denoising using a learned guidance image which broadens its applicability. Our filter layer derives 
analytical gradients toward the filter input, the image guide, and all filter parameters to achieve differentiability 
and enable data-driven optimization. Guidance images are estimated using two well-established denoising algo-
rithms: RED-CNN12, an encoder–decoder architecture achieving competitive performance in recent  works31,32, 
and Quadratic Autoencoder (QAE)13, employing quadratic neurons. Our proposed hybrid filter model bridges 
the gap between deep neural networks’ high model capacities and the robustness of conventional denoising filters 
due to the well-defined, restricted influence of the learned guide.

Contributions. Our contributions are threefold. First, we propose a GPU-based, trainable JBF based on an 
analytical gradient that can be included in any differentiable pipeline. To the best of our knowledge a directly 
trainable JBF was never presented before. Second, we introduce a hybrid denoising pipeline combining the flex-
ibility of deep neural networks with the robustness of the trainable JBF. Third, we demonstrate the robustness of 
our model on abdomen CT scans containing metal, with metal not being present in the training data distribu-
tion and on out-of-domain head CT scans. Our hybrid JBF-based denoising setting improves the prediction 
reliability of existing DL-based models with limited computational overhead.

Methods
Artificial neural networks are generally trained via gradient descent optimization by minimizing a loss metric L 
calculated from network predictions to fulfill a desired  task33. This requires calculating the derivative of the loss 
L with respect to each trainable model parameter to iteratively update the network during training.

In this section, the analytical gradient of the proposed trainable JBF layer with respect to filter input, guid-
ance image, and filter parameters is derived as the algorithmic contribution of our work. Figure 1 illustrates the 
general working principle of the denoising layer. In the forward filter operation an input image is convolved with 
two Gaussian kernels, namely one spatial and one range kernel. The spatial kernel averages pixels within the 
distance of the filter kernel like a conventional Gaussian filter that smooths the image. An additional, so-called 
range kernel weighs the influence of pixels from the neighborhood dependent on their intensity difference to 
the filtered pixel to prevent blurring of edges. The JBF derives its range kernel on an external guidance image 
which allows employing additional information during the filter operation.

In the following, bold letters are used to indicate vectors. According to Petschnigg et al.30 the JBF operation 
is defined as

Figure 1.  Illustration of the proposed trainable joint bilateral filter layer. In the forward pass (black arrows), the 
input Xi is filtered using parameters σγ (γ ∈ {x, y, z, r}) and the guidance image Zi to predict the denoised image 
Ŷ  . The model’s loss is indicated as L. Analytical derivatives are calculated in the backward pass (red arrows) 
toward filter input, guide, and parameters.
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and the normalizing factor wk as

with the denoised prediction Ŷ  indexed by k ∈ N , the noisy input image X in the voxel neighborhood n ∈ N  
around k, and a guidance image Z . Guidance images should provide additional information to the filter opera-
tion and can be, e.g., additional images paired with the filter input or learned predictions from a neural network 
as later introduced in this work. The Gaussian intensity range kernel

is derived from intensity differences on the guidance image Z and enforces edge sensitivity of the filtering 
operation. A second, spatial filter kernel Gσs weights voxels according to their spatial distance derived from the 
positions pk ∈ N

d and pn ∈ N
d with d = 3 for three-dimensional filtering

DL pipelines require gradient calculation of the loss function L with respect to each trainable parameter to enable 
data-driven optimization. We can calculate the gradient for our joint bilateral filter layer by using the chain rule

with the four kernel widths σγ representing the only trainable weights of the proposed layer when filtering in 
three dimensions (γ ∈ {x, y, z, r}) . The derivative of the loss function with respect to the filter prediction ∂L

∂Ŷ
 is 

provided by the backpropagation of the loss through differentiable operations applied on the JBF layer output, 
e.g., subsequent convolutional layers or the loss function itself. The term ∂Ŷk

