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Abstract

Cathepsin B (CatB) is a cysteine proteolytic enzyme widely expressed in various cells and

mainly located in the lysosomes. It contributes to the pathogenesis and development of

many diseases. However, the role of CatB in viral myocarditis (VMC) has never been eluci-

dated. Here we generated the VMC model by intraperitoneal injection of coxsackievirus B3

(CVB3) into mice. At day 7 and day 28, we found CatB was significantly activated in hearts

from VMC mice. Compared with the wild-type mice receiving equal amount of CVB3, genetic

ablation of CatB (Ctsb-/-) significantly improved survival, reduced inflammatory cell infiltra-

tion, decreased serum level of cardiac troponin I, and ameliorated cardiac dysfunction, with-

out altering virus titers in hearts. Conversely, genetic deletion of cystatin C (Cstc-/-), which

markedly enhanced CatB levels in hearts, distinctly increased the severity of VMC. Further-

more, compared with the control, we found the inflammasome was activated in the hearts of

wild-type mice with VMC, which was attenuated in the hearts of Ctsb-/- mice but was further

enhanced in Cstc-/- mice. Consistently, the inflammasome-initiated pyroptosis was reduced

in Ctsb-/- mice hearts and further increased in Cstc-/- mice. These results suggest that CatB

aggravates CVB3-induced VMC probably through activating the inflammasome and promot-

ing pyroptosis. This finding might provide a novel strategy for VMC treatment.

Author summary

Severe VMC could lead to sudden cardiac death especially in youths, and is also the most

common cause of secondary dilated cardiomyopathy. However, we still lack effective and

specific clinical treatments currently. Therefore, further exploration of the pathogenesis

and new therapeutic targets are urgently needed. Our results implied that CatB, a cysteine

protease mainly located in the lysosome, is activated in the hearts of mice with VMC

induced by intraperitoneal injection of CVB3. Genetic deletion of CatB significantly

improves survival, attenuates cardiac inflammation, decreases serum cardiac troponin I

levels and alleviates cardiac dysfunction, without altering virus titers in hearts. However,
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ablation of its main endogenous inhibitor, cystatin C, distinctly exaggerates the disease

severity. Mechanistically, we found that CatB influences VMC probably by activating the

NLRP3 inflammasome and promoting caspase-1-induced pyroptosis. This may provide a

potential new therapeutic strategy for VMC.

Introduction

Myocarditis, defined as a nonspecific inflammatory disease of the myocardium, is most com-

monly caused by cardiotropic virus infection, especially for coxsackieviruses[1, 2]. The clinical

manifestations and severity vary among patients with viral myocarditis (VMC)[3]. Although

some patients only present mild or even self-limited symptoms, VMC accounts for 8.6% to

12% of sudden cardiac deaths in young people due to its resultant acute heart failure or ven-

tricular arrhythmias[4–6]. In addition, about 21% of patients with acute VMC may progress

into dilated cardiomyopathy (DCM), which may lead to repeated heart failure and is the major

reason for heart transplantation at present[7]. However, except for supportive care, no other

effective and specific therapies are proven effective for clinical use currently[8].

Cathepsin B (CatB) is an intracellular cysteine protease, mainly localized in the lysosome

[9]. By its involvement in many pathophysiologic processes including apoptosis, autophagy,

extracellular matrix turnover, inflammation and immune responses, CatB plays an important

role in many diseases, such as cancer, rheumatoid arthritis, cardiovascular diseases, etc[9–11].

It has also been demonstrated that CatB is involved in viral infectious diseases because of its

relations with virus entry, replication as well as virus-mediated cell apoptosis and immune

responses[12–14]. Specifically, a recent study showed that CatB was significantly upregulated

in muscle tissues of both patients with polymyositis and Guinea pigs with Coxsackievirus

B1-induced polymyositis, and administration of the CatB inhibitor attenuated inflammation

and apoptosis in muscle tissues of Guinea pigs with polymyositis[14]. Considering the similar-

ity between the pathophysiology of polymyositis and myocarditis, with an important inflam-

matory part in a context of viral infection in both cases, cumulated with the previous

demonstration of the role of CatB in the former, we hypothesized that CatB might also partici-

pate in the pathogenesis of Coxsackievirus B3 (CVB3)-induced myocarditis.

