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Abstract: The transcription factor Krüppel-like factor 10 (Klf10), also known as Tieg1 for TGFβ
(Inducible Early Gene-1) is known to control numerous genes in many cell types that are involved in
various key biological processes (differentiation, proliferation, apoptosis, inflammation), including
cell metabolism and human disease. In skeletal muscle, particularly in the soleus, deletion of the
Klf10 gene (Klf10 KO) resulted in ultrastructure fiber disorganization and mitochondrial metabolism
deficiencies, characterized by muscular hypertrophy. To determine the metabolic profile related to
loss of Klf10 expression, we analyzed blood and soleus tissue using UHPLC-Mass Spectrometry.
Metabolomics analyses on both serum and soleus revealed profound differences between wild-
type (WT) and KO animals. Klf10 deficient mice exhibited alterations in metabolites associated
with energetic metabolism. Additionally, chemical classes of aromatic and amino-acid compounds
were disrupted, together with Krebs cycle intermediates, lipids and phospholipids. From variable
importance in projection (VIP) analyses, the Warburg effect, citric acid cycle, gluconeogenesis and
transfer of acetyl groups into mitochondria appeared to be possible pathways involved in the
metabolic alterations observed in Klf10 KO mice. These studies have revealed essential roles for Klf10
in regulating multiple metabolic pathways whose alterations may underlie the observed skeletal
muscle defects as well as other diseases.

Keywords: Klf10; metabolomics; metabolic pathways; Warburg effect; mice; soleus; serum; UHPLC-MS

1. Introduction

The transcription factor Krüppel-like factor 10 (Klf10), also named TGF-β (Trans-
forming Growth Factor) inducible early gene 1 (Tieg1), is part of a complex and specific
regulatory transcription system that regulates numerous genes in a variety of cells and
tissue types [1–3]. Alterations in the expression of Klf10 have implications on multiple
biological processes (proliferation, differentiation, apoptosis, inflammation) [4], relevant to
disease including diabetes, obesity, cataracts, cardiac hypertrophy, and angiogenesis, as
well as the development and progression of different cancer types (breast, kidney, pancreas,
prostate, and ovarian) [5,6]. Klf10 is ubiquitously expressed in mammals and exhibits a
higher expression in metabolic organs such as the liver, pancreas, muscle, and adipose
tissue. Klf10 controls a variety of biological processes in the liver and skeletal muscle. It
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plays a crucial role in the regulation of the circadian clock, driving the expression of genes
involved in lipogenesis, gluconeogenesis (with a higher fasting glucose), and glycolysis
in the liver, influencing hepatic metabolism [7,8]. Moreover, circadian perturbation may
initiate metabolic disorders and tumorigenesis. In this context, it has been shown that
Klf10 is downregulated in type 2 diabetes and cancer [9]. For example, Klf10 expression is
diminished during breast cancer evolution [1,10]. Klf10 is described as a tumor suppressor
gene through TGF-β-induced growth inhibition; its functions are anti-proliferative and pro-
apoptotic in cancer cells [11–14]. More recently, Klf10 has been described to be protective
against oral cancer [15] and has been implicated in immune CD4+ T-cell localization in
tissues, leading to obesity, insulin resistance, and fatty liver development [16]. Data indicate
that KLF10 acts as a central pivot, coordinating circadian rhythm together with metabolic
pathways and energy metabolism homeostasis [3,17,18].

The generation of Klf10 knockout (KO) mice [19] has demonstrated its involvement
in musculoskeletal tissue deficiencies such as defects in structure and healing of ten-
dons [20,21], hypertrophic cardiomyopathy [2], and bone diseases (osteopenia, osteoporo-
sis) [19,22–25]. In mice, Klf10 gene deletion results in hyperplasia and structural changes
such as hypertrophy and ultrastructure disorganization in the soleus (slow-twitch muscle)
and extensor digitorum longus (fast-twitch muscle). It has been shown that Klf10 deletion
induces changes in passive [26] and active [27] behaviors in a fiber type-specific manner.
Klf10 deficient mice have contributed to our understanding of skeletal muscle metabolism,
which is central to overall energetic metabolism in the animal. Klf10 is known to be respon-
sible for important mitochondria regulating functions, affecting succinate dehydrogenase
(SDH), cytochrome C oxidase (COX), and the citrate synthase (CS) enzyme activities in the
soleus of deficient mice [28].

The metabolome refers to the representation of small chemical molecules (or metabo-
lites) contained in a given biological sample at a specific time. In a biological sense, the
metabolome represents a report of multiple cellular processes, including the regulation of
the genome, transcriptome, and proteome cascades, and ultimately supports phenotypes
and functions. Despite the limit point being the lack of insights between the production
and consumption of metabolites, metabolomics has become a powerful tool to better under-
stand the physiology, pathophysiology, or dysregulation of many biological systems [29–31].
Blood (or serum) is frequently used in metabolomics research as well. Indeed, it contains
many metabolites from the entire body and gives a global and integrative view of what is
occurring at a specific time. Metabolites are known to be involved in a particular biological
context, help shed light on alterations in associated metabolic pathways, and can serve as
specific biomarkers for a variety of conditions and diseases.