∂σγ
 can be written using the definition 

of the joint bilateral filter algorithm from Eq. (1) together with the product and chain rule of differentiation

the partial derivatives

and the Gaussian terms

In addition, the derivative of the loss with respect to each input voxel Xi of the joint bilateral filter yields

using the definition of the JBF from Eq. (1). This gradient calculation to the filter input is required to allow 
including the filter as a trainable layer into a differentiable pipeline. The derivative of L with respect to each voxel 
of the guidance image Zi can be calculated as
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∂Ŷ

∂σγ
=

∑

k

∂L

∂Ŷk
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∂Ŷk

∂Ŷk

∂Xi

=
∑

k

∂L

∂Ŷk
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where the following two cases must be distinguished: Case 1 derives gradients to arbitrary voxels located in the 
filter neighborhood ( k  = i ) of the guidance image. In contrast, Case 2 defines the gradient to the center voxel 
( k = i ) of the respective filter window.

Case 1: ( k  = i). 

Case 2: ( k = i). 

We calculate the analytical gradients in the backward pass of a fully trainable JBF using the CUDA binding of the 
PyTorch deep learning  framework34 to leverage computational performance. The processing time of one 512× 512 
image using 5× 5/11× 11 pixel kernel windows is around 1.8ms/8.0ms on the GPU and 69ms/350ms on the 
CPU. In comparison, torch.nn.Conv2d layers (PyTorch) approximately require 0.1ms/0.2ms (GPU) and 8ms
/20ms (CPU) for processing the single channel image. For both layers, gradient calculations have comparable run 
times as their forward passes. All run times were estimated by averaging 50 repeated forward/backward passes 
through the respective layers using a NVIDIA Quadro RTX 4000 GPU. Please note that run times can strongly 
vary depending on the used hardware.

The filter window size of the JBF is chosen dynamically dependent on the spatial kernel sizes as 5 · σs . This 
ensures that > 98% of the Gaussian filter kernel mass is contained by the filter window which turned out to be 
a reasonable trade-off between accuracy and computational complexity of the algorithm.

Our filter layer is publicly available at https:// github. com/ faebs tn96/ train able- joint- bilat eral- filter- source and 
can be installed via the well-known Python Package Index (PyPI) as plug-and-play PyTorch layer. In addition, 
our code repository contains example scripts and a test script that compares the implementation of the analytical 
gradients with numerical gradient approximations using the torch.autograd.gradcheck function to make sure the 
filter derivative is correctly implemented.

Experimental setup
Denoising pipeline. Our denoising pipeline, illustrated in Fig. 2, is built on three consecutive trainable JBF 
layers. The iterative composition of filtering blocks is inspired by the design of the deep convolutional architec-
ture  JBFnet23 and our previous experimental findings on using multiple stacked bilateral  filters29 which improved 
performance compared to employing only a single denoising step. The three trainable JBFs add in total twelve 
independently trainable parameters to the denoising model. The forward pass of each filter layer is calculated 
as written in Eq. (1). A guidance image is predicted from a deep convolutional network and used to derive the 
weighting of the intensity range kernel Gσr in each JBF. Multiple network configurations are presented in the fol-
lowing, investigating the influence of JBF layers on the denoised prediction.

Experiments. Our experiments are particularly designed to investigate the prediction robustness of hybrid 
JBF + DL-based denoising models compared to the respective vanilla DL model. We perform experiments with 
two different well-established low-dose CT denoising architectures predicting the guidance image: RED-CNN12 
and  QAE13. In all our experiments, we train the two reference models independently as described in their works 
until full convergence of the validation loss, occurring after up to 300 epochs. Subsequently, we place the models 
in our denoising pipeline and optimize the JBFs for additional 200 epochs until convergence of the validation 
loss. Both trained vanilla deep neural networks are used as performance reference. We use the mean squared 
error loss and two separate Adam optimizers for σr ( lr = 1 · 10−2 ) and σs ( lr = 5 · 10−4 ) during training as both 
sets of parameters define filter kernels that act on independent scales. However, additional experiment where 
we used only a single Adam optimizer converged to very similar sets of filter parameters within comparable 
numbers of optimization steps. Therefore, we conclude that the network convergence is not overly sensitive to 
learning rate configurations when using an Adam optimizer.

