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Abstract: Electronic cigarettes (e-cigs) use has been dramatically increased recently, especially among
youths. Previous studies from our laboratory showed that chronic exposure to e-cigs, containing
24 mg/mL nicotine, was associated with dysregulation of glutamate transporters and neurotransmitter
levels in the brain of a mouse model. In this study, we evaluated the effect of three months’ continuous
exposure to e-cig vapor (JUUL pods), containing a high nicotine concentration, on the expression of
glutamate receptors and transporters in drug reward brain regions such as the nucleus accumbens
(NAc) core (NAc-core), NAc shell (NAc-shell) and hippocampus (HIP) in female C57BL/6 mice.
Three months’ exposure to mint- or mango-flavored JUUL (containing 5% nicotine, 59 mg/mL)
induced upregulation of metabotropic glutamate receptor 1 (mGluR1) and postsynaptic density
protein 95 (phosphorylated and total PSD95) expression, and downregulation of mGluR5 and
glutamate transporter 1 (GLT-1) in the NAc-shell. In addition, three months’ exposure to JUUL
was associated with upregulation of mGluR5 and GLT-1 expression in the HIP. These findings
demonstrated that three-month exposure to e-cig vapor containing high nicotine concentrations
induced differential effects on the glutamatergic system in the NAc and HIP, suggesting dysregulation
of glutamatergic system activity in mesolimbic brain regions.
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1. Introduction

Over recent years, electronic cigarettes (e-cigs) use has been dramatically increased, especially
among youths [1,2]. Despite the application of e-cigs as a smoking cessation tool, its use was associated
with different detrimental effects such as DNA damage [3] and decreased host defenses [4]. The use of
e-cigs, such as JUUL pods containing 5% nicotine, has been increased recently compared to older e-cig
devices, especially among the young population [5,6]. There is a myriad of JUUL pods introduced to
the market with improved palatability and higher concentration of nicotine (5%) content, which trigger
the description of JUUL use as an epidemic by public health agencies (e.g. FDA) [7,8]. Importantly,
the uses of e-cigs induce a comparable urge to smoke and increase the desire for conventional
combustible smoking [9]. Studies have demonstrated an addictive-like behavior with e-cigs use in
clinics [10]. Nicotine represents the addictive component in e-cigs, which is found in most e-liquids in
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the market [2,11]. The effects of tobacco and e-cigs smoking are sex-dependent. In humans, nicotine
may induce differential effects in females than males (for review see [12]), and nicotine replacement
therapies were found to be less effective in females compared to males [13,14]. Studies revealed that
females are more sensitive than males and exhibited higher reinforcement toward e-cigs use [15]. It has
also been revealed that 38% of female vs. 27% of male current smokers tried to smoke e-cigs as of 2013
in the US [16]. These data suggested that females may have a greater tendency to use e-cigs than males.

Recent studies from our laboratory showed that chronic exposure to e-cigs was associated with
dysregulation of glutamate transporters and neurotransmitters levels in the brain [17,18]. Exposure to
e-cigs for six months induced downregulation of glutamate transporter 1 (GLT-1) in the striatum,
and downregulation of cystine/glutamate antiporter (xCT) in the striatum and hippocampus (HIP) of
female CD-1 mice [17]. It is important to note that GLT-1 is responsible for the clearance of the majority
of extracellular synaptic glutamate [19,20]. Alternatively, chronic e-cig exposure in male C57BL/6 mice
was associated with a reduction in dopamine concentration and increase in glutamate concentration in
the striatum, while GABA concentration was decreased in the frontal cortex [18]. These studies suggest
that chronic e-cig exposure alters glutamate homeostasis. It is noteworthy that chronic exposure to
drugs of abuse (e.g., nicotine, ethanol, methamphetamine, hydrocodone and cocaine) was associated
with downregulation of GLT-1 [21–24] and xCT protein expression [23–25] in key reward brain regions
in P rats. In these studies, β lactams, known to upregulate GLT-1 and xCT expression, were tested and
showed attenuating effects on drug-seeking behaviors.

To the best of our knowledge, less is known about the effect of exposure to e-cigs (JUUL pods
containing 5% nicotine) on the expression of metabotropic glutamate receptors. Group 1 metabotropic
glutamate receptors (mGluR1 and mGluR5) are mainly located on the post-synaptic region and are
involved in drug dependence, development and maintenance (for review see [26,27]). These receptors
have a pivotal role in mediating memory and learning [28], regulating ionotropic glutamate receptors,
i.e., N-methyl-D-aspartate (NMDA) and a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
(AMPA) receptors [29], and synaptic plasticity [30]. This suggests that these receptors are major
regulators of glutamate homeostasis. Studies have shown that mGluR5 is highly expressed in the nucleus
accumbens (NAc) and HIP [31], and its activity is critical for mediating nicotine reinforcement [32–34].
mGluR5 antagonism attenuated nicotine seeking and self-administration [34,35]. Alternatively,
mGluR1 mRNA and protein expression were increased after repeated exposure to nicotine in the
ventral tegmental area (VTA) and amygdala in rats [36]. It is important to note that mGLUR1 expression
is relatively lower in mesocorticolimbic brain regions as compared to mGluR5 (for review see [37]).
Furthermore, the blockade of mGluR1 reduced the reinstatement to nicotine self-administration [38].
Exposure to e-cigs containing nicotine induced comparable plasma nicotine levels as compared
to conventional tobacco smoking [39]. However, other additives in e-cigs might contribute to the
addictive/harmful effects of e-cig vaping. For instance, there is an increase in the tendency to smoke
menthol-, candy- or fruit-flavored e-cigs over tobacco-flavored e-cigs [40]. It has been shown that
menthol-flavored e-cigs promote dependence and impact the smoking cessation outcomes (for review
see [41]). We investigated in this study the effects of exposure to different flavored e-cigs’ vapor (JUUL
pods), containing a high nicotine concentration, on mGluR1, mGluR5, GLT-1, and xCT expression in
the NAc core (NAc-core), NAc shell (NAc-shell) and HIP, which represent key brain regions involved
in drug reward behaviors [42,43].

