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Abstract

Achieving significant adhesion to soft tissues while minimizing tissue damage poses a 

considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive 

chemistry, typically inducing a significant inflammatory response. Staples are fraught with 

limitations including high-localized tissue stress and increased risk of infection, and nerve and 

blood vessel damage. Here, inspired by the endoparasite Pomphorhynchus laevis which swells its 

proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array 

that mechanically interlocks with tissue through swellable microneedle tips, achieving ~ 3.5 fold 

increase in adhesion strength compared to staples in skin graft fixation, and removal force of ~ 4.5 

N/cm2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) 

swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with 

minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this 
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design provides universal soft tissue adhesion with minimal damage, less traumatic removal, 

reduced risk of infection and delivery of bioactive therapeutics.

Introduction

Achieving significant levels of adhesion to soft tissues presents considerable challenges, 

especially when tissues are wet1, 2. Chemical adhesives, such as cyanoacrylate, adhere 

strongly to tissues by a reactive exothermic covalent cross-linking reaction. However, these 

adhesives often cure too fast or too slowly and release toxic degradation products such as 

formaldehyde, leading to an intense inflammatory response3. While clinically utilized fibrin 

glue can effectively bond to wet tissue without a significant inflammatory response, it 

exhibits low strength of adhesion due to poor cohesive properties4, and can be challenging to 

apply as the polymerization time is difficult to control during placement. Alternatively, 

biocompatible hydrogel adhesives5, 6 that covalently bond to specific tissues can achieve a 

significant level of adhesion yet their effectiveness depends on the presence of surface 

biomolecules with specific functional groups (ex, NH2, SH, or COOH). Therefore, the 

chemistry must be tailored for each tissue and hydrogel adhesives do not adhere strongly to 

tissues such as skin. Also, it is critical to note that adhesives that rely on chemical bonding 

can easily be fouled in the presence of blood, thus compromising their efficacy in many 

surgical settings. For universal use, gold standard sutures and staples based on mechanical 

fixation are widely used7–9, however their placement can extend operating times as the 

tissue often must be manipulated before each pass of a suture needle. Sutures are difficult to 

place in small spaces (i.e. during laparoscopic procedures)10, and do not work effectively for 

repair of many tissues including the dura mater7, urethral defects8, and lung tissue9. While 

staples are typically quicker and easier to place than sutures, they can cause significant 

tissue damage, scarring, and excessive depth of tissue penetration can result in nerve and 

blood vessel damage11. Staples also pose a higher risk of developing a wound infection 

compared to sutures12. There are several unmet clinical needs for adhesives to affix 

connective tissues including tendons and ligaments, to improve contact between tissues to 

reduce motion of tissue grafts, and to seal tissues for prevention of fluid (intestine) or air 

(lung) leaks. New adhesives are also needed to prevent formation of seromas following 

operations that create dead space between layers of tissue (e.g. abdominoplasty), thus 

avoiding the need for drains that increase the risk of infection and potential necessity for 

reoperation13.

A suitable platform approach to overcome the limitations of existing adhesives should 

ideally avoid the use of reactive chemistry, provide strong tissue adhesion in both normal 

and shear directions, be amenable to quick application, be simple to position over the target 

site, be removable (or degradable) with minimal tissue damage, provide adhesion to 

dynamic tissue surfaces while withstanding multiple extension/compression cycles, 

minimize the risk of infection, and have the capacity to deliver therapeutics. Compared to 

glues, sutures, and staples, tissue adhesive tapes have shown significant advantages 

including reduced procedure times, reduced scarring, ability to spread tissue forces over a 

larger surface area, and enhanced tissue-handling14–16. Additionally, adhesive tapes may be 

useful as an internal equivalent of a transdermal drug delivery patch to deliver drugs such as 
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antibacterial, pro-regenerative, or anti-inflammatory agents to target tissues. While barrier 

membranes and hernia meshes are routinely used clinically, these typically provide minimal 

adhesion, and often several sutures or tacks are used for fixation. Tape adhesives with hook-

like protrusions have been developed, however their adhesion to tissue is fundamentally 

limited to surface entanglement without penetration of the tissue17.

In seeking an optimal method of universal soft tissue adhesion with minimal tissue damage, 

we looked for inspiration from living organisms that have through the course of evolution 

adapted this function. Endoparasitic worms known as spiny-headed worms use a proboscis 

to penetrate through tissue. Species, such as Pomphorhynchus laevis, secure firm anchorage 

to the fish intestinal wall by expanding a bulb using retractor muscles at the base of the 

proboscis following penetration18. Using the adaptable morphology of the worm proboscis, 

we looked to create a structured biphasic microneedle (MN) with optimal characteristics for 

needle insertion and retention in tissue.

Here, we demonstrate a highly engineered MN with a shape change swellable tip that 

facilitates mechanical interlocking with tissue (Fig. 1a). This design minimizes the force 

needed for tissue penetration, as the smooth, cone-shaped needles can be inserted into tissue 

in a dry (stiff) state and do not include protruding barb features, associated with other 

proposed MN based adhesive platforms19. Significant pull-out force can be achieved 

through the rapid increased cross sectional area that occurs with swelling at the needle tips 

upon contact with water (in tissue), leading to localized tissue deformation and subsequent 

interlocking. Thebio-inspired MN adhesive showed high levels of adhesion with wet tissues 

such as skin and intestine tissue regardless of differences in surface texture. Additionally, 

strong fixation can be achieved in dynamic tissues during multiple cycles of movement and 

since increased pull-out forces are achieved via swelling within tissue, the soft MN tips (i.e. 

reduced modulus) enable removal without significantly damaging the tissue. Furthermore, 

unlike stiff MNs that may break during removal from tissue, the modulus change due to 

swelling prevents breakage of the swollen MNs.

Results

Bio-inspired microneedle array with an amphiphilic block copolymer design and a 
biphasic structure

To create a stimulus responsive MN platform with low penetration force and strong 

adhesion, we pursued a double-layered MN design with selective localization of swellable 

material in the tip region. Following preferential distal swelling, each MN had both soft 

(outer) and stiff (inner) regions. In addition to having a MN platform comprising both 

swellable and non-swellable components, we sought to control the mechanical and water 

permeation properties of the swellable material, while promoting significant interaction 

between the soft outer layer and the stiff inner layer to prevent delamination. For this 

purpose, we considered an amphiphilic block copolymer (BCP) design that exhibits 

selective responsiveness to stimuli such as the presence of aqueous or organic solvents20, 21. 