Data. All used abdomen and head CT scans are from the public TCIA Low Dose CT Image and Projection data 
set (Version 4)35, containing paired low-dose (25% dose) and high-dose CT volumes. The goal of our experi-
ment is to quantitatively evaluate the robustness of the introduced denoising models and compare them with 
the vanilla DL-based denoising models RED-CNN and QAE. Therefore, we manually split the abdomen data 
into two domains. First, patients without metal pieces and second reconstructions containing pieces of metal 
like implants or catheters that appear as bright regions due to their strong x-ray absorption. Only data from the 
first domain not containing metal is used for training (21 scans) and validation (two scans). Subsequently, we 
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test our models on the previously unseen metal domain scans (24 scans) to evaluate how the different architec-
tures can handle examples that are insufficiently represented by the training data domain. As the metal pieces 
are usually located in small sub-volumes of the reconstructions, we additionally define 17 three-dimensional 
regions of interest (ROIs) that are evaluated separately to get more expressive results on the sensitivity to the 
out-of-domain features. The coordinates of all 17 ROIs are provided in the supplementary material together with 
exemplary abdomen slices containing the respective ROIs to facilitate reproducibility. Additionally, we test our 
models on data from a separate domain, namely head CT scans (20 scans), to investigate prediction robustness 
on a different anatomy. Figure 3 shows example slices from the training and testing data sets with a highlighted 
abdomen ROI containing metal parts. Note that all scans are directly taken from the public data set without 
further modification such that they well represent clinical routine head and abdomen CT acquisitions of patients 
with and without metal  implants35.

Results
Quantitative results. We present quantitative denoising results on the entire abdomen test data set and 
only on the abdomen ROIs containing metal pieces in Table 1. Performance metrics for the investigated out-
of-domain head CT data set are listed in Table 2. The three established image quality metrics root-mean-square 
error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM)36 are calculated to compare 

Figure 2.  The investigated JBF-based denoising pipeline consists of three stacked trainable JBF layers to 
iteratively remove noise from the low-dose input reconstruction. Pre-trained RED-CNN and QAE models are 
employed as DL-based denoiser to predict guidance images. The model is trained supervised on the training 
domain and tested on CT data from other domains to investigate robustness properties of the pipeline. Indices 
(ν) with ν ∈ {1, 2, 3} name the individual trainable JBF layers.

Figure 3.  Exemplary slices from the training (left, abdomen without metal) and two testing (middle, right) 
data sets. The abdomen test patients contain regions with metal implants like the one highlighted in red. The 
reconstruction window is [−150, 500]HU.
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model prediction with their respective high-dose target reconstruction. RMSE and PSNR particularly assess 
deviations from the target image intensities, whereas SSIM aims to imitate human perception to compare image 
content. We found that all performance differences between vanilla and respective JBF-based model in Table 1 
are significant based on a Wilcoxon signed-rank  test37 on a p-value p < 0.005 . The Wilcoxon signed-rank test 
is particularly suited to test the paired model predictions at hand without presuming an underlying statistical 
model.

Whereas the hybrid JBF layer-based pipelines perform comparably to the vanilla deep denoising models over 
the entire abdomen test data, an explicit performance improvement is recognized on the 17 abdomen ROIs as 
well as on the head CT scans on all three investigated image quality metrics. Both JBF-based pipelines decrease 
the RMSE by 10%/82% and improve the PSNR and SSIM by 3%/81% and 0.1%/30% around the out-of-training-
domain metal features compared to the vanilla RED-CNN and QAE respectively. The denoising performance on 
the head CT data is improved by 6%/78% (RMSE), 2%/4% (PSNR), and 0.1%/0.1% (SSIM).