2. Materials and Methods

2.1. JUUL Exposure

Female C57BL/6 mice at the age of 6–8 months were used in this study. We focused on female
mice as it has been revealed previously that there is a sex-dependent effect of nicotine, and that female
rats showed higher nicotine-seeking behaviors compared to males [44,45]. Mice were purchased from
Envigo Inc. (Indianapolis, IN, USA), and placed in individual sections of a full-body exposure chamber,
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SciReq inExpose system (SCIREQ Emka Technologies Company, Montreal, QC, Canada) for 20 min
daily for 5 days per week in a 3-month period. Two groups of mice were exposed to e-cig aerosols from
either Mint JUUL pods (e-cig mint group, n = 5–6) or Mango JUUL pods (e-cig mango group, n = 5–6)
containing 5% nicotinic salts (59 mg/mL). Another group of mice was exposed to room air only in
an identical chamber for 20 min daily for 5 days per week, for 3 months (air control group, n = 5–6).
The e-cigs were activated for 4 s followed by 16 s of room air at 2 L/s, using a negative pressure of
2 L/s. We created a 3D-printed adapter to fit the JUUL device as described previously in [46]. The last
exposure was performed 30 min prior to animal euthanization. All animal experiments were approved
by the Animal Care and Use Committee of the University of California San Diego (identification code:
s16021; date of approval: 1 May 2014, amended/approvals every 6 months).

2.2. Brain Tissue Harvesting

Mice were euthanized by CO2 inhalation 30 min after their last pods or air control exposure.
Mice were rapidly decapitated with a guillotine and the brains were removed and stored at −80 ◦C.
The NAc-core, NAc-shell and HIP were micropunched stereotaxically and isolated using a cryostat
apparatus maintained at −20 ◦C. Following visualized landmarks, we isolated the brain regions of
interest using The mouse brain in stereotaxic coordinates [47] as it is shown in Figure 1.

Toxics 2020, 8, x FOR PEER REVIEW 3 of 13 

 

for 20 min daily for 5 days per week in a 3-month period. Two groups of mice were exposed to e-cig 
aerosols from either Mint JUUL pods (e-cig mint group, n = 5–6) or Mango JUUL pods (e-cig mango 
group, n = 5–6) containing 5% nicotinic salts (59 mg/mL). Another group of mice was exposed to room 
air only in an identical chamber for 20 min daily for 5 days per week, for 3 months (air control group, 
n = 5–6). The e-cigs were activated for 4 s followed by 16 s of room air at 2 L/s, using a negative 
pressure of 2 L/s. We created a 3D-printed adapter to fit the JUUL device as described previously in 
[46]. The last exposure was performed 30 min prior to animal euthanization. All animal experiments 
were approved by the Animal Care and Use Committee of the University of California San Diego 
(identification code: s16021; date of approval: 1 May 2014, amended/approvals every 6 months). 

2.2. Brain Tissue Harvesting 

Mice were euthanized by CO2 inhalation 30 min after their last pods or air control exposure. Mice 
were rapidly decapitated with a guillotine and the brains were removed and stored at −80 °C. The NAc-
core, NAc-shell and HIP were micropunched stereotaxically and isolated using a cryostat apparatus 
maintained at −20 °C. Following visualized landmarks, we isolated the brain regions of interest using 
The mouse brain in stereotaxic coordinates [47] as it is shown in Figure 1. 

