
fnins-15-679941 July 31, 2021 Time: 12:43 # 1

ORIGINAL RESEARCH
published: 05 August 2021

doi: 10.3389/fnins.2021.679941

Edited by:
Jamie Near,

McGill University, Canada

Reviewed by:
Zhenyu Shu,

Zhejiang Provincial People’s Hospital,
China

Qi Feng,
Hangzhou First People’s Hospital,

China
David Rudko,

McGill University, Canada

*Correspondence:
Philippe Lambin

philippe.lambin@maastrichtuniversity.nl

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 12 March 2021
Accepted: 14 June 2021

Published: 05 August 2021

Citation:
Lavrova E, Lommers E,

Woodruff HC, Chatterjee A, Maquet P,
Salmon E, Lambin P and Phillips C

(2021) Exploratory Radiomic Analysis
of Conventional vs. Quantitative Brain

MRI: Toward Automatic Diagnosis
of Early Multiple Sclerosis.

Front. Neurosci. 15:679941.
doi: 10.3389/fnins.2021.679941

Exploratory Radiomic Analysis of
Conventional vs. Quantitative Brain
MRI: Toward Automatic Diagnosis of
Early Multiple Sclerosis
Elizaveta Lavrova1,2†, Emilie Lommers2,3†, Henry C. Woodruff1,4†, Avishek Chatterjee1,
Pierre Maquet2,3, Eric Salmon2, Philippe Lambin1,4*† and Christophe Phillips2,5†

1 The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht,
Netherlands, 2 GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium, 3 Clinical
Neuroimmunology Unit, Neurology Department, CHU Liège, Liège, Belgium, 4 Department of Radiology and Nuclear
Imaging, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht,
Netherlands, 5 GIGA In Silico Medicine, University of Liège, Liège, Belgium

Conventional magnetic resonance imaging (cMRI) is poorly sensitive to pathological
changes related to multiple sclerosis (MS) in normal-appearing white matter (NAWM) and
gray matter (GM), with the added difficulty of not being very reproducible. Quantitative
MRI (qMRI), on the other hand, attempts to represent the physical properties of tissues,
making it an ideal candidate for quantitative medical image analysis or radiomics. We
therefore hypothesized that qMRI-based radiomic features have added diagnostic value
in MS compared to cMRI. This study investigated the ability of cMRI (T1w) and qMRI
features extracted from white matter (WM), NAWM, and GM to distinguish between MS
patients (MSP) and healthy control subjects (HCS). We developed exploratory radiomic
classification models on a dataset comprising 36 MSP and 36 HCS recruited in CHU
Liege, Belgium, acquired with cMRI and qMRI. For each image type and region of
interest, qMRI radiomic models for MS diagnosis were developed on a training subset
and validated on a testing subset. Radiomic models based on cMRI were developed
on the entire training dataset and externally validated on open-source datasets with
167 HCS and 10 MSP. Ranked by region of interest, the best diagnostic performance
was achieved in the whole WM. Here the model based on magnetization transfer
imaging (a type of qMRI) features yielded a median area under the receiver operating
characteristic curve (AUC) of 1.00 in the testing sub-cohort. Ranked by image type,
the best performance was achieved by the magnetization transfer models, with median
AUCs of 0.79 (0.69–0.90, 90% CI) in NAWM and 0.81 (0.71–0.90) in GM. The external
validation of the T1w models yielded an AUC of 0.78 (0.47–1.00) in the whole WM,
demonstrating a large 95% CI and a low sensitivity of 0.30 (0.10–0.70). This exploratory
study indicates that qMRI radiomics could provide efficient diagnostic information using
NAWM and GM analysis in MSP. T1w radiomics could be useful for a fast and automated
check of conventional MRI for WM abnormalities once acquisition and reconstruction
heterogeneities have been overcome. Further prospective validation is needed, involving
more data for better interpretation and generalization of the results.
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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory disorder of the
central nervous system, responsible for focal and diffuse damages,
including both demyelination and neurodegeneration, and often
leading to physical and mental disability (Lassmann, 2018; Chen
et al., 2019). In 2016, there were more than two million prevalent
cases globally (Wallin et al., 2019). In Europe, the overall mean
cost per patient was more than €50K (adjusted to 2015 purchasing
power parity) in a severe disease (Kobelt et al., 2017).

Early diagnosis in MS is challenging because the pathology
mechanisms are not yet completely understood, and disease
biomarker discovery is still ongoing. The McDonald criteria
is currently used for diagnosis (Thompson et al., 2018). It
assimilates information about clinical relapses and focal white
matter (WM) lesions (plaques) visualized with conventional
magnetic resonance imaging (cMRI) and cerebrospinal fluid
(CSF) analysis (Trip and Miller, 2005; Kaunzner and Gauthier,
2017; Oh et al., 2018; Thompson et al., 2018). If the patient
does not meet the diagnostic criteria, the diagnosis of MS is
provisionally not retained. Although cMRI is playing a valuable
role in routine clinical practice, it merely captures a very small
proportion of MS-related pathological processes (Zivadinov and
Leist, 2005; Filippi et al., 2019). It is particularly not sensitive
to detect and track diffuse pathological changes occurring both
in the normal appearing white matter (NAWM) and gray
matter (GM). These changes appear in the early stages of
the disease and better correlate with clinical outcomes than
only the WM focal lesion load (Griffin et al., 2002; Bonnier
et al., 2014; Yoo et al., 2018; Davda et al., 2019; Treaba
et al., 2019). Additionally, routine cMRI voxel intensities are
expressed in arbitrary units, which vary based on a large number
of factors, including the patient being examined, equipment,
and protocol being used. This makes MRI analysis strongly
dependent on the expertise of the medical specialist and hinders
data reproducibility and comparison in follow-up and cross-
sectional studies. Therefore, there is an unmet clinical need for
the development and automated detection of quantitative and
objective early MS biomarkers.