We envisioned that dual hydrophilic-hydrophobic properties of the outer layer would enable 

rapid absorption of water and promote intimate interaction with the non-swellable inner 

hydrophobic region. Block copolymers contain two or more chains connected by covalent 
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bonds that offer a means of combining the desirable characteristics of different polymers 

into a hybrid material22. The mechanical properties and swellability of the outer region of 

the MNs can be controlled by manipulating the overall average molecular weight of the 

polymer and the weight fraction of each block20, 23. In this study, we chose a polystyrene-

block-poly(acrylic acid) (PS-b-PAA) block copolymer as the swellable material and PS 

homopolymer as a non-swellable material. PAA is a well-known super-absorbent polymer 

material used in several biomaterials-based strategies and in consumer products such as 

diapers that possesses COOH groups that quickly become ionized in the presence of water. 

In contrast, PS exhibits mechanical strength and structural integrity without swelling. As 

predicted, high volume expansion occurred when PAA was the major block component 

(over 70% in weight fraction). The mechanical robustness of the block copolymer could be 

strengthened by increasing the weight fraction of the PS block (Supplementary Fig. S1). 

Interestingly, the stiffness of the block copolymer in its swollen state, with PS of 25% 

weight fraction, approximates that of skin or intestine tissue (Supplementary Fig. S1), which 

reduces the risk of underlying tissue damage without significantly compromising the 

interlocking mechanism. To permit rapid water penetration into the PS-b-PAA layer when 

the PS block preferentially assembles at the air-copolymer surface, we selected a PS block 

with a relatively low molecular weight (<100,000 g/mol) that minimizes interfacial surface 

area coverage due to short polymer chains. To achieve this, PS-b-PAA was prepared from 

the hydrolysis of poly(styrene-block-tert-butyl acrylate) (PS-b-PtBA) with number average 

molecular weights (Mn) of 26,000 gmol−1 for PS and 128,000 gmol−1 for PtBA. Complete 

conversion of PtBA to PAA was confirmed by NMR (Supplementary Fig. S2). For 

functional testing in tissue, we selected swellable tips fabricated with PS-b-PAA with Mn of 

26,000 g mol−1 and 76,000 g mol−1 for PS and PAA, respectively, and a PS weight fraction 

of ~ 25%.

As shown in Fig. 1b, a double-layered MN array having water-swellable tips was fabricated 

by solvent-casting a PS-b-PAA solution in DMF on a PDMS mold with a 10x10 array of 

conical cavities within a 1 cm2 area. Drying of the solvent prompted the formation of a thick 

film at the tip region of the conical cavity via capillary forces and a thin film on the 

remainder of the mold. To form the MN inner core and backing layer of the film, the PS 

homopolymer was melted on top of the continuous PS-b-PAA layer at 180°C under vacuum. 

After cooling to room temperature, the double-layered conical MN array was carefully 

peeled from the PDMS mold.

Macroscopically, the double-layered BCP MN exhibits a ‘needle-in-needle’ structure 

consisting of swellable outer PS-b-PAA layer and supporting PS inner core (Fig. 1c). 

Microscopically, the PS-b-PAA layer self-assembles into multiple phases whose location 

and properties are dependent on the interaction with the mold and air surface. To examine 

the composition of the swellable polymer surface at the air and PS core interfaces, we 

performed X-ray Photoelectron Spectroscopy (XPS) on PS-b-PAA films that were casted 

onto PS and PDMS substrates (Supplementary Fig. S3). Given that the theoretical C/O ratio 

for PAA is 1.5, the C/O ratio at the surface of the PS-b-PAA layer on PDMS (14.9) and PS 

(22.3) suggests that PS was the dominant interfacial block. Thus, we speculate that a 

loosely-packed PS film with a thickness of ~ 10 nm forms at the surface of the PDMS mold 
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(air interface following removal from the mold) and modulates the rate of diffusion, 

preventing a rapid modulus drop caused by immediate water absorption, which would result 

in insertion failure of the BCP MN array. Furthermore, during filling of inner core by melted 

PS, the PS block in the PS-b-PAA layer can entangle with a PS homopolymer core and the 

COOH groups in the PAA chains thermally cross-link via intermolecular anhydride 

formation24, 25. By varying the concentration of the casting solution, the height of the PS-b-

PAA layer was controlled to be either 20%, 40% or 70% of BCP MN height(Fig. 1d-f). 

Importantly, the PS base material completely filled the mold cavities showing good contact 

with the PS-b-PAA layer (Fig. 1g). Fig. 1h shows macroscale images of a double-layered 

BCP MN array with high pattern fidelity having a density of 10x10/cm2, and having a 

swellable tip height of 20%, a MN base diameter of 280 µm, and a MN height of 700 µm. 

An overall needle height of 700 µm was selected to ensure that the needle tip swelling would 

occur beneath the surface of the tissue (e.g. thickness of epidermis is less than 100 µm at 

typical needle insertion sites)26 and to minimize the penetration depth.

Reversible shape change of a water-responsive swellable microneedle

To visualize the real-time shape change of swellable BCP MN, we monitored the swelling 

behavior immediately following insertion into a transparent agarose hydrogel 

(Supplementary Fig. S4 for experimental set-up). Once BCP MNs were inserted into the 

hydrogel (tip height ~ 40% of total MN height), the volume of the PS-b-PAA tip layer 

rapidly increased and reached ~ 60% of the maximum swollen state within 1 min. 

Subsequently, swelling equilibrated to a maximum swollen state within 10 mins (Fig. 2a and 

Supplementary Movie 1). The kinetics of water absorption of micron-sized PS-b-PAA were 

much faster than those of bulk material with mm-scale thickness (Supplementary Fig. S1), 

which was likely the result of the high surface area per volume ratio for the MN tips and 

short water diffusion length. At equilibrium, the volume of PS-b-PAA MN layer had 

expanded to ~ 9 times its initial volume (Supplementary Fig. S5). Volume expansion of 

BCP MN by swelling predominantly occurred in the tip region and swollen BCP MN 

interlocked with the hydrogel. The interlocked BCP MN could be removed from agarose gel 

without breakage or delamination. The swollen tips immediately began to deswell following 

retrieval from the hydrogel substrate and fully recovered to their original conical structure 

within 15 mins (Supplementary Fig. S6 and Movie 2).