The impact of Klf10 on metabolism remains unclear and must be further investi-
gated. This study is a continuation of our work demonstrating a role for Klf10 in muscle
metabolism [28]. Here, we describe the metabolomic profile of Klf10 KO mice at the organis-
mal level (serum) and the tissue level (muscle). This work has led to a better understanding
of the role of Klf10 in metabolism, the identification of specific metabolic pathways regu-
lated by Klf10, and the identification of potential biomarkers relevant for skeletal muscle
defects/diseases.

2. Results
2.1. Metabolomic Analyses of Serum and Soleus

We aimed to characterize differential metabolomics profiles in the serum and soleus of
Klf10 KO versus wild-type mice. A total of 224 and 246 metabolites were detected in serum
and soleus, respectively. The PLS-DA score plot analysis of Klf10 KO and WT samples of
serum and soleus are shown in Figure 1. Results indicate that both serum (Figure 1A) and
soleus (Figure 1B) metabolic profiles are distinctly separated between the two groups
of mice. The best PLS-DA models for serum retained 96 variables with importance
in projection (VIP) with the performance characteristics of R2Y = 0.974, Q2 = 0.87, CV-
ANOVA = 4.42 × 10−6, from which 78 variables showed a p-value < 0.05. In soleus, the
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best PLS-DA score plot used 88 VIP with R2Y = 0.93, Q2 = 0.86, CV-ANOVA = 5.46 × 10−7,
from which 27 variables have a p-value < 0.05. The VIP represent metabolites with a greater
contribution to the separation between groups (Klf10 KO versus WT). The segregation into
two distinguishable groups indicates that Klf10 gene deletion caused significant changes in
the overall metabolome in mice. Of these, all metabolites showing a significant change are
listed in Supplementary Table S1 for serum and Table S2 for soleus.

Figure 1. PLS-DA score plot analysis of serum (A) and soleus (B) samples in Klf10 KO and WT by
UHPLC-MS. (A) Metabolome score plots of PLS-DA on serum (WT in blue circle, n = 10 and Klf10 KO
green circle, n = 9). The performance characteristics of the model using 96 variables, are R2Y = 0.974,
Q2 = 0.87 and CV-ANOVA = 4.42 × 10−6. (B) Metabolome score plots of PLS-DA on soleus (WT in
blue circle, n = 9 and Klf10 KO in green circle, n = 10). The performance characteristics of the model
using 88 variables, are R2Y = 0.93, Q2 = 0.86 and CV-ANOVA = 5.46 × 10−7.

To define relevant metabolites implicated in the clustering between Klf10 KO and
WT mice, we performed a volcano plot analysis (Figure 2) with the former VIP for each
biological sample and found 34 metabolites in serum (Figure 2A) and 9 metabolites in
soleus (Figure 2B), representing 35.4% and 10.1% of metabolites, respectively, that were
highly regulated (FC > 1.5 or FC < 0.5 and p-value < 0.05). For instance, cholic acid and
glycocholic acid in serum and caprylic acid and cortisol in soleus were highly upregulated
in Klf10 KO compared to WT mice. Interestingly, hippuric acid was highly downregulated
in both samples of Klf10 KO mice. These data demonstrated profound differences in the
metabolic profiles of serum (Table S1) and soleus (Table S2) of Klf10 KO mice.

2.2. Characterization of Metabolic Changes in Klf10 KO Mice

VIP were classified according to their chemical classes (Figure 3). The percentages
of the chemical classes between Klf10 KO and WT mice are presented in the pie charts
for serum (Figure 3A) and for soleus (Figure 3B). This revealed nine different chemical
classes. The inter-biological sample (serum vs. soleus) comparison showed that metabolites
mainly archived into phospholipids (27% in serum vs. 16% in soleus), amino acids and
derivatives (23% in serum vs. 21% in soleus), lipids: fatty acids-steroids (18% in serum
vs. 15% in soleus), and aromatic compounds—amines (7% in serum vs. 8% in soleus).
Organic acids were similarly modified, exhibiting 10% variation in both serum and soleus
between Klf10 KO and WT mice. A slight difference was noted for sugar (3% in serum
vs. 7% in soleus), nucleotides–nucleosides derivatives (6% in serum vs. 14% in soleus),
and vitamins—cofactors—hormones (2% in serum vs. 7% in soleus). With the exception
of sugar, phospholipids, nucleotides–nucleosides derivatives, and vitamins—cofactors–
hormones classes, a very similar perturbation was observed on chemical repartition for
serum and soleus, indicating that the same classes of chemical compounds were impacted
in both biological samples in Klf10 KO mice providing strong evidence for direct regulation
of these metabolites by Klf10.
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Figure 2. Volcano plots showing metabolites changes in serum (A) and soleus (B) in Klf10 KO versus
WT. Each point corresponds to a metabolite (as VIP). Significant selected metabolites are upregulated
in red and downregulated in blue. In grey, metabolites with 0.5 < FC < 1.5 and/or p-value > 0.05.
Dotted horizontal line indicates threshold for p-value of 0.05 and the dotted vertical line indicates
threshold for 1.5 fold change (FC).