Quantitative MRI (qMRI) potentially overcomes these
limitations by quantifying the physical micro-structural
properties of brain tissues in standardized units. Commonly,
some of the following parameters are estimated: longitudinal and
effective transverse relaxation rates (R1 and R2∗, respectively)
or times (T1 and T2∗, respectively), proton density (PD),
magnetization transfer (MT) saturation, and a number of
diffusion MRI (dMRI) metrics. Values in qMRI maps are linked
to the physical properties of biological tissues, such as axonal
myelination (MT, R1, R2∗, T1, and dMRI), iron accumulation
(R2∗ and T2∗), and free water proportion (PD) (Weiskopf et al.,
2013; Weiskopf et al., 2015; Tabelow et al., 2019). It has been
shown that qMRI data are fairly reproducible between different
scanners and attractive for multi-center studies (Gracien et al.,
2020). Current MS research compares the qMRI properties of
brain between healthy control subjects (HCS) and MS patients
(MSP) (Hagiwara et al., 2017a; Reitz et al., 2017; Andica et al.,
2018; Yoo et al., 2018; Lommers et al., 2019; Saccenti et al.,

2019). It has been shown that, with specific qMRI sequences,
more MS-related damages can be detected compared with
cMRI using similar acquisition times (Hagiwara et al., 2017b).
Furthermore, it has been shown that qMRI reveals pathological
GM alterations (Lommers et al., 2021) and early MS-related GM
changes (Gracien et al., 2016).

The discovery of quantitative imaging biomarker is currently
experiencing a large increase in research interest, and radiomics
is rapidly emerging as a major tool in radiology. Radiomics is
a high-throughput imaging data quantification approach aimed
to calculate the quantitative descriptors of medical images to
characterize the underlying biology and establish a correlation
with clinical endpoints (Lambin et al., 2012, 2017a; Rogers
et al., 2020). Radiomics has shown promise in personalized
medicine for cancer treatment (Coroller et al., 2015; Prasanna
et al., 2017; Lambin et al., 2017b; van Timmeren et al., 2017)
and is already applied in neurology to predict epilepsy in
patients with low-grade gliomas (Liu et al., 2018), to distinguish
between MS and neuromyelitis optica spectrum disorders on
spine MRI (Liu et al., 2019; Ma et al., 2019), and to differentiate
Alzheimer’s disease from mild cognitive impairment on MRI
and positron emission tomography (Feng et al., 2018; Li et al.,
2019). The standard pipeline for radiomic analysis is presented
in Figure 1.

Within the present study, we hypothesized that cMRI- and
qMRI-based radiomic models have a diagnostic value in MS,
while qMRI-based features have an advantage in the detection
of diffuse damages. The objective of the study was to investigate
the ability of radiomic features found in WM, NAWM, and GM,
extracted from cMRI and qMRI maps, to distinguish between
HCS and MSP. Radiomic classification models were developed
and tested, and cMRI models were validated on external publicly
available datasets.

MATERIALS AND METHODS

Study Design
This study was performed on three datasets: dataset 1 (DS1)
contains both cMRI (T1w and FLAIR) and four types of qMRI
maps (PD, MT, R1, and R2∗) of both MSP and HCS, dataset
2 (DS2) contains cMRI (T1W) of HCS, and dataset 3 (DS3)
contains the cMRI of MSP (T1w and FLAIR) (see Table 1).
DS2 and DS3 were combined into one validation dataset (DSV)
using data selection and additional pre-processing to minimize
any mismatch with DS1 regarding demographics and image
acquisition parameters. For each participant, the same brain
tissue segmentation method was applied. DS1 was randomly
split and used to train and test multi-channel qMRI models
as well as used for training of cMRI models, while DSV was
used to validate the cMRI models. The observations from test
subsets were kept apart from those of train subsets and were
used only to test the models. For each participant, radiomic
features were independently extracted from whole WM, NAWM,
and GM regions from all available image types. For MSP, WM
volume included combined NAWM and focal WM lesions. Since
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FIGURE 1 | Radiomics pipeline: (A) medical imaging and segmentation, (B) feature extraction, (C) feature selection, and (D) modeling.

TABLE 1 | Dataset summary details.

Dataset 1 Dataset 2 Dataset 3

Dataset Private CHU, Liege CC-359 MICCAI 2016 MSSEG challenge
(training subset)

Participants MSP (15 relapsing–remitting, 21 progressive),
HCS (36)

HCS (359) MSP (15)

Age, µ ± σ (years) 45.8 ± 12.1 52.7 ± 7.3 40.5 ± 10.8

Gender, M/F 0.76 0.96 1.00

Image types T1w, PD, MT, R1, R2*, FLAIR T1w T1w, FLAIR

Sites CHU (Liege, Belgium); GIGA-CRC in vivo
imaging, University of Liège (Liege, Belgium)

Campinas (Sao Paulo, Brazil); Calgary (Alberta,
Canada)

CHU Rennes (Rennes, France); CHU
Lyon (Lyon, France)

Equipment 3 T Siemens Magnetom Allegra (37); 3 T
Siemens Magnetom Prisma (35)

3 T and 1.5 T Siemens (120), Philips (119), GE
Healthcare (120) MRI scanners

3 T Siemens Magnetom Verio (5); 1.5 T
Siemens Magnetom Aera (5); 3 T
Philips Ingenia (5)

Protocol MPM protocol with FLASH sequences 3D MP-RAGE (Philips, Siemens), comparable
3D T1w spoiled gradient echo sequence (GE
Healthcare)

Sagittal 3D FLAIR, sagittal 3D T1w

Matrix 256 × 224 224 × 224, 240 × 240, 256 × 256 256 × 256 (Siemens), 336 × 336
(Philips)

Slices 176 164–224 176 (Siemens), 200 (Philips)

Voxel resolution (mm3) 1 × 1 × 1 1 × 1 × 1 (Siemens) 1.08 × 1.08 × 0.9 (1.5 T Siemens),
1 × 1 × 1 (3 T Siemens),
0.74 × 0.74 × 0.85 (Philips)

µ, average; σ, standard deviation; M, male; F, female.

HCS do not have focal WM lesions, for them WM and NAWM
volumes are matching.