When PS or PAA homopolymers were used as the MN tip material, they produced opposing 

results. The non-swellable PS MN was easily inserted into the hydrogel and freely removed 

without significant applied force, whereas the PAA MN did not penetrate the hydrogel 

because of low mechanical strength (Supplementary Fig. S7). Although it is possible to 

make stiff PAA MN that can be inserted into hydrogel (or tissue) by cross-linking following 

harsh thermal treatment, pure PAA MN is also prone to delamination during removal of the 

MN due to poor interfacial adhesion with the backing layer.

To verify the stimulus responsive mechanical interlocking of the BCP MN in animal tissue, 

we utilized Optical Frequency Domain Imaging (OFDI) that is capable of providing non-

invasive cross-sectional views of internal tissue structures to a depth of 1–2 mm with high 

resolution27. While the BCP MN inserted into muscle tissue showed less initial volume 
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expansion rate compared to the agarose hydrogel, it reached the same final swollen state 

within 10 mins (Fig. 2b and Supplementary Movie 3). Interestingly, insertion into muscle 

tissue induced radial expansion of the BCP MN compared to axial swelling within the 

homogeneous agarose hydrogel. As observed within muscle tissue via OFDI, the swollen 

BCP MN formed a mushroom-shaped structure that provides a more favorable geometry to 

support mechanical interlocking with tissue.

Firm adhesion of the swellable microneedle adhesive based on mechanical interlocking 
with tissue

The adhesive properties of the BCP MN were evaluated by testing the normal adhesion 

strength of a 10 × 10 MN array (1 cm2 CSA) on fresh cadaveric porcine skin. We 

investigated the effect of swelling-induced MN shape change on adhesion, compared to the 

adhesion of non-swellable PS MN (Fig. 3a). Adhesion of flat PS-b-PAA (BCP) and PS films 

were also measured. Both flat-surfaced BCP and PS films showed low adhesion strength to 

skin (less than 0.1 N/cm2). While, BCP MN and PS MN showed similar force versus 

displacement profiles during skin insertion (Supplementary Fig. S8) and exhibited similar 

adhesion strength to skin immediately after insertion, after 10 minutes the maximum swollen 

state for BCP MN was achieved and the adhesive strength of the BCP MN dramatically 

increased. BCP MN with a swellable tip height of 20% (BCP MN (20%)) showed ~ 7 times 

higher adhesion strength (0.69 ± 0.17 N/cm2) than PS MN adhesive (0.098 ± 0.015 N/cm2). 

Furthermore, for BCP MN with a swellable tip height of 40% (BCP MN (40%)), the 

adhesive strength increased ~ 12 fold (1.23 ± 0.26 N/cm2). However, MN with a swellable 

tip height of 70% (BCP MN (70%)) exhibited reduced adhesive performance 

(Supplementary Fig. S9), likely due to a less favorable configuration for interlocking with 

tissue. No significant increase in adhesive strength was observed for the BCP MN for longer 

than 30 minutes swelling (Fig. 3b). For most intended uses, a short application time is 

desirable; therefore the swelling time was standardized at 10 minutes for all additional 

experiments.

The shape change adhesive mechanism of the BCP MN within porcine skin is shown in Fig. 

3c. Following insertion into skin (Fig. 3c(i)), the tissue recoils and applies a mechanically 

compressive force against the BCP MN shaft. The position of the BCP MN is held fixed as 

the inserted BCP MN immediately swells in the presence of interstitial fluid and rapid 

volume expansion nears completion within 10 minutes, where the shape of the swollen tip 

stabilizes. The concentrated volume expansion at the tip of the BCP MN (Fig. 3c(ii)) leads 

to an arrow-head like structure facilitating mechanical interlocking with the tissue. Removal 

of the BCP MN from the skin can be safely performed without fracture or delamination due 

to the deformability of the swollen tip and strong interfacial interaction between the swollen 

layer and base material (Fig. 3c(iii)). Significant adhesive strength was maintained even at 

high levels of strain between BCP MNs and skin until BCP MNs are fully removed from the 

skin, indicating that the BCP MN exhibits high adhesion energy. Due to the reversible 

responsiveness in water (Fig. 3c(iv)), the swollen BCP MNs quickly return to their original 

conical structure after removal. Following recovery of shape and stiffness (Supplementary 

Fig. S10), the BCP MN exhibited reversible adhesive properties during multiple 
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swelling/de-swelling cycles; therefore it is possible that the BCP MN could be reused 

following sterilization by ethanol or autoclave treatment.

We compared the adhesive strength of the BCP MN with currently used commercial 

pressure sensitive adhesive bandages on semi-dry and wet porcine skin surfaces 

(Supplementary Fig. S11). While commercial bandages show higher adhesive strength on 

dry skin surfaces compared to the BCP MN adhesive, the adhesive strength of commercial 

bandages on wet skin decreased by more than 50%. However, BCP MNs showed similar 

adhesive strength regardless of the presence of water on the tissue surface. To demonstrate 

the versatility of the BCP MN adhesive, the stiff PS base material was substituted for a 

flexible thermoplastic PS-based elastomer (Fig. 3d). The flexible BCP MN adhesive (Flex 

BCP MN) with 10 × 10 array in a 1 cm2 was applied to a wet skin surface on top of a pig 

wrist joint that was cycled through an angle of ~ 60° to stretch and compress the tissue. Flex 

BCP MNs maintained strong attachment without migration during 100 cycles of bending 

motion (Fig. 3e and Supplementary Movie 4).