The inflammasome is an intracellular multiprotein complex consisting of three compo-

nents: a cytosolic pattern recognition receptor, the adaptor protein ASC (apoptosis-related

speck-like protein containing a caspase recruitment domain) and the cysteine protease procas-

pase-1[15]. The nucleotide-binding oligomerization domain (NOD)-like receptor family,

pyrin domain-containing protein 3 (NLRP3) is the most studied pattern recognition receptor

[15]. Upon activation, NLRP3 recruits ASC, which further recruits procaspase-1. Activation of

procaspase-1 can cleave pro-interleukin (IL)-1β and pro-IL-18 into mature IL-1β and IL-18,

which are then released into circulation to amply the inflammatory responses. In addition,

activated caspase-1 can also initiate a specific form of programmed cell death called pyroptosis

[15]. Different from apoptosis, pyroptosis is a death pathway accompanied by release of a

number of inflammatory cytokines, mainly including IL-1β and IL-18[16]. Specifically, the

activated capase-1 cleaves gasdermin D, releasing its N-terminal domain, which oligomerizes

in the membranes to form large pores causing subsequent membrane rupture and cell death

[17]. The inflammasome has been implicated in many inflammation-related diseases, such as

myocardial infarction and ischemia-reperfusion injury[18, 19]. Recently, formation of the

inflammasome has also been found in VMC both in patients and mice[20, 21]. Besides,

CatB contributes to VMC
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blockade of inflammasome activation by treating CVB3-inoculated mice with caspase-1 inhib-

itor Ac-YVAD-CHO significantly attenuated the severity of VMC[21].

According to previous data, CatB released from the lysosome is considered one of the

upstream activators of the NLRP3 inflammasome[22]. Extracellular stimuli, including viral

infection, could damage the lysosomes and release the lysosomal contents, including CatB,

into the cytosol[23]. These findings suggest that CatB may exaggerate VMC via regulating the

activation of the inflammasome.

In this study, we built the murine VMC model by intraperitoneal injection of CVB3, and

investigated whether and how CatB contributed to VMC development, using genetically CatB

knockout (Ctsb-/-) mice, as well as the mice deficient in cystatin C, which is an endogenous

inhibitor of papain-like cysteine cathespins, particularly potent for CatB[24].

Results

CatB is activated in both acute and chronic phases of CVB3-induced VMC

To investigate the role of CatB in VMC, we first generated the VMC model by intraperitoneal

injection of 1000 TCID50 of CVB3 into 4-week-old male C57BL/6 mice. Transthoracic echo-

cardiography was conducted, and mice were sacrificed on day 7 and day 28 postinfection (pi).

At both time points, the hematoxylin and eosin (HE) staining showed apparent inflammatory

infiltrates, and the echocardiography exhibited impaired cardiac function as evidenced by

decreased ejection fraction (EF) and fractional shortening (FS) in the model group compared

with the control (Fig 1, S1 and S2 Tables). These results suggest the successful establishment of

CVB3-induced myocarditis.

Next, we detected the expression and activity of CatB in the mice hearts. As shown in Fig 2,

the expression of activated CatB was significantly increased in CVB3-infected mice on both

day 7 and day 28 pi. Besides, cardiac CatB activity was also significantly enhanced 7 days after

virus inoculation (S1B Fig). This implies that CatB is probably involved in the pathogenesis of

VMC.

CatB exacerbates CVB3-induced cardiomyocyte damage and cardiac

dysfunction

To further explore the role of CatB in VMC, we used Ctsb-/- mice lacking CatB and cystatin C

deficient (Cstc-/-) mice which overexpress cathepsins to directly investigate the impact of CatB

on VMC. The deletion and overexpression of CatB in Ctsb-/- and Cstc-/- mice were verified by

western blot (Fig 3A) and CatB enzymatic activity assay (S1 Fig). Then, we compared cardiac

structure, cardiac function and survival among the Ctsb-/-, Cstc-/- and wildtype (WT) mice, and

found no significant differences in their baseline conditions (S2 Fig). Compared with 57.14%

in the WT+CVB3 group, the survival rate up to 28 days was significantly increased to 91.67%

in the Ctsb-/-+CVB3 group but dramatically decreased to 18.18% in the Cstc-/-+CVB3 group

(Fig 3B). Moreover, Ctsb-/- mice showed less inflammatory cell infiltration and lower patho-

logic scores whereas the Cstc-/- mice exhibited the contrary results on day 7 pi, compared with

the WT+CVB3 group (Fig 4A and 4B).

Serum cardiac troponin I (cTnI) level is a sensitive indicator of myocardial injury. As

expected, on day 7 pi, the serum cTnI level was lower in Ctsb-/- group but higher in Cstc-/-

group than that in WT+CVB3 group (Fig 4C).