 

Figure 1. Schematic diagram showing the location of (A) the nucleus accumbens core (NAc-core) and 
shell (NAC-shell), bregma 1.42, and (B) hippocampus (HIP), bregma −2.46 mm, in mouse brain. 
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0.1 mL 0.5 M EDTA, 2.5 mL 10% NP-40, 5 mL 10% Triton, 0.5 mL 10%SDS and 36.9 mL Millipore 
water), which includes protease and phosphatase inhibitors. A protein assay (Bio-Rad, Hercules, CA, 
USA) was utilized to determine the amount of protein in each brain tissue sample. An equal amount 
of protein from each sample was then loaded into 10% polyacrylamide gels. Separated proteins in 
gels were transferred electrophoretically into PVDF membranes, which were further blocked with 
5% fat-free milk in Tris-buffered saline, including Tween-20 (TBST). Membranes were then incubated 
at 4 °C (overnight) with primary antibodies: rabbit anti-GLT-1 (1:1000; Abcam, Inc, Branford, CT, 
USA), rabbit anti-xCT (1:1000; Abcam, Inc), rabbit anti-mGluR1 (1:1000; Abcam, Inc), rabbit anti-
mGluR5 (1:1000; MilliporeSigma, Burlington, MA, USA), rabbit anti-phospho PSD95 (1:1000; Abcam, 
Inc), rabbit anti-PSD95 (1:1000; Abcam Inc) and the control loading protein mouse anti-β- tubulin 
(1:1000; BioLegend Inc, San Diego, CA, USA). The appropriate secondary antibodies (1:5000) were 
added to their respective membranes, after 5 washes with TBST, for 90 min at room temperature. Blot 
images were digitalized using the GeneSys imaging system after incubation of the membranes with 
chemiluminescent reagents, Super Signal West Pico (ThermoFisher Scientific, Waltham, MA USA).  
Finally, quantifications of the expression of mGluR1, mGluR5, GLT-1, xCT and β-tubulin were 
performed using ImageJ software (developed by the National Institutes of Health, DC, USA). Air 
control group data were represented as 100% (relative to air control) to determine the changes in the 
expression of the target proteins, as illustrated in our previous study [23]. 

Figure 1. Schematic diagram showing the location of (A) the nucleus accumbens core (NAc-core) and
shell (NAC-shell), bregma 1.42, and (B) hippocampus (HIP), bregma −2.46 mm, in mouse brain.

2.3. Western Blot Technique

mGluR1, mGluR5, GLT-1, xCT, phospho-postsynaptic density protein (p-PSD95), and PSD95
protein expression were measured in the NAc-core, NAc-shell and HIP using Western blot technique.
Brain regions were homogenized using filtered lysis buffer (2.5 mL 1 M Tris HCL, 2.5 mL 3 M NaCl,
0.1 mL 0.5 M EDTA, 2.5 mL 10% NP-40, 5 mL 10% Triton, 0.5 mL 10%SDS and 36.9 mL Millipore
water), which includes protease and phosphatase inhibitors. A protein assay (Bio-Rad, Hercules, CA,
USA) was utilized to determine the amount of protein in each brain tissue sample. An equal amount
of protein from each sample was then loaded into 10% polyacrylamide gels. Separated proteins in
gels were transferred electrophoretically into PVDF membranes, which were further blocked with 5%
fat-free milk in Tris-buffered saline, including Tween-20 (TBST). Membranes were then incubated at
4 ◦C (overnight) with primary antibodies: rabbit anti-GLT-1 (1:1000; Abcam, Inc., Branford, CT, USA),
rabbit anti-xCT (1:1000; Abcam, Inc.), rabbit anti-mGluR1 (1:1000; Abcam, Inc.), rabbit anti-mGluR5
(1:1000; MilliporeSigma, Burlington, MA, USA), rabbit anti-phospho PSD95 (1:1000; Abcam, Inc.),
rabbit anti-PSD95 (1:1000; Abcam Inc.) and the control loading protein mouse anti-β- tubulin
(1:1000; BioLegend Inc., San Diego, CA, USA). The appropriate secondary antibodies (1:5000) were
added to their respective membranes, after 5 washes with TBST, for 90 min at room temperature.
Blot images were digitalized using the GeneSys imaging system after incubation of the membranes
with chemiluminescent reagents, Super Signal West Pico (ThermoFisher Scientific, Waltham, MA,
USA). Finally, quantifications of the expression of mGluR1, mGluR5, GLT-1, xCT and β-tubulin
were performed using ImageJ software (developed by the National Institutes of Health, DC, USA).
Air control group data were represented as 100% (relative to air control) to determine the changes in
the expression of the target proteins, as illustrated in our previous study [23].
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2.4. Statistical Analyses

GraphPad Prism v6.0 or v8.0 (Graphpad Holdings, LLC, CA, USA) was used to conduct the
statistical analyses. Data obtained were analyzed by one-way ANOVA followed by the Newman–Keuls
post hoc multiple comparison test to analyze the differences in the protein expression between mint-
and mango-flavored JUUL pods-exposed groups relative to air controls. Data were analyzed as a
percentage (relative to air control values) ratio to the loading control protein, β-tubulin. p value of
≤0.05 was considered statistically significant.

3. Results

3.1. Effect of Three-Month Exposure to JUUL on mGluR1 Protein Expression

Three-month exposure to mint- or mango-flavored JUUL containing 59 mg/mL nicotine for
three months did not alter the expression of the mGluR1 level in the NAc-core compared to the air
control as analyzed by one-way ANOVA followed by the Newman–Keuls post hoc test (F2,14 = 0.616,
p > 0.05; n = 5–6/group, Figure 2A). However, three-month exposure to JUUL pods induced significant
upregulation of mGluR1 expression in the NAc-shell of e-cig mint and e-cig mango groups (F2,14 = 7.35,
p = 0.006; n = 5–6/group) as compared to the air control group. The Newman–Keuls post hoc test did
not show any significant difference between e-cig mint and e-cig mango groups (Figure 2B). Like the
NAc-core, three-month exposure to JUUL pods did not alter the expression of mGluR1 levels in the
HIP (F2,14 = 0.989, p > 0.05; n = 5–6/group, Figure 2C).