Microneedle adhesive for use in skin graft fixation

With regard to potential immediate applications of BCP MN adhesives, we envision fixation 

of skin grafts as a strong candidate. Skin grafts are often employed for closure of open 

wounds as a result of burns, trauma, or surgical resections28, 29. For successful engraftment, 

continuous contact between the skin graft and underlying tissue is essential to assure graft 

survival by directed diffusion of wound bed nutrients as well as to prevent hematoma or 

seroma formation30. Sutures or staples applied to the perimeter of the skin graft represent 

the current standard of care, and frequently this results in separation between the tissue 

layers, as direct fixation only occurs along the periphery of the wound. Furthermore, fixation 

by staples is not rigid enough to avoid motion and shear resulting frequently in partial or 

complete loss of the graft. The likelihood of failure is diminished by secondary dressings, 

and grafted body part immobilization.

From dye diffusion tests, we found that staples provided a surface contact area of ~ 50% 

between the skin graft and underlying hydrogel and that the staples produced significant 

damage to the hydrogel during insertion and removal (Fig. 4a). In contrast, the BCP MN 

adhesive showed continuous contact of ~ 100% with minimal damage to the hydrogel (Fig. 

4b). As marked by an arrow in Fig. 4a, the depth of penetration (~ 3 mm) of stapes causes 

significant tissue damage and results in a higher risk of bacterial infiltration. In adhesion 

testing, although stapled skin grafts did not fully detach from underlying tissue during pull-

out, central regions of the skin grafts were separated due to low adhesion strength(Fig. 4c). 

Skin grafts fixed using the BCP MN adhesive on muscle tissue showed significantly higher 

adhesive strength (0.93 ± 0.23 N/cm2) than stapled skin grafts (0.28 ± 0.11 N/cm2) and non-

fixed skin grafts (0.22 ± 0.09 N/cm2) (Table 1). The attachment was maintained following 

an elongation of ~ 4 mm which is more than 5 times the height of the BCP MN (Fig. 4d). To 

prevent accumulation of fluid at the interface between BCP MN adhesive and skin graft, 

drainage holes can easily be placed within the backing material of the adhesive 

array(Supplementary Fig. S12). An ideal tissue adhesive should also provide a biological 

barrier to reduce the risk of surgical site infection. In the case of staple fixation, stress 
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concentrations localized around the staple legs can cause excessive tearing of a skin graft 

and produce a larger hole than a diameter of the staple (Fig. 4e). Staple holes serve as a 

pathway for bacterial infiltration12 and as expected, Escherichia coli (E. coli) transformed to 

express the green fluorescent protein (GFP),infiltrated through the staple holes and formed 

colonies (Fig. 4f). For the BCP MN adhesive, the interlocked and swollen MNs tightly seal 

the punctured holes thus preventing the physical passage of microorganisms (Fig. 4g). The 

BCP MN adhesive was removed without a significant damage to the agar layer (left image 

in Fig. 4h) and GFP signal was not detected in the agar plate placed beneath the incised skin 

grafts covered by the BCP MN (right image in Fig. 4h). As a result of the non-permeable 

backing layer and tight sealing of the punctured holes by the swollen microneedles, the BCP 

MN adhesive effectively prevents the infiltration of bacteria, which is a main cause of 

infection.

While the micron-sized puncture marks created after removal of the MNs from the wound 

could serve as a source of infection, it has been reported that the skin recovers its barrier 

function within a few hours following MN removal31. The disappearance of puncture marks 

was confirmed within 1hr of removal of the swellable MN adhesive (Supplementary Fig. 

S13). In addition, it has been reported that microbial penetration through the holes created 

by microneedles is minimal32. Considering its rapid and long-term adhesion, this superior 

bacterial barrier provided by the BCP MN adhesive could reduce the risk of infection to 

open wounds including burn tissue.

Firm adhesion of the microneedle adhesive to intestinal tissue

To evaluate the capacity for BCP MN adhesives to be used to seal intestine tissue which 

may be useful to prevent leaks following gut anastomosis procedures, we examined 

adhesion to the outer serosal surface (Fig. 5a) that is a relatively smooth surface (roughness 

of several micrometers) and inner wrinkled mucosal surface (roughness on the sub-mm 

scale) that is covered by a sticky mucin layer (Fig. 5b). The non-swellable PS MN adhesive 

applied to the outer surface of the intestine tissue (Fig. 5c) showed an adhesive strength of 

0.48 ± 0.18 N/cm2, whereas a swellable MN adhesive with a PS base (BCP MN) showed an 

adhesive strength of 1.62 ± 0.17 N/cm2. Interestingly, the BCP MN adhesive exhibited an 

adhesive strength of 3.83 ± 1.35 N/cm2 to the inner mucosal surface, possibly resulting from 

non-covalent interactions with mucin. Moreover, the Flex BCP MN showed further 

improvement in adhesive strength to the mucosal surface, up to 8 N/cm2 (mean value: 4.53 

N/cm2). The enhanced adhesion of the Flex BCP MN on the mucosal surface may result 

from increased intimate contact during removal that may be facilitated by increased 

absorption of energy by the flexible backing material. The BCP MN adhesive appears to 

achieve adhesion to tissues that cannot be achieved effectively using conventional tape-

based approaches33. As shown in Fig. 5d, inserted PS MNs into the outer surface of intestine 

tissue showed an average maximum torque of 0.85 ± 0.28 N cm during torsion tests, through 

a 60° angle of rotation. After removing PS MNs from the tissue, it was observed that ~ 30 % 

MNs remained broken. When the PS MNs were exposed to 100° of rotation prior to removal 

from tissue, they showed a higher maximum torque (1.22 ± 0.41 Ncm) and nearly all tips or 

whole bodies were broken (Fig. 5e). Comparatively, less than 5% of the BCP MN and none 

of the Flex BCP MN were broken following 60° of rotation and less than 5 % of Flex BCP 
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MN were broken following 100° of rotation (Fig. 5d, 5g). Interestingly, puncture marks 

resulting from the BCP MN insertion into tissue disappeared within 2 hrs of removal 

(Supplementary Fig. S14).

Discussion

The swellable MN adhesive presented here provides a new platform for adhesion based on 

mechanical interlocking. It harnesses a water based swelling mechanism that responds 

quickly and is reversible. While we chose PS and PAA as our materials in this proof of 

concept study, the strategy described herein could be applied using many other polymers. 