With the addition of models combining features extracted
from all four qMRI maps, a total of 18 models were trained
on DS1 [three regions of interest (ROIs), five image types, and
a combination thereof], of which three models (three ROIs,
one image type) were validated on DSV. All feature selection
and model training were performed in the respective training
datasets. The testing and/or validation datasets were kept apart
and were used only for evaluation purposes. The study design
is detailed in Figure 2. For each step, workflow execution times
were recorded, and the averages reported.

Data Description
DS1 is a private dataset consisting of 72 participants, 36
MSP with relapsing–remitting and progressive forms (CHU
Liege, Belgium), and 36 HCS (GIGA-CRC in vivo imaging,
University of Liège, Liege, Belgium) acquired within an MS cross-
sectional study (local ethic committee approval B707201213806)
retrospectively collected between 2013 and 2017 (Lommers et al.,
2019). It contains cMRI data (T1w for all the participants and

FLAIR only for the MSP) and qMRI maps (PD, MT, R1, and
R2∗; see Figure 3). The inclusion criteria were as follows: (1)
age between 18 and 65 years, (2) Expanded Disability Status
Scale (EDSS) not more than 6.5, (3) no relapse in the previous
4 weeks, and (4) MRI compatibility. The details of the MPM
protocol are available in Lommers et al. (2019). MS status
was estimated by CHU Liege neurology specialists based on
McDonald’s criteria 2010 (Polman et al., 2011). This dataset was
used for all the exploratory analyses, including feature selection
and model parameter tuning. Before the feature selection and
subsequent steps, DS1 was randomly split into training and
testing subsets (80/20%), attempting to maintain distributions of
outcome, age, gender, and scanner variables.

DS2 is the Calgary–Campinas-359 dataset—an open, multi-
vendor, multi-field-strength brain MRI dataset (Souza et al.,
2018). It is composed of volumetric T1w images of 359 presumed
healthy adults, scanned between 2009 and 2016. In the dataset
description, there is no information about the neurological
status assessment.

DS3 is a subset of the MICCAI 2016 MS lesions segmentation
(MSSEG) challenge dataset. The MSSEG challenge dataset
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FIGURE 2 | Study design.

FIGURE 3 | Example of MRI data presented in DS1.
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contains MRI data for 53 MSP, but only 15 participants from
the training subset are publicly available (Cotton et al., 2015;
Commowick et al., 2018). The data were acquired not later than
2016 in three different sites in France on four different multi-
field multi-vendor scanners with different sequences, including
T1w and FLAIR. We used the unprocessed data from DS2
to implement the same image pre-processing protocol for
all the datasets.

There are some differences between DS1 and DSV, the
main difference being the different image acquisition equipment
and protocols (see Table 1). Other differences are the lack of
information about how HCS and MSP status, respectively, was
assessed in DS2 and DS3, and the lack of MS stage of EDSS
in DS3, making a comparison between DS1 and DS3 difficult.
To minimize those differences and any potential bias, DS2 and
DS3 were combined and filtered to match the age range and
field strength present in DS1. Within the datasets, there were no
incomplete data.

A summary of the datasets is presented in Table 1.

MRI Data Pre-processing
All the data processing and analysis hereafter were performed
on a system containing 4 × 10 core 2.40 GHz Intel Xeon
CPU and 64 GB RAM.

The qMRI maps were generated in MATLAB 2017b (The
MathWorks Inc., Natick, MA, United States) with the use of
the hMRI toolbox, v0.2.0 (Tabelow et al., 2019), an extension of
SPM121. In the absence of radiofrequency field sensitivity bias
map acquisition, the radiofrequency field bias was corrected with
a unified segmentation approach. The radiofrequency transmit
field (B1) bias was corrected using B1 and B0 maps, which were
acquired with 3D echo-planar imaging mapping protocols. The
B1 data was processed with parameters which were identical
to the standard default ones. The multiparameter input images
included six MT-, eight PD-, and six T1-weighted images.

All images within DS1 were reconstructed with a resolution
of 1 × 1 × 1 mm3; hence, we decided to resample the
scans within DS2 and DS3 to the same resolution. We used
cubic spline interpolation as it performs well in terms of its
Fourier properties, visual image quality, and interpolation errors
(Lehmann et al., 1999).

Following this step, tissue masks for CSF, GM, NAWM,
and lesions within DS1 were estimated. Tissue segmentation in
HCS was performed with a multi-channel unified segmentation
protocol (Ashburner and Friston, 2005), using multiple qMRI
maps (PD, MT, R2∗, and R1). It was performed in MATLAB
using hMRI for SPM12 with light regularization (regularization
coefficient, 0.001) and 60-mm cutoff for full-width at half-
maximum of Gaussian smoothness of bias. The outputs were
tissue probability maps for CSF, GM, and WM, with the voxel
values between 0 (background) and 1 (corresponding brain
tissue). In order to ensure the inclusion of only the relevant
tissue class, binary masks for each tissue were obtained by
thresholding the tissue probability maps at a high level of 0.9.
For MSP, lesion masks were generated from the combination

1http://www.fil.ion.ucl.ac.uk/spm

of T1w and FLAIR images with LST (Schmidt et al., 2012)2 for
SPM12 by the lesion growth algorithm and corrected manually
by a qualified MS specialist (ELo) when necessary. Multi-channel
tissue segmentation was performed using multiple qMRI maps
(PD, MT, R2∗, and R1) with unified segmentation protocol in US-
with-Lesion (Phillips and Pernet, 2017)3, adding an extra lesion
tissue class. In DSV, brain tissue segmentation was performed
with a single channel (T1w) unified segmentation protocol in
MATLAB with SPM12, using T1w images.

After segmentation, total intracranial volume (TIV) was
estimated for each patient as the morphological sum of the
CSF, GM, NAWM, and lesion volumes (where applicable).
This combined ROI was used for intensity normalization, as
described below.

As the magnetic field inside an MRI scanner is not ideally
homogeneous and is affected by objects within it, a bias field
signal is introduced, degrading image quality as a smooth, low-
frequency signal that distorts segmentation results and feature
values. To partially correct for this in T1w images, N4 bias field
correction (Tustison et al., 2010) was performed in TIV.