We further assayed the effect of CatB on CVB3-mediated cardiac dysfunction. Deficiency

of CatB significantly improved EF and FS compared with the WT+CVB3 group. However,

accompanied with overexpressed CatB, Cstc-/- mice had reduced cardiac contractility

CatB contributes to VMC
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compared with the WT+CVB3 group (Fig 4D–4F, S3 Table). Together, these data indicate that

CatB promotes VMC.

Involvement of CatB in CVB3-induced VMC is independent of altering

viral replication

It has been reported that CatB promotes entry and replication of several viruses[12, 25]. Here

we tested if CatB affects CVB3 titers in hearts. As depicted in S3 Fig, the cardiac virus titers

exhibited no significant difference among the WT+CVB3, Ctsb-/-+CVB3 and Cstc-/-+CVB3

groups on both day 7 and day 28 pi. These data imply that CatB promotes CVB3-induced

VMC independently of altering viral replication.

Fig 1. The establishment of CVB3-induced VMC model. 4-week-old male C57BL/6 mice were injected intraperitoneally with 1000 TCID50 of

CVB3 virus or an equal amount of DMEM on day 0. (A) Representative HE staining of paraffin sections of heart tissues from VMC mice and

control mice on both day 7 and day 28 after virus injection. Scale bar: 50μm. (B) The pathologic score of myocarditis was assessed according to

the mononuclear infiltration foci and myocardial necrosis. (C) Representative M-mode echocardiographic images of VMC mice and control

mice on day 7 and day 28 post-infection. (D, E) Left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) from

the echocardiographic data for both day 7 and day 28 post-infection. (Con: control group; CVB3: coxsackievirus B3 group; Con: n = 10; CVB3:

n = 10; ���P<0.001 vs. Con-day 7; ##P<0.01 vs. Con-day 28; ###P<0.001 vs. Con-day 28).

https://doi.org/10.1371/journal.ppat.1006872.g001
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CatB enhances the activation of the NLRP3 inflammasome in

CVB3-induced myocarditis

Recent studies have demonstrated that the NLRP3 inflammasome was activated in the myocar-

dium of both patients and mice with VMC, and inhibiting caspase-1 activity significantly alle-

viated VMC[20, 21]. As CatB releasing from damaged lysosomes could activate the NLRP3

inflammasome[26], we hypothesized CatB might aggravate VMC through the NLRP3 inflam-

masome activation. The protein levels of NLRP3, ASC, caspase-1 p20, and serum IL-1β levels

had no difference at baseline of the uninfected knockout mice and WT mice (S4A and S4C

Fig). Because only two mice of the Cstc-/- group survived till day 28 pi, we examined the levels

of the components of the inflammasome in the mice hearts harvested on day 7. The levels of

these components of the NLRP3 inflammasome were markedly increased in the WT+CVB3

group compared with the WT group, suggesting the activation of the NLRP3 inflammasome

in VMC. Moreover, compared with the WT+CVB3 group, their levels were significantly

decreased in the Ctsb-/- group, but apparently enhanced in the Cstc-/- group (Fig 5A and 5C).

CatB promotes myocardial pyroptosis in CVB3-induced myocarditis

Pyroptosis is a newly discovered form of programmed cell death dependent on the activation

of the inflammatory caspases, including caspase-1[27]. We found the enhanced caspase-1

activity in WT+CVB3 group was significantly decreased in the Ctsb-/- group but further

increased in the Cstc-/- group (Fig 5B). In addition, the caspase-1-induced pyroptosis was

detected by the TUNEL staining, which showed less cell death in the Ctsb-/-+CVB3 group but

more in the Cstc-/-+CVB3 group, compared with the WT+CVB3 group (Fig 6). The levels of

caspase-1 activity and cell death detected by TUNEL showed no difference among the unin-

fected WT, Ctsb-/- and Cstc-/- mice (S4B and S5 Figs).

Fig 2. CatB was activated in hearts of CVB3-induced VMC mice. Hearts were harvested on day 7 and day 28 after

virus inoculation. Western blot analysis showed that cardiac expression of activated CatB was significantly enhanced in

the CVB3 group on day 7 (A) and day 28 (B) post-infection compared with the control group. (Con: control group;

CVB3: coxsackievirus B3 group; Con: n = 10; CVB3: n = 10; ��P<0.01 vs. Con; ���P<0.001 vs. Con).

https://doi.org/10.1371/journal.ppat.1006872.g002

CatB contributes to VMC
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Discussion

The present study determined the role of CatB in CVB3-induced myocarditis. We found that