Conventional polymer based MN systems are composed of relatively stiff materials so that 

they can penetrate tissue without deformation. However, this can often lead to brittle 

fracture of MNs when they are subjected to dynamic tissues. Since our MN system is 

biphasic and becomes more ductile during the swelling process, we hypothesized that our 

system has a distinct advantage compared to other systems in this regard. As presented here, 

100% of MNs remained intact regardless of the tissue type when swollen MNs with stiff or 

flexible cores were removed from the inserted tissues in the normal direction. In addition, 

the resistance of MNs to torsion-induced shear stress is compelling. Although it is difficult 

to quantify the exact levels of shear stress generated in this approach due to the complex 

interfacial geometry, at significant levels of shear strain (induced by 60° of rotation) 100% 

of Flex BCP MNs remain intact, while ~ 1/3 of PS MNs fracture.

Considering previous achievements with MN based drug delivery, it is expected that the MN 

adhesive could provide a dual function enabling a firm attachment and efficient drug 

permeation. This strategy would be especially useful for skin graft fixation, which requires 

intimate contact between the skin graft and the underlying wound bed over the entire surface 

area of the wound during movement, and a necessity to deliver medications such as anti-

inflammatory/anti-scarring agents, antibiotics, and bioactive peptides directly to the wound 

bed. Since drugs can easily be loaded into the swellable tips during swelling, within an agent 

doped solution (followed by deswelling to return to a stiff state), BCP MN adhesive can 

administer multiple types of agents directly into the wound microenvironment in a 

minimally invasive manner. To verify the potential use of the swellable MN for delivery of 

drugs, we loaded BCP MN with triamcinolone acetonide (TACA), a steroid with anti-

scarring and anti-inflammatory properties, by allowing them to swell in a TACA solution. 

The BCP MN adhesive (100 MNs in 1 cm2) showed ~ 70% release of TACA over the 

course of one day in DI water, with the remaining TACA released over several days. 

Additionally, towards potential delivery of biologics, we showed that the BCP MN 

swellable tips could encapsulate FITC-labeled dextran (Mw: 2,000,000 Daltons) with a 

hydrodynamic diameter of ~ 100 nm during the swelling process (Supplementary Fig. S15).

PS and PAA were chosen as components of our swellable MN system given their 

established potential to exhibit only a minimal inflammatory response upon 

implantation34, 35. While we envision the approach could be employed with biodegradable 

materials, diffusion based drug delivery through the swollen non-degradable MN is 

controllable and likely useful for short-term applications.
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While a change in the local acidic environment during the swelling process of PS-b-PAA 

could stimulate an inflammatory reaction, a relatively minor change in pH (7.3 to 6.8) of PS-

b-PAA is observed compared to the PAA homopolymer (7.3 to 3.4) (Supplementary Fig. 

S16). As highlighted by Banga et al.36, MN based systems for drug delivery are largely 

analogous to the use of hypodermic syringes, with specific advantages associated with 

minimal user training and lower or no risk of injury to the user and patient. While there are 

regulatory issues associated with medication linked to the delivery material, in our MN 

system the only material which remains in the tissue upon removal of the MN is the loaded 

drug; thus reducing the potential for a chronic foreign body response.

In conclusion, we have demonstrated a new bio-inspired tissue adhesive platform governed 

by shape change-mediated mechanically interlocking MNs. This MN exhibits universal 

adhesion to soft tissues regardless of surface chemistry and it mechanically interlocks with 

tissues without significant damage while providing an effective barrier to bacteria. Since the 

BCP MN can easily encapsulate model drugs, the MN adhesive may serve as an effective 

drug delivery vehicle to enhance the penetration of drugs into tissue. Due to its capacity to 

conform to tissues with a broad range of surface textures, the BCP MN system has the 

potential for use in a wider range of medical applications than current tape-based adhesives.

Methods

Fabrication of the microneedle (MN) array patch

Polystyrene-block-poly(acrylic acid) (PS-b-PAA) was prepared by hydrolysis of 

polystyrene-block-poly(tert-butyl acrylate) (PS-b-PtBA) (0.5g, Mn: 26k–128k, Polymer 

Source, Inc.) in dry dichloromethane (20ml) with trifluoroacetic acid (1.2 molar equivalent 

compared to tert-butyl ester groups) as a catalyst for 48 hrs. Then, PS-b-PAA was 

precipitated into hexane, filtered, and washed several times to remove any trace of the 

catalyst. Hydrolysis was confirmed by NMR (Supplementary Fig. S2). The number average 

molecular weight (Mn) of PS-b-PAA used for the swellable polymer was 26 kg mol-1 for PS 

and 76 kg mol-1 for PAA blocks. PS-b-PAAs with different compositions were also 

prepared by hydrolysis of PS-b-PtBAs (Mn: 19k–729k (PDI:1.23) and 24k–36k (PDI:1.09), 

Polymer Source, Inc.) as described above. A female PDMS mold for the MN array (10 × 10) 

of 1 cm2 was prepared using photolithography and molding techniques as previously 

reported37. Briefly, to fabricate a female master mold, 1 mm thick SU 8 film was spin-

coated onto a Si wafer and exposed to UV light (365 nm, 10W/cm2) through a chrome mask 

patterned with 300 µm diameter dots. The UV exposure was performed at an angle of 20° on 

a rotating stage at 10 rpm for 450 sec. After developing, each conical cavity was 700 µm 

deep with a base diameter of 280 µm and tip radius of 10 µm. Tip-to-tip spacing between 

cavities was 950 µm. Female PDMS (Sylgard 184, Dow corning) molds were obtained from 

male PDMS molds cast from the female master mold. The first layer of the MN patch was 

prepared by solvent casting the PS-b-PAA dissolved in DMF for 48 hrs followed by 

degassing and the mass of material in the MN tips was controlled by altering the 

concentration of casting solution. To fabricate double-layered MN, PS pellets (Mw: 100k, 

PDI: 1.06, Polysciences, Inc.) were melted on solvent-casted PS-b-PAA at 180 °C and then 

stored under vacuum for 4 hrs. After cooling to room temperature, double-layered MN 
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arrays (BCP MN) were gently peeled from the mold. Single PS MN arrays were prepared by 

melting PS pellets in molds at 180°C under vacuum for 4hrs. To fabricate a flexible MN 

patch (Flex BCP MN), styrene-isoprene-styrene copolymer (weight fraction of PS: 22%, 

Aldrich) was used in place of the PS 2nd layer via melt casting on the underlying PS-b-PAA 

layer. To fabricate flat PS-b-PAA substrates for adhesion testing, PS-b-PAA was solvent 

casted on PDMS flat substrates (1 cm × 1 cm × 0.5 cm square well) for 48 hrs and then PS 

was filled by melt casting at 180 °C for 4hrs. Flat PS samples were prepared by melt casting 

flat PDMS molds with PS. The morphology of MN was examined with optical microscopy 

(E100, Nikon).