Toxics 2020, 8, x FOR PEER REVIEW 4 of 13 

 

2.4. Statistical Analyses 

GraphPad Prism v6.0 or v8.0 (Graphpad Holdings, LLC, CA, USA) was used to conduct the 
statistical analyses. Data obtained were analyzed by one-way ANOVA followed by the Newman–Keuls 
post hoc multiple comparison test to analyze the differences in the protein expression between mint- and 
mango-flavored JUUL pods-exposed groups relative to air controls. Data were analyzed as a percentage 
(relative to air control values) ratio to the loading control protein, β-tubulin. p value of ≤ 0.05 was 
considered statistically significant. 

3. Results 

3.1. Effect of Three-Month Exposure to JUUL on mGluR1 Protein Expression 

Three-month exposure to mint- or mango-flavored JUUL containing 59 mg/mL nicotine for three 
months did not alter the expression of the mGluR1 level in the NAc-core compared to the air control 
as analyzed by one-way ANOVA followed by the Newman–Keuls post hoc test (F2,14 = 0.616, p > 0.05; 
n = 5–6/group, Figure 2A). However, three-month exposure to JUUL pods induced significant 
upregulation of mGluR1 expression in the NAc-shell of e-cig mint and e-cig mango groups (F2,14 = 
7.35, p = 0.006; n = 5–6/group) as compared to the air control group. The Newman–Keuls post hoc test 
did not show any significant difference between e-cig mint and e-cig mango groups (Figure 2B). Like 
the NAc-core, three-month exposure to JUUL pods did not alter the expression of mGluR1 levels in 
the HIP (F2,14 = 0.989, p > 0.05; n = 5–6/group, Figure 2C). 

 

Figure 2. Effect of 3-month JUUL pods exposure on mGluR1 protein expression. (A) There was no 
significant change in the protein level of mGluR1 in the NAc-core. (B) mGluR1 expression was 
significantly upregulated in e-cig mint (p < 0.01) and e-cig mango (p < 0.05) groups as compared to the 
air control group in the NAc-shell. There was no significant difference between e-cig mint and e-cig 
mango groups. (C) No significant change in mGluR1 expression was found in the HIP. Data expressed 
as mean ± SEM; * p < 0.05 and ** p < 0.01; n = 5–6/group. Abbreviations: NAc-core, nucleus accumbens 
core; NAc-shell, nucleus accumbens shell; HIP, hippocampus. 

3.2. Effect of Three-Month Exposure to JUUL on mGluR5 Protein Expression 

The effect of exposure to mint- or mango-flavored JUUL pods for three months on the expression 
of mGluR5 was also measured. There was no significant change in the expression of mGluR5 among 
e-cig mint, e-cig mango and air control groups in the NAc-core (F2,14 = 0.474, p > 0.05; n = 5–6/group, 
Figure 3A). One-way ANOVA followed by the Newman–Keuls post hoc test revealed that three-
month exposure to JUUL pods was associated with significant downregulation of mGluR5 expression 
in e-cig mint (p < 0.01) and e-cig mango (p < 0.05) groups as compared to the air control group (F2,14 = 
9.63, p = 0.002; n = 5–6/group) in the NAc-shell. However, there was no significant difference between 
e-cig mint and e-cig mango groups (Figure 3B). Additionally, three-month exposure to JUUL pods 
induced upregulation of mGluR5 expression in the HIP of e-cig mint (p < 0.01) and e-cig mango (p < 
0.05) groups as compared to the air control group (F2,14 = 7.02, p = 0.007; n = 5–6/group). There was no 
significant difference between the e-cig mint and e-cig mango groups (Figure 3C). 

Figure 2. Effect of 3-month JUUL pods exposure on mGluR1 protein expression. (A) There was
no significant change in the protein level of mGluR1 in the NAc-core. (B) mGluR1 expression was
significantly upregulated in e-cig mint (p < 0.01) and e-cig mango (p < 0.05) groups as compared to the
air control group in the NAc-shell. There was no significant difference between e-cig mint and e-cig
mango groups. (C) No significant change in mGluR1 expression was found in the HIP. Data expressed
as mean ± SEM; * p < 0.05 and ** p < 0.01; n = 5–6/group. Abbreviations: NAc-core, nucleus accumbens
core; NAc-shell, nucleus accumbens shell; HIP, hippocampus.