CatB was activated in the hearts of CVB3-infected mice both in the acute and chronic phases,

accompanied by the activation of the inflammasome. CatB deficiency markedly suppressed the

activation of the inflammasome, reduced caspase-1-induced pyroptosis, attenuated cardiac

inflammation, alleviated cardiomyocyte injury, prevented cardiac dysfunction and improved

Fig 3. CatB deficiency increased while cystatin C deficiency decreased the survival of CVB3-induced VMC. Mice

were randomly assigned into 4 groups: WT group (n = 10); WT+CVB3 group (n = 14); Ctsb-/-+CVB3 group (n = 12)

and Cstc-/-+CVB3 group (n = 11). Each mouse of the latter three groups received 1000 TCID50 of CVB3

intraperitoneally, while the WT group received an equal amount of DMEM. (A) Western blot analysis of actived CatB

expression to verify the deletion and overexpression of CatB in Ctsb-/- mice and Cstc-/- mice. (B) Survival was

monitored daily until day 28 post-infection. The Kaplan-Meier curve showed a significant increase in survival in

Ctsb-/-+CVB3 group and a remarkable decrease in Cstc-/-+CVB3 group, compared with WT+CVB3 group. (WT: wild-

type; �P<0.05 vs. WT group; #P<0.05 vs. WT+CVB3 group; &&P<0.01 vs. Ctsb-/-+CVB3 group).

https://doi.org/10.1371/journal.ppat.1006872.g003

CatB contributes to VMC
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Fig 4. CatB deficiency alleviated while cystatin C deficiency aggravated the severity of CVB3-induced VMC. (A, B)

Representative HE staining in hearts from mice of indicated intervention. Scale bar: 50μm. The HE staining showed the

infiltration of inflammatory cells and pathologic score was significantly decreased in Ctsb-/-+CVB3 group while increased in

Cstc-/-+CVB3 group on day 7 pi, compared with WT+CVB3 group. (C) The serum cTnI level was significantly lower in

Ctsb-/-+CVB3 group and higher in Cstc-/-+CVB3 group than the WT+CVB3 group on day 7 pi. (D-F) The echocardiographic data

showed that cardiac dysfunction caused by CVB3 infection was significantly alleviated in Ctsb-/-+CVB3 group, though there was

no statistical difference between the Cstc-/-+CVB3 group and the WT+CVB3 group. (WT group: n = 10; WT+CVB3 group:

n = 14; Ctsb-/-+CVB3 group: n = 12; Cstc-/-+CVB3 group: n = 11; ���P<0.001 vs. WT group; #P<0.05 vs. WT+CVB3 group;

&P<0.05 vs. Ctsb-/-+CVB3 group; &&P<0.01 vs. Ctsb-/-+CVB3 group).

https://doi.org/10.1371/journal.ppat.1006872.g004

CatB contributes to VMC
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survival. In contrast, ablation of cystatin C significantly increased the expression of CatB, pro-

moted the activation of the inflammasome, enhanced myocardial pyroptosis, and increased

the severity of VMC. Based on these results, we concluded that CatB aggravated CVB3-in-

duced myocarditis probably by activating the inflammasome and promoting pyroptosis.

The lysosome is a ubiquitous intracellular organelle essential for cell homeostasis. It partici-

pates in degradation of macromolecules, endocytosis, autophagy, lysosomal exocytosis, and

cell death signaling[28]. These functions of the lysosome largely depend on the hydrolases it

contains[28]. CatB is one of the most important lysosomal cysteine proteases with highest

activity in the acidic environment[29]. Besides the environmental pH value, CatB activity is

mainly influenced by its inhibitors. Cystatin C is the most important endogenous inhibitor of

CatB, both inhibiting its activity and synthesis[30]. Extensive studies have documented the

crucial involvement of CatB in many diseases, including viral infection[31–33]. For example,

Kartik Chandran et al. found that proteolysis of virus glycoprotein 1 by CatB was necessary for

the entry of Ebola virus into the host cell[12]. In another study, expression of CatB was found

dramatically increased in Dengue virus (DENV)-infected HepG2 cells, and both treating with

Fig 5. CatB deficiency reduced while cystatin C deficiency increased the activation of the NLRP3 inflammasome

induced by CVB3 infection. (A) Western blot analysis of the expression of the components of the inflammasome

including NLRP3, ASC, caspase-1 p-20 in hearts from mice receiving different treatments. (B) Cardiac caspase-1 activity

was determined by a commercial assay kit and presented as fold change compared with the WT mice receiving DMEM.