As cMRI voxel intensities are expressed in arbitrary units, the
Image Biomarker Standardization Initiative (IBSI) recommends
using normalization for raw MR data (Zwanenburg et al.,
2016). Therefore, within each T1w scan, the intensities were
normalized to arrive at a mean of 0 and a standard deviation of 1.
Normalization was performed within the TIV, considering only
TIV intensities.

Radiomic Feature Extraction and
Exploration
Radiomic features that quantitatively characterize the ROI,
e.g., intensity histogram, simple statistics, and texture (Lambin
et al., 2012; Rizzo et al., 2018), were extracted from pre-
processed cMRI and qMRI data using PyRadiomics 2.2.0 (van
Griethuysen et al., 2017) in python v.3.7.1. Due to their small
volumes, features from lesion ROIs were not extracted, and
they were used only as an additional tissue class for brain
segmentation. The radiomic features of the following classes
were extracted from original images: FO statistics, gray-level co-
occurrence matrix (GLCM) (Haralick et al., 1973), gray-level
run length matrix (Galloway, 1975), gray-level size zone matrix
(Thibault et al., 2013), neighboring gray tone difference matrix
(Amadasun and King, 1989), and gray-level dependence matrix
(GLDM) (Sun and Wee, 1983). The full list of the extracted
features can be found in Supplementary Table 1. Contrary to
oncological radiomic studies where shape features are usually
involved (Lambin et al., 2012, 2017a; Rizzo et al., 2018), here
only first-order and texture features were considered. Many
neurodegenerative disorders have reported volumetric brain
changes, showing disease-specific patterns in brain substructures
(Jakimovski et al., 2020), which were not delineated in the present
study. Moreover, WM volumetric atrophy changes are mostly
explained with the presence of lesions (Marciniewicz et al., 2019),
which also influence first-order and texture features. Therefore,

2https://www.applied-statistics.de/lst.html
3https://github.com/CyclotronResearchCentre/USwLesion
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TABLE 2 | Overview of the independent feature sets per participant.

ROI Image type

WM (for MSP, NAWM + focal WM lesions) cMRI T1w

NAWM qMRI PD

GM MT

R1

R2*

In total, three ROIs In total, five image types

to further reduce the ratio of the number of features vs. the
number of samples, shape features were excluded. Before gray-
level texture matrices were calculated, intensity discretization
was performed with a fixed number of bins Nbins 50, in
line with IBSI recommendations (Zwanenburg et al., 2016).
The fixed bin number approach groups voxel intensities before
discretization, which additionally harmonizes multi-scanner
multi-vendor multi-site data.

No feature harmonization methods, such as ComBat (Johnson
et al., 2007), were applied across the different datasets because of
the small sample sizes and considerable heterogeneity of scanners
and protocols. To speed up feature extraction, the ROI was
pre-cropped into a bounding box with 5-voxel-width padding.
A separate feature set was calculated for each ROI and image type.
An overview of the feature sets is presented in Table 2.

Feature analysis was performed in the whole DS1 to describe
the data; its results were not included into model building.
Statistical tests were performed to gauge diagnostic efficacy in
such a small dataset. A univariate Mann–Whitney test was
carried out using Bonferroni correction, and p ≤ 0.01 for two-
sided hypothesis was considered statistically significant. Point-
biserial correlation coefficients rpb and p-values were calculated
between radiomic feature values and MS status; a correlation
was considered statistically significant if

∣∣rpb
∣∣ ≥ 0.85 and

p ≤ 0.05. Spearman correlations between the features and
age and the feature ROI volume were computed to gauge the
added value of radiomic features compared to age and volumetry,
with |rS| > 0.85 considered highly correlated for each test.
Additionally, the univariate area under the receiver operating
characteristic curve (AUC) was calculated for each feature.

Radiomic Feature Selection
In order to remove redundant and non-informative features,
feature reduction and selection were performed on DS1, using
the MS status as the binary outcome where applicable. Feature
selection was independently carried out for the T1w, PD, MT,
R1, and R2∗ maps to arrive at a subset of N features each,
attempting to adhere to published rules of thumb to estimate the
optimal number (Hua et al., 2005; Abu-Mostafa et al., 2012). We
chose the following approach to estimate the number of features
Nfeatures = int NS

10 , as outlined in Abu-Mostafa et al. (2012), where
NS is the number of samples in the minor class.

Since DS1 is relatively small, especially after the train/test split,
feature selection as described below was performed 100 times
on an extended and balanced cohort of 100 participants created
by randomly sampling (with replacement) observations from the

training subset. In each of the 100 iterations, a fixed number N
of the highest-ranking features was retained, and at the end the
features were ranked according to how often they were selected.

The feature selection pipeline starts with excluding features
with zero or low variance. A feature was considered of low
variance if the percentage of its distinct values out of the
number of observations was less than 10% and the ratio of its
most frequent values was more than 95/5. Next, features with
high inter-correlation were excluded by calculating the pairwise
Spearman correlation between all the features. From each pair of
highly correlated features (| rS| > 0.85), we excluded a feature
having the highest correlation on average with all the remaining
features. The final selection was performed with recursive
feature elimination (Guyon et al., 2002) using random forest
classifier (Breiman, 2001) models [100 trees, as recommended
by Oshiro et al. (2012); a number of features to consider
when looking for the best split int(

√
Nfeatures), where

√
Nfeatures

is changing during recursive feature elimination iterations, as
recommended by Hastie et al. (2009)]. Random forest (RF)
classifiers allow for robust variable importance computation and
do not need normalization. Moreover, the number of available
features exceeds the number of samples, and a random forest
classifier is still able to deal with such data. For each selected
feature, a distribution map was generated by calculating the
feature value within each 26 connected neighborhood of each
voxel within the image ROIs.

Model Training and Testing
Models were trained and tested on independent subsets of
DS1. Observations from the training and testing subsets were
randomly sampled with replacement for 100 times, resulting
in the creation of extended and balanced training and testing
cohorts. Every cohort contained 100 participants.