In serum, numerous metabolite changes were observed in particular in lipid and phospho-
lipid classes, including palmitic acid (FA), phosphatidylcholine (PC), phosphatidylethanolamine
(PE), lysophosphocholine (LPC), and platelet-activating factor (PAF) or PC (O-) (Supple-
mental Table S1 and Figure 2A). There were a total of 26 phospholipids over the 96 VIP,
representing 27% of the overall change in serum. We also found increased levels of plasma
lipids and acylcarnitines, such as L-acetylcarnitine, O-acetyl-L-carnitine, deoxycarnitine,
tetradecanoylcarnitine, propionylcarnitine, and dodecanoylcarnitine. In addition to lipid
metabolism, amino acid metabolism was significantly altered in the serum of Klf10 KO
mice. We found 23% amino acid change, including L-threonine, L-lysine, L-valine, L-
serine, L-arginine, L-asparagine, L-methionine, L-ornithine, and derivatives such as N-
acetyltryptophan, indicating that amino acid metabolism was clearly impacted. Metabolic
characterization in serum identified compounds from glycolysis and the Krebs cycle, in-
cluding a slight decrease in D-glucose and L-lactic acid and a significant increase in citric
acid, isocitric acid, oxoglutaric acid, fumaric acid, and L-malic acid (p-value < 0.05). To-



Metabolites 2022, 12, 556 5 of 18

gether, changes in chemical classes of sugars and organic acids represented 3% and 10%
of the overall changes, respectively (Figure 3A), suggesting that energetic metabolism
(glycolysis and Krebs cycle intermediates) is impacted and reflected in the serum of Klf10
deficient mice.

Figure 3. Pie chart visualization of chemical affiliation of metabolites in serum (A) and soleus (B). VIP
metabolites, 96 from serum and 88 from soleus, were classified into nine different chemical classes:
phospholipids in dark green, lipids: fatty acids—steroids in clear green, carbohydrate in black, amino
acids-derivatives in orange, organic acids in grey, vitamins—cofactors–hormones in yellow, aromatic
compounds—amines in dark blue, nucleotides—nucleosides derivatives in violet and others in clear
blue. Results are given in the percentage of VIP belonging to the categories.

In the soleus, phospholipids were less altered than was reflected in the serum (Figure 3).
The PC and LPC were predominantly impacted (Supplemental Table S1), and acylcar-
nitines (propionylcarnitine, desoxycarnitine, tetradecanoylcarnitine, which are common
with serum, and decanoylcarnitine, which is specific to soleus) followed the same trend.
Alterations in metabolites of glycolysis and the Krebs cycle, including glycogen and purine
nucleotide, were identified (Figure 4). D-glucose and L-lactic acid were significantly in-
creased in the soleus of Klf10 KO versus WT mice (p-value < 0.05). In the Krebs cycle,
citric acid, isocitric acid, succinic acid, fumaric acid, and L-malic acid were detected and
demonstrated fluctuations, together with amino acids (L-arginine, L-aspartic acid, and
L-methionine). Glucose 1-phosphate (G1P) and glucose 6-phosphate (G6P) were differ-
entially discriminated as VIP and fed the glycogen storage metabolism. Interestingly,
nucleotides–nucleosides, derivatives such as guanosine, guanine, inosine, and uric acid
that are involved in purine metabolism, exhibited a significant decrease in Klf10 deficient
mice. In this regard, lipids, phospholipids, sugar, amino acids, nucleotides, and organic
acids were determined to be altered in the soleus of Klf10 KO mice (Figure 4).
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Figure 4. Metabolite changes related to energetic metabolism in soleus of Klf10 KO mice. Metabolites
are represented in their respective metabolism position in glycolysis, glycogenesis—glycolysis, purine
metabolism in cytosol and Krebs cycle in mitochondria compartment. Relative metabolite changes
shown in the graphs were HPLC-MS results. Open bars, WT mice and filled bars, Klf10 KO mice. In
black bold, metabolites detected and determined as variables with importance in projection (VIP).
In black underlined, metabolites were detected but not determined as VIP. In gray, metabolites
were not detected. DHAP: dihydroxyacetone 3-phosphate; GMP: Guanosine monophosphate, GDP:
Guanosine diphosphate, GTP: Guanosine triphosphate. Values are expressed as mean ± SEM in
arbitrary units. * p-value < 0.05 and ** p-value < 0.01.
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2.3. Identification of Metabolic Pathways Involved in Klf10 KO Mice