(C) Compared with WT+CVB3 group, CatB deficiency significantly decreased the serum IL-1β level while cystatin C

deletion increased the level of IL-1β. (WT group: n = 10; WT+CVB3 group: n = 14; Ctsb-/-+CVB3 group: n = 12;

Cstc-/-+CVB3 group: n = 11; ��P<0.01 vs. WT group; ���P<0.001 vs. WT group; #P<0.05 vs. WT+CVB3 group;

##P<0.01 vs. WT+CVB3 group; ###P<0.001 vs. WT+CVB3 group; &&P<0.01 vs. Ctsb-/-+CVB3 group; &&&P<0.001 vs.
Ctsb-/-+CVB3 group).

https://doi.org/10.1371/journal.ppat.1006872.g005

CatB contributes to VMC
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Fig 6. CatB deficiency reduced while cystatin C deficiency increased myocardial pyroptosis caused by CVB3

inoculation. (A) Representative cardiac TUNEL staining of mice with different treatments. Scale bar: 50μm. (B) The

statistical result showed the increased TUNEL positive staining cells in the WT+CVB3 group were significantly

decreased in the Ctsb-/-+CVB3 group, but further increased in the Cstc-/-+CVB3 group. (WT group: n = 10; WT+CVB3

group: n = 14; Ctsb-/-+CVB3 group: n = 12; Cstc-/-+CVB3 group: n = 11; ���P<0.001 vs. WT group; ##P<0.01 vs. WT

+CVB3 group; &&&P<0.001 vs. Ctsb-/-+CVB3 group).

https://doi.org/10.1371/journal.ppat.1006872.g006

CatB contributes to VMC
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CatB inhibitor and RNAi knockdown of CatB reduced the level of cleaved caspase-3, suggest-

ing a role of CatB in DENV-induced apoptosis[34]. Moreover, CatB level was also increased in

both muscle and lung tissues of Guinea pigs with CVB1-induced polymyositis, and inhibition

of CatB with CA-074Me exerted a protective effect by alleviating inflammation and apoptosis

[14, 35]. Our research demonstrates that myocardial activated CatB levels are enhanced both

in the acute and chronic phases of CVB3-induced VMC. Absence of CatB significantly attenu-

ates, while overexpression of CatB by ablation of cystatin C exacerbates CVB3-induced VMC.

According to previous data, the possible mechanisms underlying CatB-mediated effects

include: degradation of extracellular matrix (ECM), induction of cell death, activation of the

inflammasome, participation in autophagy etc[22, 34, 36–39]. Many pathogens, including

viruses, can activate the inflammasome and induce pyroptosis[40]. Our study focused on the

effect of CatB on the inflammasome activation during CVB3 infection. Consistent with a pre-

vious study[21], our data showed that the inflammasome was activated and the inflamma-

some-induced pyroptosis was increased in the hearts of CVB3-inoculated mice. Furthermore,

this phenomenon was blocked in Ctsb-/- mice but more apparent in Cstc-/- mice, suggesting

that CatB promotes the activation of the inflammasome and pyroptosis in VMC. It has been

verified that inhibiting inflammasome activation by treating mice with caspase-1 inhibitor sig-

nificantly alleviated CVB3-induced myocarditis[21]. A combination of this fact and our results

confirmed our hypothesis that CatB exaggerated VMC partially by regulating the activation of

the inflammasome and its resultant pyroptosis.

Cardiac viral load is one of the key factors that determine the severity and progress of

VMC. The effect of CatB on virus replication is rather complicated. One study proved that,

compared with the WT mice, Ctsb-/- mice showed no difference in virus replication and time

to death when challenged with lethal mouse-adapted Zaire ebolavirus[41]. In our CVB3-in-

duced VMC model, we demonstrate that deletion of CatB and cystatin C had no impact on

cardiac virus titers of mice with VMC on both day 7 and day 28 pi. This suggests that the influ-

ence of CatB on VMC was independent of affecting CVB3 replication.

Our results reveal the pathogenic role of CatB in CVB3-induced myocarditis, suggesting

that inhibition of CatB could represent a promising treatment for VMC. In fact, CatB has been

a hopeful target for pharmacological therapy of several kinds of diseases[42, 43]. Treatment

with the CatB selective inhibitor CA074 greatly suppressed bone metastasis of breast cancer in

a 4T1.2 murine model[43]. The broad-spectrum cathepsin inhibitor E64d and the specific

CatB inhibitor CA-074Me were both proved capable of reducing brain β-amyloid peptides and

improving memory in the murine Alzheimer’s disease model[42]. The therapeutic effect of

these inhibitors on VMC could also be investigated, and this may provide a new approach to

treating VMC.