Separate binary classification models were trained on DS1 for
different image types—T1w, PD, MT, R1, and R2∗—and for a
combination of features from PD +MT + R1 + R2∗ (composed
of qMRI) to investigate the value of each image type and ROI
in the estimation of the MS status. For each image type, three
binary classification models were trained using the same features
from each image type and ROI: (i) random forest (RF), (ii)
support vector machine (SVM) (Platt, 1999), and (iii) logistic
regression (LR). For the RF model, the same settings as for the
recursive feature elimination were used; for SVM, a radial basis
function kernel was used with regularization parameter C = 1.0,
kernel coefficient γ = 1/(Nfeatures · Var(X)), where Var (X) is the
variance of the input feature X (since we did not have any a priori
expert knowledge about the classification problem and did not
perform any empirical validation of the model parameters, these
are the default parameters for the SVM, keeping a balance
between classification accuracy and tolerance to misclassification
errors), and for LR, L2 penalty was used since this regularization
does not lead to high values among the regression coefficients,
with dual formulation, as recommended when the amount of
observations exceeds the amount of features, and a liblinear
solver, which is recommended for small datasets; inverse of
regularization strength C = 1.0, which is optimal in terms of
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balance between accuracy and model complexity. Due to the
small dataset sizes, DS1 was used again as an exploratory dataset.

The performances of the models were estimated in terms of
the following metrics: accuracy, sensitivity, specificity, and AUC,
with the corresponding 90% confidence intervals (CI); for each
model, learning and curves were plotted. Since all the scores
were estimated on the data subsets, containing equal numbers of
HCS and MSP, the imbalanced data correction was not needed.
The best model was selected based on these performance metrics
for different ROIs and tissue types, giving the AUC score more
weight and excluding models with median AUC scores below
the threshold of 0.7, which is considered an underperforming
classification model. In order to select the best model type (RF,
SVM, or LR), the number of highest AUC scores was used.

The final models with the original coefficients were
subsequently validated on DS2 and DS3. As the combined
dataset containing DS2 and DS3 was highly unbalanced
regarding the outcome, bootstrapping with balanced sampling
was implemented. The models for qMRI were not validated
externally due to the unavailability of similar datasets.

To examine the models and methodology for overfitting, a
permutation test was performed on DS1. The class labels in both
training and testing subsets were randomized, maintaining the
same distributions as in the original subsets. Without modifying
the pipeline, feature selection was performed, models were
trained and tested, and performance metrics were calculated
to ascertain whether the pipeline detects patterns in randomly
generated outcomes.

RESULTS

Data Description and MRI Data
Pre-processing
Participants were drawn from DS2, aiming to match DS1
regarding age and magnetic field strength. Participants with
MRI quality, which was not sufficient for robust automatic
segmentation, were excluded after a visual check (ELa). Finally,
167 participants were selected from this dataset. Another 10
participants were selected from DS3, again trying to match

TABLE 3 | Dataset summary details for the included participants.

Dataset 1 Dataset 2 Dataset 3

Participants MSP (15
relapsing–remitting,
21 progressive), HCS
(36)

HCS (167) MSP (10)

Equipment 3 T Siemens
Magnetom Allegra
(37);
3 T Siemens
Magnetom Prisma
(35)

3 T Siemens (53),
Philips (54), GE
Healthcare (60) MRI
scanners

3 T Siemens
Magnetom Verio (5);
3 T Philips Ingenia (5)

Age, µ ± σ

(years)
45.8 ± 12.1 52.7 ± 7.3 40.5 ± 10.8

Gender, M/F 0.76 0.96 1.00

µ, average; σ, standard deviation; M, male; F, female.

the age and field strength distributions with those of DS1. An
overview of the resulting feature sets is presented in Table 3. The
p-values for comparison of age and gender distributions between
HCS and MSP groups within development and validation data
as well as between development and validation datasets can be
found in Supplementary Table 2. Details of the distribution
of participants between the train and test subsets of DS1
and the significance results for comparison of age and gender
distributions in the train and test subsets can be found in
Supplementary Table 3.

Radiomic Feature Extraction and
Description
For each T1w and qMRI image and ROI combination, 93 features
were extracted, resulting in 1,395 features per participant. The
Mann–Whitney test revealed that 16% of the features (220
features out of 1,395) were sampled from significantly different
distributions in the HCS and MSP cohorts, mostly originating
from WM in all image types but also from NAWM in MT and
R2∗. In the entire feature set, there was only one feature (R1
first-order minimum in WM) that was highly correlated with
the outcome, no feature was highly correlated with age, and 10
features out of 1,395 were highly correlated with ROI volume.
A univariate analysis showed that 28% of the features (395
features out of 1,395) had an area under the receiver operating
characteristic curve (ROC AUC) score > 0.75, most of which
were obtained from the PD, MT, and R2∗ maps (see Table 4).

Radiomic Feature Selection
In the training subset of DS1, on average among all the image
types and ROIs, 7% from the initial feature set were excluded
by the low variance step, followed by 79% exclusion by the high
correlation step. The number of features per set kept after each
feature selection step is available in Supplementary Table 4. The

TABLE 4 | Number of features out of 1,395 with age, volume, and outcome
correlations having an | rS| > 0.85 as well as univariate AUC > 0.75 and
corrected Mann–Whitney p < 0.01 (listed in Supplementary Table 2).

ROI T1w PD MT R1 R2*∣∣∣rage
S

∣∣∣ > 0.85 WM 0 0 0 0 0

NAWM 0 0 0 0 0

GM 0 0 0 0 0∣∣∣rvolume
S

∣∣∣ > 0.85 WM 0 3 1 1 0

NAWM 0 3 1 1 0

GM 0 0 0 0 0∣∣∣routcome
pb

∣∣∣ > 0.85 WM 0 0 0 1 0

NAWM 0 0 0 0 0

GM 0 0 0 0 0

AUCunivar > 0.75 WM 13 62 21 45 52

NAWM 8 28 57 9 37

GM 3 7 26 5 22

pBonferroni
Mann−Whitney < 0.01 WM 9 41 10 37 7

NAWM 0 12 42 5 26

GM 1 0 18 2 10
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FIGURE 4 | Characteristics of the selected features: (A) Spearman age correlation coefficient (absolute) | rage | and Spearman volume correlation coefficient
(absolute) | rvolume |, (B) univariate area under the receiver operating characteristic curve, corrected p-values of Mann–Whitney test for differences in value distribution
in classes. FO, first order; LDHGLE, large dependence high gray level emphasis; SDLGLE, small dependence low gray level emphasis; LAHGLE, large area high gray
level emphasis; MAD, mean absolute deviation; LGLE, low gray level emphasis.