3.2. Effect of Three-Month Exposure to JUUL on mGluR5 Protein Expression

The effect of exposure to mint- or mango-flavored JUUL pods for three months on the expression
of mGluR5 was also measured. There was no significant change in the expression of mGluR5 among
e-cig mint, e-cig mango and air control groups in the NAc-core (F2,14 = 0.474, p > 0.05; n = 5–6/group,
Figure 3A). One-way ANOVA followed by the Newman–Keuls post hoc test revealed that three-month
exposure to JUUL pods was associated with significant downregulation of mGluR5 expression in e-cig
mint (p < 0.01) and e-cig mango (p < 0.05) groups as compared to the air control group (F2,14 = 9.63,
p = 0.002; n = 5–6/group) in the NAc-shell. However, there was no significant difference between e-cig
mint and e-cig mango groups (Figure 3B). Additionally, three-month exposure to JUUL pods induced
upregulation of mGluR5 expression in the HIP of e-cig mint (p < 0.01) and e-cig mango (p < 0.05)
groups as compared to the air control group (F2,14 = 7.02, p = 0.007; n = 5–6/group). There was no
significant difference between the e-cig mint and e-cig mango groups (Figure 3C).



Toxics 2020, 8, 95 5 of 13Toxics 2020, 8, x FOR PEER REVIEW 5 of 13 

 

 

Figure 3. Effect of 3-month JUUL pods exposure on mGluR5 protein expression. (A) There was no 
significant change in the protein level of mGluR5 in the NAc-core. (B) mGluR5 expression was 
significantly downregulated in e-cig mint (p < 0.01) and e-cig mango (p < 0.05) groups as compared to 
the air control group in the NAc-shell. There was no significant difference between e-cig mint and e-
cig mango groups. (C) mGluR5 expression was significantly upregulated in e-cig mint (p < 0.01) and 
e-cig mango (p < 0.05) groups as compared to the air control group in the HIP. There was no significant 
difference between e-cig mint and e-cig mango groups. Data expressed as mean ± SEM, * p < 0.05 and 
** p < 0.01; n = 5–6/group. Abbreviations: NAc-core, nucleus accumbens core; NAc-shell, nucleus 
accumbens shell; HIP, hippocampus. 

3.3. Effect of Three-Month Exposure to JUUL on GLT-1 Protein Expression 

We further intended to measure the effect of exposure to mint- or mango-flavored JUUL pods 
for three months on GLT-1 expression. Data analysis did not reveal any significant difference in the 
expression of GLT-1 in the NAc-core among e-cig mint, e-cig mango and air control groups (F2,14 = 
0.11, p > 0.05; n = 5–6/group, Figure 4A). One-way ANOVA followed by the Newman–Keuls post hoc 
test showed that JUUL exposure induced significant downregulation of GLT-1 expression in e-cig 
mint (p < 0.01) and e-cig mango (p < 0.01) groups as compared to the air control group in the NAc-
shell (F2,14 = 10.18, p = 0.0019; n = 5–6/group). However, there was no significant difference between e-
cig mint and e-cig mango groups (Figure 4B). In contrast to the NAc-shell, GLT-1 expression was 
upregulated in the HIP of e-cig mint (p < 0.001) and e-cig mango (p < 0.01) groups as compared to the 
air control group (F2,12 = 20.41, p = 0.0001; n = 5/group, Figure 4C). The Newman–Keuls post hoc test 
showed a significant increase in GLT-1 expression in the e-cig mint group as compared to the e-cig 
mango group (p < 0.05, Figure 4C). 

 
Figure 4. Effect of 3-month JUUL pods exposure on GLT-1 protein expression. (A) Statistical analysis 
did not show any significant change in GLT-1 protein level in the NAc-core. (B) GLT-1 expression 
was significantly increased in e-cig mint (p < 0.01) and e-cig mango (p < 0.01) groups as compared to 
the air control group in the NAc-shell. There was no significant difference in GLT-1 expression 
between e-cig mint and e-cig mango groups. (C) GLT-1 expression was significantly upregulated in 
e-cig mint (p < 0.0001) and e-cig mango (p < 0.001) groups as compared to the air control group in the 
HIP. However, the e-cig mint group showed significant upregulation in GLT-1 expression as 
compared to the e-cig mango group (p < 0.05). Data expressed as mean ± SEM; * p < 0.05, ** p < 0.01 
and *** p < 0.001; n = 5–6/group. Abbreviations: NAc-core, nucleus accumbens core; NAc-shell, 
nucleus accumbens shell; HIP, hippocampus. 

Figure 3. Effect of 3-month JUUL pods exposure on mGluR5 protein expression. (A) There was
no significant change in the protein level of mGluR5 in the NAc-core. (B) mGluR5 expression was
significantly downregulated in e-cig mint (p < 0.01) and e-cig mango (p < 0.05) groups as compared
to the air control group in the NAc-shell. There was no significant difference between e-cig mint and
e-cig mango groups. (C) mGluR5 expression was significantly upregulated in e-cig mint (p < 0.01) and
e-cig mango (p < 0.05) groups as compared to the air control group in the HIP. There was no significant
difference between e-cig mint and e-cig mango groups. Data expressed as mean ± SEM, * p < 0.05
and ** p < 0.01; n = 5–6/group. Abbreviations: NAc-core, nucleus accumbens core; NAc-shell, nucleus
accumbens shell; HIP, hippocampus.