Qualitative results. Visual results on one ROI and a head CT slice are displayed in Fig. 4. Provided dif-
ference images between model prediction and high-dose target particularly highlight disturbed features and 
erroneous predictions. Intensity distortions in close proximity to metal implants and in the skull region can be 
recognized for the RED-CNN, which get almost entirely removed using the RED-CNN prediction as guidance 
image in a JBF-based setting. Here, in particular the intensity shifts visible as shadows of the skull in the differ-
ence images of the vanilla model prediction are fully restored by the proposed hybrid JBF-based model.

The QAE predicts strong artifacts that are visible in the abdomen intensity images and difference images 
surrounding metal implants. Using such predictions as an image guide in a JBF-based pipeline produces results 
that visually look much closer to the high-dose target where features like the shape of metal pieces or the adja-
cent anatomy are visible. Further, intensity distortions in QAE predictions on the head CT data set are removed 
using the combined QAE+JBFs filtering approach. Only regions around the dental crowns with heavy metal 
reconstruction artifacts remain disturbed.

Discussion
Although one could simply add abdomen scans containing metal pieces or head CT data to the training data set 
to improve denoising performance, our experiment is particularly designed to evaluate and quantify robustness to 
real CT data that is underrepresented in the training data. Our experiment, therefore, mimics the present clinical 
scenario where a model is only trained on a limited number of scans but must also handle differing anatomies 
or scanning parameters. The denoising performance of a JBF depends on an optimal intensity range kernel Gσr 
to avoid blurring edges. Here, the proposed pipeline can benefit from the guidance image that is predicted by a 
deep model that is capable of employing global image features to facilitate extracting sharp edges needed for the 
filter kernel computation. In case of prediction failures like in regions around metal implants or at the skull, the 
intensity range kernel contribution is either over- or underestimated. This results in over- or under-smoothing 
of the respective image region but is always based on the local content of the input image. Therefore, the intensity 
range kernel design of Gaussian shape prevents the output from large prediction errors by design.

Table 1.  Quantitative denoising results on the full abdomen scans containing metal implants as well as on 17 
ROIs that contain metal parts. The metrics are averaged over all test patients or all test ROIs and provided as 
mean± std . The respectively better performing network modification is highlighted in bold.

Full metal data Metal ROIs

RMSE [HU] ↓ PSNR ↑ SSIM ↑ RMSE [HU] ↓ PSNR ↑ SSIM ↑

Low-dose CT 18.6 ± 6.1 41.51 ± 2.13 0.9512 ± 0.031 26.7 ± 15.9 38.98 ± 4.28 0.9594 ± 0.030

RED-CNN12 12.0 ± 3.9 45.38 ± 1.93 0.9816 ± 0.012 24.6 ± 13.1 39.68 ± 3.75 0.9788 ± 0.015

RED+JBFs 12.7 ± 4.5 45.01 ± 2.02 0.9797 ± 0.016 22.1 ± 14.2 40.82 ± 4.27 0.9797 ± 0.013

QAE13 44.7 ± 36.1 43.17 ± 4.49 0.9811 ± 0.014 837.8 ± 478.3 14.88 ± 10.92 0.6967 ± 0.232

QAE+JBFs 14.5 ± 5.4 44.61 ± 2.23 0.9827 ± 0.010 150.9 ± 87.5 26.99 ± 7.19 0.9075 ± 0.062

Table 2.  Quantitative denoising results on the full head CT data set. The metrics are averaged over all test 
patients and provided as mean± std . The respectively better performing network modification is highlighted 
in bold.