Swelling and mechanical properties of PAA homopolymer and PS-b-PAAs

PAA homopolymer (Mv: 450,000, Aldrich) and PS-b-PAAs were dissolved in DMF and 

cast in PDMS wells followed by drying for 7 days at room temperature in a fume hood. 

Casted films with a thickness of ~ 1 mm were cut using a 4 mm diameter biopsy punch and 

the punctured discs were subsequently dried at 180°C for 4hrs. After cooling at room 

temperature, discs were immersed in PBS buffer (pH 7.4) at room temperature. The mass of 

each sample was measured after removal of surface water at each time point. The 

compressive modulus of polymer samples was characterized after they reached their 

maximum swollen state. The samples placed in a water bath were subjected to a 

compressive axial load at a strain rate of 0.5 mm/min using an eXpert 760 mechanical tester 

(ADMET, Inc.) at room temperature. The load-displacement data was transformed to stress-

strain plots. The slope of a linear fit for 5% strain was used as a measure of the compressive 

modulus. The mean compressive modulus was measured from n=5 different samples.

X-ray photoelectron spectroscopy (XPS) measurement to examine the surface 
composition of PS-b-PAA films

To examine the surface composition of the swellable BCP MN at the PDMS (air interface 

following removal from the mold) and PS core interfaces, we prepared PDMS and PS 

substrates. For the PS-grafted surface, a hydroxyl-terminated polystyrene (PS-OH, 

Mn=10,000 g mol−1, PDI=1.08, Polymer Source Inc.) solution in toluene was spin-coated 

onto Si wafer, cleaned by immersion for 20 min at 85 °C in a piranha solution (1:4 mixture 

of 30% H2O2 and concentrated sulfuric acid). The grafting of PS on the Si substrate was 

completed by annealing the samples at 170 °C under vacuum for 1 day. Unbound PS-OHs 

were removed by sonication in toluene before use. The thickness of the PS brush was 

measured to be 7–8 nm by using an ellipsometer (JA Woollam company, Model 

WVASE32). A PS-b-PAA (26k–76k) solution in DMF was cast on the PDMS and the PS-

grafted Si wafer for 2 days and then dried at 180°C for 4 hrs. After cooling in air to room 

temperature, the prepared films were peeled from the substrates using double-side tape. 

Elemental analysis of the bottom surface of the PS-b-PAA film that contacted the PDMS or 

PS brush was examined by XPS (Surface Science, model SSX-100) with a monochromatic 

Al Kα X-ray source.
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Visualization of BCP MN shape change by swelling within a hydrogel substrate or animal 
tissue

To observe the swelling behavior of the MN, one row of MNs was cut from an array 

attached to a metal specimen, and swelling of the MN was recorded using inverted 

microscope after insertion into a 1.4 wt% agarose hydrogel (Supplementary Fig. S4). Shape 

change of BCP MNs by swelling in animal tissue was assessed using Optical Frequency 

Domain Imaging (OFDI)27, a second generation Optical Coherence Tomography (OCT) 

technology. In short, light from a wavelength-swept laser source (1220–1360 nm) was split 

into reference and sample arm by means of a fiberized interferometer. The sample light was 

focused into a spot with 30 µm waist radius and scanned over the tissue. The reflected light 

was recombined with the reference signal prior to detection, digitized, and reconstructed to 

yield the depth resolved scattering profile at each scanning position. BCP MNs were 

inserted frontally into a cube of chicken muscle, close to the top tissue surface to enable 

imaging with OFDI. An area of 5 × 3 mm, consisting of 1024 × 512 depth profiles, was 

scanned at a 2 min interval. The reconstructed cross-sectional images showed signal void 

regions in the area of the BCP MNs, contrasted by a high scattering signal from the 

surrounding tissue. Minimum intensity projections along the lateral direction of MNs were 

taken after smoothing the tomograms to reduce speckle and provided a clear view of the 

shape profile of MNs.

Measurement of adhesion force with porcine skin

Full thickness porcine cadaver skin was stored frozen and cut into ~ 2 cm × 2 cm patches 

followed by immersion in phosphate buffered saline (PBS) for 1hr. For semi-dry adhesion 

tests, water was removed from the surface of porcine skin with blotting paper and the skin 

was dried on blotting paper for several minutes until 10~ 20 % of the absorbed water was 

removed. For wet adhesion testing, 200µl of PBS buffer was spread across the surface of 

porcine skin before adhesion tests. Normal adhesion tests for samples with an area of 1 cm2 

were performed using an eXpert 760 mechanical tester (ADMET, Inc.) with custom-

fabricated stainless steel tissue grips and a 50 N load cell. This methodology was selected to 

enable comparison with the adhesive performance of staples. A flat section of skin tissue 

was affixed using cyanoacrylate glue to a test fixture (i.e. pin mount stub with diameter of 

25.4 mm) and mounted within the lower grips at the base of the mechanical tester. The MN 

(10 × 10 microneedles array in 1cm2) or flat patch were glued onto the opposing test fixture 

and fixed between the upper grips of mechanical tester. Test samples were applied to tissues 

with 10 N of preload at 100 mm/min, and held in position for 2, 5, 10, 30 min, or 6hr. 