However, there are still a few limitations of our study. First, cystatin C is the endogenous

inhibitor of papain-like cysteine cathepsins, but not specific for CatB. Thus, the aggravation of

the disease severity in infected cystatin C knockout mice is a comprehensive result of overex-

pression of several kinds of cathepsins, but not solely due to the increased levels of CatB. Sec-

ond, deficiency of CatB and cystatin C had no effect on cardiac CVB3 replication 7 and 28

days after virus infection, and we only determined the cardiac function within 28 days pi in

our study. It is still necessary to detect cardiac virus titers and cardiac function in a longer

time. Third, as far as we know, in addition to caspase-1 activation, there is no any other specific

strategy to detect pyroptosis. We used TUNEL staining, besides caspase-1 activation, to dem-

onstrate pyroptosis which is in accordance with other reports[44, 45], but the specificity may

be limited.

To sum up, our study demonstrates that CatB aggravates CVB3-induced myocarditis and

the one pathway, induction of the inflammasome and pyroptosis, has been shown to be a result

CatB contributes to VMC
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of cathepsin B activity in this murine model of VMC. CatB may be a potential therapeutic tar-

get against VMC.

Materials and methods

Ethics statement

All animal experiments were approved by the ethical board of the Animal Care and Use Com-

mittee of Zhejiang University (zju201308-1-01-085), and were performed according to Guide

for the Care and Use of Laboratory Animals of the U.S. National Institutes of Health. All

efforts were made to minimize the number of animals and their suffering.

Mice

The male C57BL/6 mice were purchased from Shanghai Slac Laboratory Animal Co. Ltd

(Shanghai, China). The breeding pairs of both Ctsb-/- mice and Cstc-/- mice in C57BL/6J

background were provided by Professor Guo-ping Shi (Harvard Medical School, MA, USA).

The Ctsb-/- mice were generated in the laboratory of Professor Shi[46], and the Cstc-/- mice

were bought from the Jackson Laboratories[47]. Mice at 4 weeks of age were used in all

experiments.

HeLa cells and virus

HeLa cells were purchased from American Type Culture Collection (ATCC) and cultured in

Dulbecco’s modified eagle medium (DMEM) with high glucose (Shanghai Pufei Biotech Co.,

Ltd, China). The CVB3 (3m strain, a mutant of Nancy strain) was purchased from Wuhan

Institute of Virology, Chinese Academy of Sciences, and preserved in Institute of Hyperten-

sion and Department of Internal Medicine, Tongji Hospital, Tongji medical college, Huaz-

hong University of Science and Technology, China and stored at -80˚C. The virus was

amplified by infecting HeLa cells, subsequent freeze-thaw cycles and collection of the superna-

tants containing viruses. The virus titer was determined by a 50% tissue culture infectious dose

(TCID50) assay of HeLa cell monolayer as previously described[48].

Animal grouping and virus infection

To investigate the involvement of CatB in VMC, we randomly assigned the 4-week-old male

C57BL/6 mice into two groups: control group (n = 10) and CVB3 group (n = 10). Then, to fur-

ther evaluate the effect of CatB on the severity of VMC, mice were divided into four groups:

WT group (n = 10, 4-week-old male C57BL/6 mice), WT+CVB3 group (n = 14, 4-week-

old male C57BL/6 mice), Ctsb-/-+CVB3 group (n = 12, 4-week-old male Ctsb-/- mice),

Cstc-/-+CVB3 group (n = 11, 4-week-old male Cstc-/- mice). Each mouse of the CVB3 groups

was intraperitoneally injected with 1000 TCID50 of CVB3 to induce VMC, while the other

groups received an equal amount of DMEM.

Echocardiography

Transthoracic echocardiography was performed using the Vevo 2100 ultrasound imaging sys-

tem (VisualSonics, Toronto, Canada) after anesthetization by isoflurane inhalation on day 7,

day 14 and day 28 following virus injection. The echocardiographic data such as left ventricu-

lar ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were then mea-

sured blindly according to the operator’s manual.
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Histology and myocarditis grading

Mice were sacrificed and their hearts were harvested on day 7 and day 28 after CVB3 infection.

The hearts were fixed in 10% phosphate-buffered formalin, embedded in paraffin, sectioned

and then stained with hematoxylin and eosin. As previously described, the severity of myocar-

ditis was assessed using a 0–4 scale, in which 0 = no inflammation; 1 = one to five distinct

mononuclear inflammatory foci with involvement of 5% or less of the cross-sectional area;

2 = more than five distinct mononuclear inflammatory foci, or involvement of between 5%

and 20% of the cross-sectional area; 3 = diffuse mononuclear inflammation involving over

20% of the area, without necrosis; 4 = diffuse inflammation with necrosis[49].