3.3. Effect of Three-Month Exposure to JUUL on GLT-1 Protein Expression

We further intended to measure the effect of exposure to mint- or mango-flavored JUUL pods
for three months on GLT-1 expression. Data analysis did not reveal any significant difference in the
expression of GLT-1 in the NAc-core among e-cig mint, e-cig mango and air control groups (F2,14 = 0.11,
p > 0.05; n = 5–6/group, Figure 4A). One-way ANOVA followed by the Newman–Keuls post hoc test
showed that JUUL exposure induced significant downregulation of GLT-1 expression in e-cig mint
(p < 0.01) and e-cig mango (p < 0.01) groups as compared to the air control group in the NAc-shell
(F2,14 = 10.18, p = 0.0019; n = 5–6/group). However, there was no significant difference between
e-cig mint and e-cig mango groups (Figure 4B). In contrast to the NAc-shell, GLT-1 expression was
upregulated in the HIP of e-cig mint (p < 0.001) and e-cig mango (p < 0.01) groups as compared to the
air control group (F2,12 = 20.41, p = 0.0001; n = 5/group, Figure 4C). The Newman–Keuls post hoc test
showed a significant increase in GLT-1 expression in the e-cig mint group as compared to the e-cig
mango group (p < 0.05, Figure 4C).
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Figure 4. Effect of 3-month JUUL pods exposure on GLT-1 protein expression. (A) Statistical analysis
did not show any significant change in GLT-1 protein level in the NAc-core. (B) GLT-1 expression
was significantly increased in e-cig mint (p < 0.01) and e-cig mango (p < 0.01) groups as compared
to the air control group in the NAc-shell. There was no significant difference in GLT-1 expression
between e-cig mint and e-cig mango groups. (C) GLT-1 expression was significantly upregulated
in e-cig mint (p < 0.0001) and e-cig mango (p < 0.001) groups as compared to the air control group
in the HIP. However, the e-cig mint group showed significant upregulation in GLT-1 expression as
compared to the e-cig mango group (p < 0.05). Data expressed as mean ± SEM; * p < 0.05, ** p < 0.01 and
*** p < 0.001; n = 5–6/group. Abbreviations: NAc-core, nucleus accumbens core; NAc-shell, nucleus
accumbens shell; HIP, hippocampus.
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3.4. Effect of Three-Month Exposure to JUUL Pods on xCT Protein Expression

Three-month exposure to JUUL pods did not alter xCT protein expression in all studied brain
regions. Data analysis did not reveal any significant change in xCT expression among e-cig mint,
e-cig mango and air control groups in the NAc-core (F2,14 = 0.57, p > 0.05; n = 5–6/group, Figure 5A),
NAc-shell (F2,14 = 1.74, p > 0.05; n = 5–6/group, Figure 5B) and HIP (F2,14 = 0.66, p > 0.05; n = 5–6/group,
Figure 5C).
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Figure 5. Effect of 3-month JUUL pods exposure on xCT protein expression. (A) There was no
significant change in xCT expression between air control, e-cig mint and e-cig mango groups in the
NAc-core. (B) xCT expression was not changed between all groups in the NAc-shell. (C) There was no
significant change in xCT expression between all groups in the HIP. Data expressed as mean ± SEM;
n = 5–6/group. Abbreviations: NAc-core, nucleus accumbens core; NAc-shell, nucleus accumbens
shell; HIP, hippocampus.