RF-based recursive feature elimination using data sampling with
replacement yielded the final feature vectors for each ROI and
MRI image type. To make the models easier to compare across
ROI and MRI image types, the three (Nfeatures =

NS
10 =

28
10 3 )

top-ranking features were left in each final feature vector. The
list of the selected features can be found in Supplementary
Table 5. The feature distribution maps are presented in
Supplementary Table 6.

No high correlations were discovered between the selected
features, age, and ROI volume. For the selected features, the
univariate AUC was below a threshold of 0.7 for PD, MT, and
R2∗ in NAWM and T1w and for PD in GM. According to
the Mann–Whitney test, the highest number of features with
significant differences in means in HCS and MSP is discovered
in WM (15 features out of 15) when ranking by ROIs and on
R1 (eight features out of nine) when ranking by image types.
A list of the selected features with their Spearman correlations

with age and the ROI volume, univariate ROC AUC scores, and
Mann–Whitney test p-value is presented in Figure 4. For the best
features in each ROI and image type, saliency maps were obtained
by calculation of the feature value in the neighborhood of each
voxel. Examples of the normalized saliency maps are presented
in Figure 5.

Model Training and Testing
According to the Delong test with use of the Bonferroni
correction, different ML models had significantly different
(p = 0.01) AUC scores in all the cases, with the exception of
MT and qMRIcomb in WM, R1 in NAWM, and PD in GM (the
p-values for AUC comparison can be found in Supplementary
Table 7 and the performance metrics in Supplementary Table 8).
Among all the ROI and image types, in most cases, the median
values of the RF classifier performance scores dropped below a
threshold of 0.7. Having the highest number of top AUC values,
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FIGURE 5 | Normalized saliency maps for the best selected features for each region of interest and image type highlight the areas with the highest feature values:
(A) T1w GLCM cluster shade in WM, (B) PD first-order skewness in WM, (C) MT first-order minimum in WM, (D) R1 first-order kurtosis in WM, (E) R2* GLCM cluster
shade in WM, (F) T1w GLCM cluster shade in NAWM, (G) PD GLDM large dependence high gray level emphasis in NAWM, (H) MT GLDM large dependence high
gray level emphasis in NAWM, (I) R1 first-order 10-percentile in NAWM, (J) R2* GLCM Imc2 in NAWM, (K) T1w first-order 10-percentile in GM, (L) PD first-order
10-percentile in GM, (M) MT GLDM small dependence low gray level emphasis in GM, (N) R1 first-order minimum in GM, and (O) R2* GLDM low gray level
emphasis in GM.

the LR model was selected. Results from the LR model will be
shown in the main body of the text, while ROC curves and the
regression coefficients for the final models are correspondingly
shown in Supplementary Figure 1 and Supplementary Table 11.
The performance metrics are presented in Table 5.

Models using features extracted from WM achieved the best
classification performance, with the best performance achieved
by the MT data. There were no statistical differences (p ≤ 0.01)
in AUC scores obtained for WM in MT, R1, and qMRIcomb (the
p-values for AUC comparison can be found in Supplementary
Table 9). The highest median performance across all metrics was
achieved with the MT model, all of which yielded a value of
1.00. The T1w model performed generally lower than the MT
and combined qMRI models but outperformed the PD model in
median specificity, the R1 model in median sensitivity, and the
R2∗ model in median accuracy and AUC.

In NAWM, there were no significant differences in AUC
scores obtained for highest scoring R2∗ and qMRIcomb models.
The highest overall performance was achieved with the R1 model.
The PD model yielded a median specificity of 0.00 (no true
negatives were achieved). The T1w model performed generally

poorer than the MT and R1 models but better than the PD, R2∗,
and qMRIcomb models.

In GM, there were no significant differences in
AUC scores obtained for MT and R1 and for R2∗ and
qMRIcomb. The highest overall performance was achieved
with the MT-based model, which yielded a median
accuracy of 0.88.

The permutation test results showed a significant (p ≤ 0.01)
drop in AUC for all the models, except for PD and MT in
NAWM and for T1w in GM. The full results obtained with
the permutation test for different models and permutation
test p-values can be correspondingly found in Supplementary
Tables 10, 11.

The classification performance metrics T1w models using
the WM, NAWM, and GM validated on the external DSV
are presented in Table 6. Since DS2 comprises only MS
negative outcomes and DS3 only MS positive outcomes, the
separate accuracies for DS2 and DS3 are equal to specificity
and sensitivity, respectively, on the whole validation data.
Therefore, the medial validation model accuracy for DS2
is 1.00 in WM and NAWM and 0.00 in GM; the medial
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TABLE 5 | Logistic regression model performances on testing data showing the median (90% CI) for each image and tissue type (ROI) (median values above 0.7 for all
the performance metrics for the same model are highlighted with bold font).

ROI Image Accuracy AUC Sensitivity Specificity

WM T1w 0.74 (0.66, 0.82) 0.90 (0.84, 0.95) 0.76 (0.67, 0.86) 0.72 (0.59, 0.82)

PD 0.64 (0.58, 0.71) 0.98 (0.95, 1.00) 1.00 (1.00, 1.00) 0.28 (0.17, 0.42)

MT 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00)

R1 0.82 (0.76, 0.88) 1.00 (1.00, 1.00) 0.64 (0.52, 0.75) 1.00 (1.00, 1.00)

R2* 0.73 (0.63, 0.83) 0.86 (0.78, 0.93) 0.76 (0.62, 0.86) 0.72 (0.58, 0.84)

qMRIcomb 0.93 (0.88, 0.97) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.86 (0.77, 0.94)

NAWM T1w 0.73 (0.66, 0.82) 0.86 (0.77, 0.93) 0.76 (0.64, 0.87) 0.70 (0.59, 0.81)