Quantification of virus titers in mice hearts

Mouse heart tissues were aseptically obtained, weighed and homogenized in DMEM. After

repeated freeze-thaw cycles, the samples were centrifuged at 300xg for 10 minutes, and the

supernatants were collected. Then, the supernatants were used to determine the virus titers as

previously described[48].

Determination of serum cTnI and IL-1β levels

Levels of serum cTnI and IL-1β were determined using the commercial enzyme-linked immu-

nosorbent assay (ELISA) kits (Cloud-Clone Corporation, Houston, TX) respectively, following

the manufacturer’s instruction manuals.

Western blot analysis

The frozen heart tissues were homogenized and then lysed using RIPA lysis buffer (Beyotime

Biotechnology, China) added with the protease inhibitor (Thermo Fisher Scientific, MA). Pro-

tein samples were separated by SDS-PAGE electrophoresis and transferred to polyvinylidene

difluoride (PVDF) membranes. The membranes were incubated with primary antibodies over-

night and then with secondary antibodies for another hour. Finally, the bands were visualized

using ECL solution (Merk Millipore, MA). The following antibodies were used: CatB antibody

(1:200 dilution) from Santa Cruz, NLRP3 antibody (1:1000 dilution) from Abcam, ASC anti-

body (1:1000 dilution) from Millipore, caspase-1 antibody (1:1000 dilution) from Abcam, β-

actin antibody (1:3000 dilution) from Santa Cruz, Horseradish peroxidase (HRP)- conjugated

anti-rabbit and anti-mouse IgG (1:3000) from Santa Cruz. Densitometric quantification of the

bands were performed using ImagePro Plus (Media Cybernetics, Warrendale, PA).

Caspase-1 activity assay

The commercial Caspase-1 Activity Assay Kit (Beyotime Biotechnology, China) was applied

to detect the caspase-1 activity in heart tissues. The tissue lysates were centrifuged at 16,000–

20,000 g for 15 minutes, and the supernatants were collected. Meanwhile, an appropriate

amount of the supernatants from each sample were incubated with the substrate Ac-YVAD-

pNA in a 96-well plate for 60–120 minutes at 37˚C. The absorbance values of the products

pNA at 405 nm (OD405) were measured by using the microplate reader (Bio-Rad, Hercules,

CA). Then, the activities of caspase-1 were calculated based on the above results and were

finally shown as fold changes compared with control.

CatB activity assay

Cardiac CatB activity was determined by using a commercial Cathepsin B Activity Assay Kit

(Fluorometric) (Abcam, England) according to the instructions. The appropriate amount of
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heart tissues lysates was incubated with CatB substrate in the 96-well black plates with clear

bottoms for 60–120 minutes at 37˚C protected from light. The fluorometric absorbance was

then measured at the Ex/Em of 400/505nm by using the microplate reader (Bio-Rad, Hercules,

CA). The results were shown as relative fluorescence units (RFU) per microgram of protein.

TUNEL assay

Myocardial apoptosis was detected using the terminal deoxynucleotide transferase dUTP nick

end labeling (TUNEL) kit (Roche Life Science, Switzerland). The frozen sections were fixed in

4% paraformaldehyde and incubated with 0.2% TritonX-100 solution to break the cell mem-

branes. The sections were then incubated with a mixture solution of enzyme solution and label

solution for 1–1.5 hours shielded from light. The number of TUNEL-positive cells was counted

under the fluorescence microscope.

Statistical analysis

All values are shown as mean±SEM. When determining the statistical differences, unpaired

student’s test was used between two groups, whereas ANOVA followed by Bonferroni multiple

comparison test was applied among three or more groups. Kaplan-Meier curve was used to

analyze the survival rates. P<0.05 was considered statistically significant. All the statistical

analyses were performed using the GraphPad Prism (version 6.0).

Supporting information

S1 Fig. CatB activity was enhanced in hearts of CVB3-infected mice on day 7 postinfection.

(A) The CatB activity was determined in the hearts of uninfected Ctsb-/-, Cstc-/- and WT mice

to verify the deletion and overexpression of CatB in Ctsb-/- mice and Cstc-/- mice. (n = 3 for

each group; �P<0.05 vs. WT-con group; ��P<0.01 vs. WT-con group; ###P<0.001 vs. Ctsb-/--
con group) (B) The enhanced cardiac CatB activity in WT+CVB3 group was significantly

decreased in Ctsb-/-+CVB3 group but further increased in Cstc-/-+CVB3 group. (WT group:

n = 3; WT+CVB3 group: n = 5; Ctsb-/-+CVB3 group: n = 3; Cstc-/-+CVB3 group: n = 3;
�P<0.05 vs. WT group; #P<0.05 vs. WT+CVB3 group; &&&P<0.001 vs. Ctsb-/-+CVB3 group).