3.5. Effect of Three-Month Exposure to JUUL Pods on p-PSD95 and PSD95 Protein Expression

Previous studies exhibited the association between the postsynaptic scaffolding proteins such
as PSD95 and the function of glutamate receptors [48–52]. We investigated whether changes in
glutamate receptors/transporters, due to three-month JUUL exposure, were associated with PSD95
alteration. Three-month exposure to JUUL selectively increased the expression of p-PSD95 and PSD95
protein levels in the NAc-shell but not in the NAc-core and HIP. Data analysis showed that JUUL
exposure for three months induced upregulation of p-PSD95 in the e-cig mint group (F2,14 = 5.31,
p = 0.019; n = 5–6/group) and PSD95 in the e-cig mint and e-cig mango groups (F2,14 = 9.07, p = 0.003;
n = 5–6/group) compared to the air control group in the NAc-shell. Three-month exposure to the e-cig
mint group increased p-PSD95 protein compared to the air control group (p < 0.01), with no significant
change when compared to the e-cig mango group. However, no significant change was observed
between the air control and e-cig mango groups (Figure 6b1). Both e-cig mint and e-cig mango groups
showed increases in PSD95 protein level compared to the air control group (p < 0.01, Figure 6b2).
The ratio of p-PSD95 to PSD95 was not altered between all tested groups in the NAc-shell (Figure 6b3).
Three-month exposure to JUUL did not alter the levels of p-PSD95 in the NAc-core (F2,14 = 0.02, p > 0.05;
n = 5–6/group) and HIP (F2,14 = 0.52, p > 0.05; n = 5–6/group). Similarly, three-month exposure to
JUUL did not alter the levels of PSD95 in the NAc-core (F2,12 = 0.19, p > 0.05; n = 5/group) and HIP
(F2,12 = 1.17, p > 0.05; n = 5–6/group, Figure 6a1,a2,c1,c2). The ratio of p-PSD95 to PSD95 was not
altered between all tested groups in the NAc-core and HIP (Figure 6b3,c3). The ratio was calculated by
dividing the p-PSD95 expression level by the PSD95 expression level in the same blot.
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Figure 6. Effect of 3-month JUUL pods exposure on p-PSD95 and PSD95 protein expression. There was no
significant change in p-PSD95 expression, (a1) and PSD95 expression, (a2) in the NAc-core. Accordingly,
there was no significant change in the p-PSD95/PSD95 ratio in the NAc-core (a3). p-PSD95 expression
was significantly increased in the e-cig mint group as compared to the air control (p < 0.01) and e-cig
mango (p < 0.05) groups in the NAc-shell; (b1). PSD95 expression was significantly upregulated in
e-cig mint (p < 0.05) and e-cig mango (p < 0.05) groups as compared to the air control; (b2). However,
there was no significant difference in the p-PSD95/PSD95 ratio between all groups in the NAc-shell
(b3). There was no significant change in the expression of p-PSD95, (c1) and PSD95, (c2). There was no
significant change in the p-PSD95/PSD95 ratio in the HIP (c3). Data expressed as mean ± SEM, * p < 0.05
and ** p < 0.01, detected bands at ≈95 kDa for p-PSD95 and PSD95; n = 5–6/group. Abbreviations:
NAc-core, nucleus accumbens core; NAc-shell, nucleus accumbens shell; HIP, hippocampus.

4. Discussion

We demonstrated in this study that three-month exposure to mint- or mango-flavored JUUL
pods (containing 59 mg /mL nicotine) altered the protein expression of mGluR1, mGluR5 and
GLT-1 in the NAc-shell and HIP. The NAc is implicated in the dependence on drugs of abuse,
including nicotine [53–55]. The NAc-core and NAc-shell received distinct but overlapping projections
from different brain regions, including the HIP (for review see [56,57]), which trigger different
functional responses. For example, the firing of dopaminergic projections from the VTA to NAc-shell
is associated with the rewarding stimulus of the drug. In contrast to the NAc-shell, these projections
sensitize the NAc-core and promote the transition to dependence status upon repeated exposure
to drugs of abuse such as nicotine (for review see [58]). The NAc-shell receives glutamatergic
projections from the infralimbic medial prefrontal cortex and the firing of these projections act to inhibit
motivated reward-seeking behaviors [59,60]. Ample evidence demonstrated the role of excitatory
neurotransmitters, such as glutamate, in mediating the reinforcing effects of nicotine in the NAc.
Nicotine self-administration enhanced glutamate transmission in the NAc-shell, and this effect was
attenuated by systemic treatment with mGluR2/3 agonist LY379268 [61]. Consistent with enhanced
glutamate release, nicotine exposure increased the ratio of AMPA/NMDA excitatory postsynaptic
currents, leading to higher excitability in dopaminergic neurons [62]. Moreover, microinfusions
of selective mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine (MPEP) into the NAc-shell
attenuated nicotine self-administration in Wistar rats [63]. While mGluR5 expression was not altered
in the NAc-core, our results showed that JUUL exposure induced downregulation of mGluR5 in
the NAc-shell. Although both JUUL mint and mango flavors induced a similar change in mGluR5
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expression, it seems that the mint flavor has a stronger mGluR5 downregulatory effect as revealed
by the statistical analysis. Multiple mechanisms might be proposed to underlie the nicotine-seeking
behavior. One hypothesis is that dependence on nicotine may depend on the action of glutamate at
mGluR5 [35]. Interestingly, activation of mGluR5 exerts anti-inflammatory effects by inhibition of
microglial activation and reduction in nitric oxide (NO), tumor necrosis factor-alpha (TNF-α) and
reactive oxygen species (ROS) production in vitro [64], as well as reduction in the protein and mRNA
expression of proinflammatory cytokines such as interleukin 1-beta (IL-1b), interleukin 6 (IL6) and
TNF-α in vivo [65]. Previously, our laboratory showed that chronic ethanol consumption induced
dysregulation of glucocorticoid receptors and upregulation of inflammatory mediators such as TNF-α,
High mobility group box 1 protein (HMGB1) and receptor for advanced glycation end products (RAGE)
in the NAc-shell but not in NAc-core [66,67], suggesting the disruption of NAc-shell activity in response
to ethanol dependence. The decrease in mGluR5 expression in the NAc-shell upon three-month
JUUL exposure may suggest disruption of glutamatergic activity in this brain area. Alternatively,
the upregulation of mGluR1 expression in the NAc-shell further supports the dysregulation of glutamate
homeostasis. mGluR1 is expressed in the brain areas of mesocorticolimbic pathways [68,69], and is
involved in nicotine dependence. It has been shown that repeated administration of nicotine for three
days increased mGluR1 expression in the amygdala and VTA [36]. Moreover, mGluR1 antagonist
significantly attenuated nicotine-seeking behavior in a rat model [38]. Previously, our lab showed that
rats consuming nicotine for four weeks exhibited upregulation of mGluR1 expression in the NAc [24].
Thus, JUULs may exert similar effects on mGluR1 expression to nicotine consumption.