Samples were displaced at a rate of 1 mm/min and the force was recorded. Dynamic 

adhesion testing was conducted on the shaved wrist of a pig following euthanasia. To ensure 

the surface was wet prior to testing, 1 ml of PBS buffer was spread over the skin before 

applying a microneedle patch. The degree of local skin elongation while moving the wrist 

from extension to maximum flexion was determined. A Flex BCP MN array with 10 × 10 

MN in 1 cm2 was adhered by applying manual compression for 10 minutes. The pig wrist 

was then subjected to dynamic testing (extension to maximum flexion, back to extension) 

through 100 cycles to determine its fixation (Supplementary Movie 4).
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Measurement of contact area and adhesion force between skin graft and underlying 
muscle tissue

Unmeshed porcine skin grafts with a thickness of 200 µm were obtained from the back of 

postmortem pigs using a dermatome immediately after euthanasia, in accordance with 

animal health and welfare policies. They were kept in Dulbecco's Modified Eagle Medium 

(DMEM) at 4°C and used within 2 weeks of harvest. To examine the contact area between 

the adhesive patch and underlying tissue, dye diffusion tests were performed. After 

application of the MN patch or staples, the skin graft (1.5 cm × 1.5 cm) was pre-soaked in 

0.1 wt% solution of Rhodamine dye for 10 mins and transferred onto a 4 wt% agarose 

hydrogel after removal of the excess dye solution. Staples or a BCP MN adhesive were 

applied to fix the skin graft onto the hydrogel for 2 mins. The contact area was determined 

by the dye-transferred region via image analysis software. For adhesion tests, skin grafts 

were cut into 1.5 cm × 1.5 cm patches and placed on a flat section of muscle tissue (2.5 cm 

× 2.5 cm) that had been affixed using cyanoacrylate glue to the bottom test fixture. The MN 

patches (10 × 10 microneedles array in 1cm2) were glued to the top fixture of the 

mechanical tester and applied to the underlying intestine tissue with 20 N of preload at 150 

mm/min and held in position for 10 min. Samples were then displaced at a rate of 1 mm/min 

and the force was recorded. To compare adhesion force between the stapled skin graft and 

underlying muscle tissue, staples were applied to the perimeter of the skin graft with spacing 

of 1.3 ~ 1.5 cm using a skin stapler (Reflex® One, CONMED). For experiments with the 

MN patch, the same preload (10 N) was used and a pin mount stub with a diameter of 12 

mm was applied to the stapled skin graft. For the duration of all experiments, the tissue was 

kept moist with PBS.

In vitro assessment of bacterial infiltration

BL21(DE3) competent E.coli (New England Biolabs) was transformed with 

pFluoroGreen™ (EDVO-Kit 223, EDVOTEK) and cultured on ampicillin and IPTG 

supplemented LB agar plates. A GFP positive colony was picked to inoculate a 10 mL 

standard LB broth supplemented with ampicillin and IPTG. The GFP-expressing E. coli was 

cultured overnight at 37°C and was diluted by 103-fold into PBS buffer. This dilution 

yielded an inoculum of ~ 2 × 104 colony forming units (CFUs)/mL. To prepare LB agar 

plates, LB agar medium powder (MP Biomedicals, LLC) was added to deionized water and 

autoclaved at 121 °C for 15 mins. After cooling to 50°C, 15 mL of molten agar was 

supplemented with ampicillin and IPTG, poured into sterile petri dishes (100 × 15 mm) and 

allowed to solidify. A 50 µL solution of bacteria (~ 1000 cells) was pipetted onto the center 

of the incised skin grafts (250 µm thick) placed on LB agar plate after applying staples or the 

BCP MN adhesive. To investigate the effect of staple holes on bacteria infiltration, the 

interface of two incised skin grafts was tightly sealed using cyanoacrylate glue before 

stapling. Testing plates were incubated at 37 °C for 24 hrs and were observed for the growth 

of GFP-expressing E. coli to examine the bacterial barrier resistance of the incised skin 

grafts closed by a BCP MN adhesive or staples (n=3).
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Measurement of adhesion and torsional force with porcine small intestine

Fresh intestine tissue was rinsed with PBS buffer several times and then cut into ~ 2 cm × 2 

cm patches. Surface water was removed with blotting paper while mucin remained on the 

inner surface of the intestine. Topography for the inner and outer surface of intestine tissue 

was measured by using a depth profiler (Sloan Dektak II) after freezing the tissue at − 20 °C. 

Normal adhesion tests were conducted using the same experimental set-up for porcine skin. 

For the duration of all experiments, the tissue was kept moist with phosphate buffered 

saline. The mean adhesion force was measured from n=5 different samples. Torsion tests 

were conducted using a biaxial tranceducer followed by the same experimental procedures 

used for the normal adhesion test. Samples inserted into tissue were rotated at a rate of 0.5 

degree/sec by 60 or 100 degree, and the force was recorded. Following the torsion test, 

breakage of MN was examined via macroscopic images.

Controlled release of drugs from swellable tips of BCP MN adhesive

Triamcinolone acetonide (TACA, Fluka) was loaded in the tips of BCP MN patch (100 MNs 

in 1 cm2) via swelling in a TACA solution (4 ml) of 1 mg/ml dissolved in methanol. 

Following 30 mins incubation, the BCP MN patch was washed by dipping in DI water, 

excess water on the surface of the needles was removed, and then the patches were dried at 

room temperature for 1hr. Drug loaded BCP MN patches were placed into 6 ml of fresh DI 

water to examine the release of encapsulated TACA. 0.6 ml of the solution was sampled at 

each time point, and 0.6 ml of the fresh DI water was replaced. The amount of released 

TACA was determined by HPLC system (Agilent 1100 series) with C18 column (5 µm) 

(250x4.6 mm ID, Agilent Eclipse XDB-C18) at 240 nm with an Agilent G1314A detector. 

Peak identification was achieved based on the comparison of retention times of compounds 

within standard solutions using ChemStation software (Agilent Technologies).