PD 0.37 (0.30, 0.44) 0.67 (0.55, 0.81) 0.74 (0.60, 0.87) 0.00 (0.00, 0.00)

MT 0.81 (0.74, 0.89) 0.79 (0.69, 0.90) 0.76 (0.64, 0.87) 0.86 (0.77, 0.94)

R1 0.87 (0.80, 0.93) 0.97 (0.93, 0.99) 0.88 (0.77, 0.98) 0.86 (0.77, 0.94)

R2* 0.66 (0.56, 0.76) 0.83 (0.73, 0.94) 0.76 (0.64, 0.87) 0.56 (0.40, 0.72)

qMRIcomb 0.74 (0.67, 0.81) 0.82 (0.73, 0.90) 0.62 (0.48, 0.77) 0.86 (0.77, 0.94)

GM T1w 0.41 (0.32, 0.52) 0.60 (0.47, 0.73) 0.26 (0.16, 0.40) 0.56 (0.43, 0.71)

PD 0.69 (0.61, 0.79) 0.83 (0.74, 0.91) 0.51 (0.38, 0.66) 0.86 (0.77, 0.94)

MT 0.88 (0.82, 0.94) 0.81 (0.71, 0.90) 0.76 (0.64, 0.87) 1.00 (1.00, 1.00)

R1 0.82 (0.75, 0.87) 0.81 (0.72, 0.88) 0.64 (0.50, 0.74) 1.00 (1.00, 1.00)

R2* 0.73 (0.65, 0.83) 0.86 (0.78, 0.95) 0.76 (0.64, 0.87) 0.71 (0.58, 0.84)

qMRIcomb 0.81 (0.73, 0.88) 0.86 (0.78, 0.93) 0.76 (0.64, 0.87) 0.84 (0.77, 0.95)

TABLE 6 | Logistic regression model performances on external validation dataset
showing the median (90% CI) for each tissue type for T1w images.

ROI Accuracy AUC Sensitivity Specificity

WM 0.65 (0.55, 0.85) 0.78 (0.47, 1.00) 0.30 (0.10, 0.70) 1.00 (0.90, 1.00)

NAWM 0.60 (0.55, 0.95) 0.65 (0.29, 1.00) 0.20 (0.10, 1.00) 1.00 (0.90, 1.00)

GM 0.45 (0.15, 0.45) 0.24 (0.05, 0.56) 0.90 (0.10, 0.90) 0.00 (0.00, 0.30)

validation model accuracy for DS2 is 0.30 in WM, 0.20 in
NAWM, and 0.90 in GM.

TRIPOD Statement and Radiomics
Quality Assurance
This study was evaluated with the Radiomics Quality Score
(RQS) (Lambin et al., 2017a), which yielded a final result of
39%. We likewise evaluated it with the Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) (Collins et al., 2015) checklist score, which
was in the range of 0.71–0.77%. The RQS and TRIPOD checklists
are presented in Supplementary Tables 12, 13.

DISCUSSION

In this exploratory brain tissue MRI and qMRI radiomics study
based on a unique dataset, we report on several hypothesis-
generating findings for HCS vs. MSP classification. Previous
studies on radiomics in MS have been focused on T2w cMRI
data and aimed to distinguish between MS and neuromyelitis
optica spectrum disorder (Liu et al., 2019; Ma et al., 2019) without
external validation, hence the importance of this work.

Of the three machine learning models (RFC, SVM, and LR)
tested, LR was the most stable with median accuracy, AUC,
sensitivity, and specificity all exceeding a value of 0.7 while
achieving the highest performance in terms of AUC. The fact
that LR outperformed the other models could be due to the
small number of observations, where the simplest models might
perform best since they are less likely to overfit. The selected
radiomics features were not correlated with age and volume (also
a radiomic feature), which indicates that radiomics could provide
additional information to those simple variables.

The best LR model performance concerning tissue type was
achieved using features extracted from WM. This was expected
since focal WM lesions (plaques) in the WM of MSPs affect
the intensity distribution (Trip and Miller, 2005). In NAWM
classification, which is more challenging, good classification is
achieved not only with MT and R1 maps but also with T1w
data. This result was not expected since this MRI sequence is
not sensitive to pathological NAWM changes within, as reported
in Trip and Miller (2005) and Reitz et al. (2017). Nevertheless,
it could be explained by the fact that qMRI voxel values have
a physical meaning, reflecting the water and myelin contents.
Furthermore, the qMRI map generation pipeline contains image
co-registration and B0 and B1 fields correction steps, leading
to interpolation and, therefore, smoothing of the qMRI map.
Consequently, T1w images have a higher spatial resolution,
leading to a more detailed texture analysis. In GM, the T1w-based
model underperforms, as it was expected, according to previous
publications (Trip and Miller, 2005; Reitz et al., 2017).

Among the image types, the best performance was achieved
with MT maps, which corroborates the findings of Lommers et al.
(2019), where statistical tests showed considerable differences
between HCS and MSP. In WM, the MT model demonstrated
median accuracy, AUC, sensitivity, and specificity of 1.00, which
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means that all the training observations were classified correctly.
As far as training observations did not enter model training, we
can conclude that, in our relatively small dataset, the presence
of focal WM lesions (plaques) makes the selected MT features
distinctive from the ones extracted from the healthy brain. The
PD maps showed the poorest performance with at least one
of the performance metrics crossing below a value of 0.7 in
each tissue type. This could be due to the potential residual
T2∗ weighting, as mentioned previously (Lommers et al., 2019).
The results obtained with T1w and R1 data were significantly
different, although both these image types represent longitudinal
relaxation. The main difference between them is that T1w
demonstrates the relative level of longitudinal relaxation at
some moment, expressed in arbitrary units, whereas the R1
map represents the actual physical property of the tissue and
is expressed in standardized physical units (Hz). Furthermore,
unlike for T1w data, reconstruction of the qMRI images is always
performed with the correction of instrumental biases and receive
fields (Tabelow et al., 2019).