Three-month JUUL exposure induced brain region-specific effects on the expression of GLT-1,
i.e., downregulation of this protein in the NAc-shell but not in the NAc-core. This finding is in line
with our previous study that showed that six-month exposure to e-cig vapor containing 24 mg/mL
nicotine reduced the expression of GLT-1 in the striatum with no effects in the prefrontal cortex
and HIP [17]. Moreover, chronic consumption of nicotine reduced GLT-1 expression in the NAc of
P rats [24], and Wistar rats after 12 h of withdrawal from nicotine self-administration [70]. It has been
suggested that reduction in GLT-1 expression in the NAc is linked to dependence on nicotine, ethanol,
methamphetamine and cocaine [21–24]. Interestingly, xCT protein expression was not altered in the
NAc and HIP after three-month JUUL exposure. It important to note that the effect of nicotine on
the expression of xCT may depend upon the dose and length of exposure as well as the target brain
region. For example, intravenous self-administration of nicotine (0.03 mg/kg/infusion) for 21 days
reduced xCT expression in the NAc and VTA but not in the cortex and amygdala [70]. Moreover,
chronic exposure to e-cig vapor containing 24 mg/mL nicotine was able to reduce xCT expression in
the striatum and HIP [17]. Knowing that neuroadaptation to the effects of nicotine may be developed
upon repeated exposure (for review see [71]), we postulated here that JUUL pods containing a high
nicotine concentration may be associated with a neuroadaptive mechanism involving the expression of
xCT in the NAc and HIP. Together, these findings suggest dysregulation in the glutamatergic system
in the NAc-shell, the brain region involved in the inhibition of drug-seeking behavior, but not the
NAc-core, which is associated with reinstatement to drugs of abuse-seeking behaviors [72].

JUUL-induced alterations in the NAc-shell were accompanied with increased expression of
phosphorylated and total scaffolding protein PSD95. The highly abundant postsynaptic PSD95
regulates synaptic plasticity and neurotransmission, especially AMPA and NMDA glutamatergic
neurotransmission [73–76]. Acute nicotine treatment in mice increased PSD95, which in turn increased
the availability of AMPA receptors [77]. In accordance, chronic nicotine exposure increased the
expression of PSD95 and AMPA receptors in the midbrain of a mouse model [78]. Our results may
indicate the presence of higher synaptic plasticity in the NAc-shell. This is supported by the fact that
chronic nicotine self-administration was associated with altered expression of ionotropic receptors [79],
which contribute to the hyperglutamatergic state [80] as well as increased neuronal plasticity [81].

Three-month JUUL exposure can lead to differential effects on the protein expression of mGluR5
and GLT-1 in the NAc and HIP. Three-month JUUL exposure significantly increased mGluR5 and
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GLT-1 expression in the HIP. The HIP has a major role in mediating the rewarding effect of nicotine
and associated learning and memory during nicotine dependence (for review see [82]). Acute and
chronic nicotine administration enhanced learning and memory, and these effects were associated
with enhanced hippocampal long-term potentiation (LTP) [83–85]. Alternatively, chronic nicotine
exposure was associated with neuroadaptation, which was associated with the development of
tolerance to the acute and withdrawal effects of nicotine [86,87]. Enhancement of LTP was associated
with activation of mGluR5 in male rats exposed to nicotine for two weeks [84]. Our findings in the
HIP suggest that three-month exposure to JUUL pods containing high nicotine levels may lead to
neuroadaptation, i.e., increased mGluR5 and GLT-1 expression. However, mint-flavored JUUL pods
were associated with relatively higher mGluR5 and GLT-1 expression compared to mango-flavored
JUUL pods. Future studies are warranted to address the differential effects of different additive flavors
on the addictive properties of e-cigs. One limitation in our study is that we tested female mice only.
It is recommended in future studies to test the effects of JUUL pods on male mice to determine whether
there are sex differences. Future studies may be extended to investigate the expression of current
protein markers in other brain regions such as the VTA to reveal the region-specific effects after JUUL
exposure. Lastly, further studies are warranted to investigate the effects of e-cigs in target proteins
using immunostainings.

In summary, this study demonstrated that three-month exposure to e-cig vapor, containing a
high nicotine concentration, induced differential effects on several targets of the glutamatergic system
in the NAc subregions and HIP, and probably similar to the effects induced by chronic nicotine
exposure. Three-month JUUL exposure induced an increase in mGluR1 expression and reduction
in mGluR5 and GLT-1 expression in the NAc-shell. However, the expression of mGluR5 and GLT-1
were increased in the HIP, with no change in their expression in the NAc-core. These findings suggest
dysregulation of glutamatergic system activity in the NAc-shell subregions and HIP in response to
chronic e-cig exposure.
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