Head CT data

RMSE [HU] ↓ PSNR ↑ SSIM ↑

Low-dose CT 5.3 ± 1.1 38.36 ± 1.58 0.9338 ± 0.017

RED-CNN12 5.1 ± 0.6 38.42 ± 0.88 0.9646 ± 0.006

RED+JBFs 4.8 ± 0.6 39.01 ± 0.98 0.9662 ± 0.006

QAE13 44.8 ± 40.9 37.30 ± 2.58 0.9679 ± 0.007

QAE+JBFs 9.8 ± 6.4 38.97 ± 1.77 0.9695 ± 0.007
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In our conducted experiments, pre-trained denoising networks predict the guidance images that are input to 
the JBF layers. We performed additional experiments, training the JBFs together with the denoising networks in 
a combined end-to-end setting. Although this setting enhanced performance within the training data domain, 
we did not recognize explicit performance improvements in terms of robustness on the investigated out-of-
training-domain data sets. Eventually, we did not design our experiments to answer the question how a guidance 
image that is optimized for JBFs is handled in the training data domain but we particularly want to investigate 
how JBFs handle the displayed artifacts predicted by the denoising networks as the primary goal of our study.

JBF-based pipelines almost entirely prevent the predictions from artifacts introduced by the DL-based models 
but the combined QAE+JBFs predictions still contain some slight distortions around the spine metal implant 
in Fig. 4. These results visualize that the JBF, although enforcing proximity to the noisy input, is still dependent 
on a reasonable guidance image. This dependence is desired as learned information from the guidance image 
should be employed during filtering. Our experiments show that mainly artifacts where image content is entirely 
removed in large areas of the guidance image are difficult to restore through JBFs. Please note that, the shown 
artifacts introduced by the QAE network can be regarded as worst-case in a clinical pipeline and are still satis-
factorily handled by the JBFs considering the original, unfiltered QAE predictions.

DL frameworks like PyTorch34 allow an automatic calculation of gradients in their operators. Therefore, one 
could think of implementing a JBF directly from PyTorch tensors instead of using analytical gradients to make its 

Figure 4.  Qualitative denoising results on the ROI highlighted in Fig. 3 and on a head CT slice. Difference 
images are calculated between model prediction and high-dose (HD) target and are shown in the window 
[−50, 50]HU for abdomen data and [−100, 100]HU for head data. The reconstruction window is 
[−150, 500]HU . Our hybrid models visually outperform the respective vanilla deep models.
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parameters trainable. Although this is possible, training such a filter would require expensive Python loops over 
the training batches and kernel windows which would accumulate huge computational graphs for the gradient 
calculation. In practice, training such a model with reasonable image and batch sizes, therefore, is infeasible in 
terms of computational time and GPU memory. The analytical filter derivative presented in this work greatly 
simplifies the required computations to enable data-driven optimization and limit the computational overhead 
through adding JBF layers as shown by comparing run times with convolutional layers. Eventually, we believe 
that our open-source filter layer can be useful in further hybrid applications as a known denoising operator that 
can be optimized in a data-driven manner.

Conclusion
In this work, we presented a trainable JBF layer that can be incorporated into any deep model. We propose a 
hybrid denosing pipeline using these JBF layers and pre-trained deep denoising neural networks. The latter can 
produce faulty predictions when tested on data that is insufficiently represented in the training domain. In our 
experiments, we show that JBFs prevent DL-based models from severe prediction failures although the JBFs 
make use of distorted guidance images predicted from the neural networks. These results are explained by the 
clear algorithmic design of the JBF that limits the influence of the guidance image to the contribution of the 
intensity range filter kernel. We think that JBF layers can combine the flexibility of deep neural networks with 
the prediction reliability of conventional methods to leverage the power of deep models in clinical low-dose CT 
applications.

Data availibility
The data sets analysed during the current study are publicly available in the TCIA Low Dose CT Image and Pro-
jection Data repository (Version 4)35, https:// doi. org/ 10. 7937/ 9NPB- 2637. Coordinates and exemplary slices of 
all analyzed abdomen ROIs are included in the supplementary material.

Code availability
The implementation of our open-source CUDA-accelerated trainable bilateral filter layer (PyTorch) together 
with example scripts and tests is publicly available at https:// github. com/ faebs tn96/ train able- joint- bilat 
eral- filter- source.
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