(TIF)

S2 Fig. The cardiac structure, cardiac function and survival conditions have no difference

among the uninfected Ctsb-/-, Cstc-/- and WT mice. (A) Representative HE staining in hearts

from the three kinds of mice. Scale bar: 50μm. (n = 3 for each group) (B-C) The echocardio-

graphic data showed no statistical difference among the three groups. (WT group: n = 6;

Ctsb-/- group: n = 5; Cstc-/- group: n = 5) (D) The Kaplan-Meier curve showed no death among

the three groups in the indicated period. (WT group: n = 6; Ctsb-/- group: n = 5; Cstc-/- group:

n = 5).

(TIF)

S3 Fig. The effect of CatB on VMC was independent of altering cardiac viral replication.

Genetic ablation of CatB or cystatin C had no impact on cardiac virus titers in mice 7 days (A)

(WT+CVB3 group: n = 5; Ctsb-/-+CVB3 group: n = 5; Cstc-/-+CVB3 group: n = 5) and 28 days

after CVB3 injection (B) (WT+CVB3 group: n = 4; Ctsb-/-+CVB3 group: n = 3; Cstc-/-+CVB3

group: n = 2).

(TIF)

S4 Fig. The baseline inflammasome activation was similar in the hearts of the uninfected

Ctsb-/-, Cstc-/- and WT mice. (A) Western blot analysis of the expression of the components of
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the inflammasome including NLRP3, ASC, caspase-1 p-20 in hearts from the three groups of

mice. (n = 3 for each group) (B) Cardiac caspase-1 activity was determined and presented as

fold change compared with the WT mice. (n = 3 for each group) (C) Serum IL-1β level was

detected by ELISA and had no difference among the three kinds of mice. (WT group: n = 5,

Ctsb-/- group: n = 5; Cstc-/- group: n = 3).

(TIF)

S5 Fig. The baseline percentage of cardiac TUNEL staining positive cells was similar in the

hearts of the uninfected Ctsb-/-, Cstc-/- and WT mice. (A) Representative cardiac TUNEL

staining of mice with different genetic backgrounds. Scale bar: 100μm. (B) The statistical result

of TUNEL exhibited no difference among the three kinds of mice. (n = 3 for each group).

(TIF)

S1 Table. Echocardiographic Parameters of Mice with Indicated Treatment (Day 7 post-

infection). IVS: interventricular septum; LVID: left ventricular internal dimension; LVPW:

left ventricular posterior Wall; EF: ejection fraction; FS: fractional shortening; d: diastole; s:

systole; CVB3: coxsackievirus B3; n = 10 for control; n = 10 for CVB3; Data presented as

mean ± SE. �P<0.05 vs. control; ��P<0.01 vs. control; ���P<0.001 vs. Control.

(DOC)

S2 Table. Echocardiographic Parameters of Mice with Indicated Treatment (Day 28 post-

infection). IVS: interventricular septum; LVID: left ventricular internal dimension; LVPW:

left ventricular posterior Wall; EF: ejection fraction; FS: fractional shortening; d: diastole; s:

systole; CVB3: coxsackievirus B3; n = 10 for control; n = 10 for CVB3; Data presented as

mean ± SE. #P<0.05 vs. Control; ##P<0.01 vs. Control; ###P<0.001 vs. Control.

(DOC)

S3 Table. Echocardiographic Parameters of Mice with Indicated Treatment (Day 7, 14, 28

post-infection). IVS: interventricular septum; LVID: left ventricular internal dimension;

LVPW: left ventricular posterior Wall; EF: ejection fraction; FS: fractional shortening; d:

diastole; s: systole; WT: wild-type; CVB3: coxsackievirus B3; Ctsb-/-: cathepsin B knockout;

Cstc-/-: cystatin C knockout. n = 10 for WT; n = 14 for WT+CVB3; n = 12 for Ctsb-/-+CVB3;

n = 11 for Cstc-/-+CVB3; Data presented as mean ± SE. �P<0.05 vs. WT; ��P<0.01 vs. WT;
���P<0.001 vs. WT; #P<0.05 vs. WT+CVB3; &&P<0.01 vs. Ctsb-/-+CVB3.

(DOC)
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