Statistics

Unless otherwise stated, all experiments were performed using at least 5 samples per group 

and the data presented are representative of 5 independent experiments. For multiple 

comparisons, analysis of variance was performed with the Tukey’s honestly significant 

difference (HSD) test at significance levels of 95%. Error bars in bar graphs represent the 

standard deviation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Concept and fabrication of the bio-inspired microneedle (MN) adhesive
a, Illustration showing mechanical interlocking of a water responsive shape-changeable 

microneedle following penetration into a tissue. b, Schematic showing the preparation of the 

double-layered MN array using a PDMS mold and showing the chemical structure of PS-b-

PAA with PS weight fraction (wtPS) of 25% used for the swellable tip. c, Cartoon showing 

the inner structure of double-layered MN and reversible water responsiveness. A thin 

hydrophobic film comprising the PS block covered the outer surface of the MN, likely due 

to the presence of the hydrophobic PDMS mold. During fabrication of the of non-swellable 

PS core, PS chains likely entangle with the PS block at the interface (dashed line) between 

the swellable tip and PS core providing interfacial adhesion to prevent delamination. d-f, 
Cross-sectional optical images of hollow MN (without the PS core) with different PS-b-

PAA filling fractions including (d) 20%, (e) 40%, and (f) 70% (height of PS-b-PAA layer 

compared to total MN height). These MNs were prepared by solvent-casting PS-b-PAA 

dissolved in DMF using different concentrations (d: 10 wt%, e: 18 wt%, and f:25wt%). g, 

Double-layered MN with a swellable tip (20% height fraction) following filling of the PS 

core. Scale bar, 200 µm. h, Photograph of the double-layered MN array with density of 

10x10/cm2 showing high pattern fidelity. Scale bar is 1mm. The PS-b-PAA tip is clearly 

distinguishable from the PS core as shown in the inset (Scale bar, 500 µm).
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Figure 2. Swelling of BCP MN following insertion into a hydrogel and muscle tissue
a, Time-dependent swelling of the BCP MNs (40% swellable tip height fraction) following 

insertion into a 1.4 wt% agarose hydrogel (0 s, 60 s, 600 s). b, OFDI images showing 

swelling of the same BCP MNs following insertion into muscle tissue (0 s, 120 s, 360 s, 600 

s). Scale bar, 500 µm.
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Figure 3. MN adhesive firmly adheres to skin
a, Normal adhesion strength for PS MN and BCP MN adhesives with 20% and 40% 

swellable tip height fractions following insertion into skin (2 min and 10 min). Flat PS and 

PS-b-PAA films were used as controls. b, Effect of swelling time within skin on adhesion 

for a BCP MN adhesive with a swellable tip height fraction of 40%. c, Representative force-

displacement curve during BCP MN insertion into, and removal from pig skin. d, 

Photograph of flexible BCP MN adhesive (2cm × 2cm) prepared by using a thermoplastic 

elastomer as the base material (in place of PS). e, Adhesion on a dynamic surface. Flexible 

BCP MN adhesives applied to shaved skin on top of the pig wrist joint showed firm 

attachment during ~ 100 cycles of bending motion. All error bars represent standard 

deviation.
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Figure 4. MN adhesive achieves effective fixation of skin grafts and resists bacterial infiltration
a-b, Comparison of the contact area between a skin graft and tissue-like hydrogel (4 wt% 

agarose gel) after (a) applying staples and (b) a BCP MN adhesive. Staples showed less 

contact area between the skin graft and underlying hydrogel and upon removal induced 

significant damage to the underlying hydrogel (region marked by arrow in Fig. 4a), while 

the BCP MN adhesive showed continuous contact ~ 100% with minimal damage to the 

hydrogel. c-d, Force displacement profiles and photographs acquired during pull-off tests of 

skin graft on muscle tissue fixed by c, staples and d, BCP MN adhesive. While the stapled 

skin graft was easily separated from the underlying muscle with a low pull-off strength, the 

BCP MN adhesive provided continuous contact between the skin graft and muscle tissue via 
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mechanical interlocking with underlying muscle tissue. e-h,Comparison of the bacterial 

barrier property of incised skin grafts following application of (e,f) staples and (g,h) a BCP 

MN adhesive. e(i): Cartoon illustrating the primary site of bacterial infiltration through the 

gaps between staple legs and skin grafts. e(ii): a photograph showing stapled skin grafts after 

bacteria infiltration; cyanoacrylate glue was used to tightly seal the incised region (dark area 

outlined by dotted black line). f, GFP expressing E. coli colonies formed near deep staple 

holes (marked by red dots) where skin grafts did not appose the underlying agar layer (left, 

bright field image). The infiltration of E. coli through the staple holes was confirmed by 

green fluorescence (right, fluorescent image). g(i): Cartoon showing bacterial barrier 

resistance of the BCP MN adhesive resulting from tight sealing of holes by swollen MNs 

and g(ii): photograph of the BCP MN adhesive applied on the incised skin grafts. h, BCP 

adhesive prevented bacterial infiltration (left, bright field image) with minimal damage and 

(right, fluorescent image) no green fluorescence was detected on the agar plate. Scale bar, 1 

mm.
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Figure 5. MN adhesive firmly attaches to wet intestine tissue
a-b, Photographs from a, outer and b, inner (mucosal) surfaces of pig intestine tissue and 

corresponding depth profile showing topographical roughness. c, Adhesion strength for PS 

MN (non-swellable) and swellable BCP MN adhesives with a rigid and flexible base 

following insertion into mucosal and serosal intestine surfaces. The asterisk indicates 

statistical significance with p < 0.05 (ANOVA with post-hoc Tukey’s HSD test). Error bars 

represent standard deviation. d, Following penetration into the outer surface of intestine 

tissue and application of 60° or 100° of rotation, significant damage to PS MN was observed 

(broken MN), while BCP MN and Flex BCP MN exhibited significantly reduced MN 

breakage. e-g, Photographs for tilted view of MN arrays after torsion test of 100° rotation 

using (e) PS MN, (f) BCP MN, and (g) Flex BCP MN adhesives. The tips or entire PS MNs 

were broken by torsional stress (especially at the edges of the patch marked by arrow), yet 

BCP MN with rigid and flexible bases showed high resistance to torsional stress by bending 

in the direction of the shear force.
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Table 1
Tissue adhesion for skin grafts fixed by BCP MN adhesive and staples

Staples were applied at each corner of the skin graft with spacing of 1.3~ 1.5 cm and the adhesion strength and 

the work of adhesion were measured when the skin graft was separated from the underlying muscle tissue. For 

the flat patch control, a pin mount stub with a diameter of 12 mm was applied to the skin graft on muscle 

without an adhesive. ± represents standard deviation from the mean (n = 5).

Fixer for skin graft Adhesion Strength (N/cm2) Work of Adhesion (mJ/cm2)

BCP MN adhesive (10 × 10 MNs in 1 cm2) 0.93 ± 0.23 5.23 ± 1.7

Staples 0.28 ± 0.11 0.6 ± 0.13

Flat patch 0.22 ± 0.09 0.54 ± 0.26
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