Although the T1w models are non-quantitative, they
outperformed some of the qMRI models in WM and NAWM
yet had the poorest performance in GM. Among all the T1w
models, the WM model yielded the highest median AUC of
0.78 and an underperforming sensitivity with a median value
of 0.30 on the testing subset of the development dataset. On
the external validation for T1w-based models, all showed a
poor performance. Nevertheless, among these models, the best
performance was achieved in WM, mainly due to the presence
of focal WM lesions, which are easily captured in the radiomic
analysis. In NAWM and GM, the differences between HCS
and MSP are presented on the microstructural level. The T1w
data is expressed in arbitrary units, and it is not consistent
enough to detect these changes within different scanners and
centers. As the T1w-based model in GM underperformed on
the testing data, a good performance on the validation dataset
was not expected. Thus, even though T1w data can perform well
on the development dataset, its application is challenging for
multi-centric studies. The explanation can be due to differences
in imaging data, lack of sensitivity of T1w contrast for these
applications, low predictive ability of the corresponding features,
and their susceptibility to data effects. Additionally, we suspect
a bias that can be introduced by the clinical differences in the
cohorts in DS1, DS2, and DS3. Whereas MS status assessment
details, EDSS, and MS stage are known for DS1, there is no such
information about the participants from DS3, and there is no
information about the tests carried out for DS2 participants to
determine them as HCS.

The strengths of the current study include the use of unique
quantitative and reproducible imaging data, the use of an external
validation open-source data, and in-depth investigation of the
features in traditionally challenging tissues such as NAWM and
GM, which can have potential in early MS diagnosis.

This study has some limitations, too. The first stems from
the small number of observations in the DS1. Consequently,
for external validation, we excluded participants which did not
correspond to the participants from DS1 in terms of age or MRI
magnetic field strength. All participants with insufficient MRI

data quality, rendering it unsuitable for robust automatic brain
tissue segmentation, were also excluded, introducing more bias.
Another limitation is related to the uniqueness of qMRI data,
which means that there are no available similar qMRI brain
datasets for external validation, especially for MSP. However, it
was reported that qMRI is reproducible between different scanner
models, and multi-center studies can be expected (Gracien et al.,
2020). The third limitation is the absence of data harmonization
performed across datasets involved in this study. It results in
non-uniformity of non-quantitative MRI data between datasets
and thus leads to model performance degradation. The next
limitation is related to the analysis of only HCS and MSP data.
Although the exploratory analysis of the features demonstrated
that some had very high univariate AUC scores (>0.99), absence
of data for other neurodegenerative diseases, and relatively
small amounts of observations, we cannot conclude that these
features themselves can be reliable biomarkers in MS. Thus,
an analysis of other neurodegenerative disorders is needed to
distinguish between different diagnoses. The fifth limitation
pertains to the cMRI sequence analyzed in this study: even
though focal WM lesions are noticeable on T1w, this image
type is not the leading one in MS investigation. Among cMRI
modalities, T2w, FLAIR, and contrast-enhanced T1w provide
appropriate contrast. These modalities were not available for
all the participants of DS1 (with qMRI acquisition): FLAIR
scans were available for MSP only. Therefore, an analysis of
another cMRI and qMRI could be a subject of future research.
Finally, different brain segmentation approaches were used for
DS1 and external validation data. Even though the same method
was implemented for all the MRIs, segmentation in DS1 was
performed with qMRI data, while segmentation for external
validation was performed with cMRI data. It could affect the
values of radiomic features, as cMRI-based segmentation leads
to an inaccurate delineation of deep GM regions (Nikolaus
Weiskopf et al., 2013; Lommers et al., 2019).

Within the present study, we used standard open-source
tools for data pre-processing and analysis. Thus, the diagnostic
support workflow execution times obtained within this study are
indicative. Moreover, they strongly depend on the hardware and
software used, original medical image parameters, pre-processing
and analysis settings, and radiomic features, composing the
final signature. We did not implement any optimization of
computational resource consumption; therefore, the obtained
execution times represent the upper bound of a workflow
duration. Within the present study, cMRI- and qMRI-based
workflows took approximately up to 26 and 38 min per
participant, excluding the image acquisition time. This difference
is due to the relatively long time of qMRI map reconstruction.
This shows that the cMRI workflow can be implemented into the
brain scanning protocols as a screening for WM abnormalities.
The qMRI workflow requires a particular scanning protocol
(Weiskopf et al., 2013) and a relatively long analysis time.
Therefore, it can be implemented for diagnostic support for
patients with suspicious medical evidence.

This study indicated the potential of cMRI and qMRI
radiomics in MS-related biomarker development. In
differentiating between MSP and HCS, qMRI showed the
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advantage over cMRI in NAWM and GM regions. Therefore,
application of qMRI is promising in early MS diagnosis. We
believe that qMRI radiomic signatures can contribute to multi-
center studies, as also indicated in previous works (Weiskopf
et al., 2013; Weiskopf et al., 2015; Lommers et al., 2019; Tabelow
et al., 2019). For this, the reproducibility of qMRI features is to
be investigated in the future. T1w WM analysis could potentially
be applied for a rapid check of cMRI for WM abnormalities. For
research purposes, 7 T MRI is often applied to study NAWM and
GM (Treaba et al., 2019; Zurawski et al., 2020), but it is not widely
used in clinical practice yet. We believe that 7 T MRI radiomic
analysis is a potential research field in MS diagnosis.

Our next step is to validate those findings in a prospective
qMRI study and test the hypothesis that those signatures are
sensitive to neurodegenerative changes in the early stages of MS
and have a diagnostic value for subjects at risk (e.g., clinically
isolated syndrome).

CONCLUSION

This study demonstrates that brain cMRI and qMRI radiomic
features have the potential to distinguish between MSP and
HCS. In NAWM and GM analysis, having a potential in early
automated diagnosis, stable results are achieved with qMRI-based
data. This is a proof-of-concept clinical study demonstrating a
strong signal in brain imaging, but further research is needed to
develop and approve radiomic signatures for MS.

Nevertheless, future large-scale studies should evaluate the
reproducibility and generalizability of the proposed method
and create an MS-specific radiomic signature. Because of
fully automated pipeline and imaging data quantification, the
proposed approach shows its potential in relevance to time-
saving and reproducibility in MS diagnosis.
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