Following the metabolic change analyses in serum and soleus, we investigated metabo-
lite set enrichment pathways [32]. It is important to note that lipids and phospholipids are
not considered by the software for data treatment to establish enrichment set diagrams.
Despite this, we characterized the incidence of change implicating VIP in serum and in
soleus on metabolic pathways (Figure 5). Enrichment diagrams revealed that in both
samples, metabolite changes affected the Warburg effect (aerobic glycolytic metabolism),
the citric acid cycle, the transfer of acetyl group into mitochondria, the ammonia recy-
cling, the arginine and proline metabolism, gluconeogenesis, the thiamine metabolism, the
glycine and serine metabolism, the urea cycle, and many other pathways to a lesser extent.
Metabolic pathways highlighted by enrichment analyses revealed alterations that affect
particularly energetic and amino acid metabolisms and transfer–degradation–recycling
processes (Figure 5).

Figure 5. Metabolite Set Enrichment pathway Analysis (MSEA) in serum (A) and soleus (B). Metabo-
lite set enrichment diagrams (25 top pathways) were obtained using MetaboAnalyst 5.0 on the 96 VIP
found in serum and the 88 VIP found in soleus.

Given these findings and the similarities in terms of influenced metabolic pathways,
we generated a Venn diagram to compare VIP obtained from serum and soleus (Figure 6A).
Analyzing intersections between the two matrices identified 36 common metabolites,
representing 38% of the VIP in serum and 41% in soleus. Common metabolites are listed in
Figure 6, and their chemical repartition is depicted in the pie chart (Figure 6B). As expected,
we found metabolites involved in energetic metabolism (carbohydrate and lipid), such as
D-glucose, some phosphatidylcholines (PC) and lysoPC, carnitine derivative compounds,
and Krebs cycle intermediates (citric acid, fumaric acid, isocitric acid, and malic acid).
Other common metabolites included amino acids, identifying L-arginine, ketoleucine,
L-methionine, L-serine, L-threonine, or derived degradation products such as hippuric
acid, serotonin, and urocanic acid. To focus on the commonly altered pathways in both
biological samples, an overview of Metabolic Set Enrichment Analysis (MSEA) was run
using the 36 metabolites shared by the biological samples (Figure 6C). This identified four
noteworthy metabolic pathways; the Warburg effect, the citric acid cycle (Krebs cycle),
the gluconeogenesis, and the transfer of acetyl groups into mitochondria. By extracting
information from each pathway, it was possible to visualize that D-glucose, lactic acid,
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isocitric acid, and citric acid were upregulated in the soleus (Figure 2B), and biotin, fumaric
acid, and malic acid were downregulated in the soleus (Figure 2B). These represent highly
relevant metabolites impacted by Klf10 in both compartments (Figure 6).

Figure 6. Venn diagram (A), pie chart of chemical metabolite repartition (B), and MSEA of the
36 metabolites common between serum and soleus (C). (A) Venn diagram using the 96 VIP from
serum and the 88 VIP from soleus were generated and found 36 common metabolites across the two
matrices. A list of the common metabolites found both in serum and soleus is given on the right panel
of the figure. (B) Pie chart using the 36 common metabolites found in the Venn intersection assigned
compounds into chemical classes. (C) Overview of enriched metabolites sets (bubble plot) that shows
the 25 top pathways related to the common 36 metabolites identified both in serum and soleus. For
the first four pathways, name of common VIP is in the square plot, colors refer, respectively, to their
chemical category. p-value is given by red color spot intensity.
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As a next step, we compared the fold change of the 36 common metabolites found in
serum and soleus using a radar diagram (Figure 7). This representation allowed for the
visualization of compounds having similar or different behaviors between the biological
samples. For example, orotic acid, palmitic acid, some PC (34:1; 36:2 and O-14:0/2:0),
uracil, uric acid, and uridine were impacted similarly by Klf10 loss while D-glucose, bi-
otin, serotonin, tretradecanoylcarnitine, LPC(18:0), L-arginine, deoxycarnitine, thiamine
monophosphate, platelet-activating factor, PC(O-16:1/2:2), and N-methyltryptamine were
oppositely impacted (see supplemental Table S3).

Figure 7. Radar diagram of the 36 VIP found to be common in serum and soleus. Metabolites showed
up or downregulation following the bold grey circle giving the zero-base line. Values are given
according to log2(FC) of metabolites in serum (blue line) and soleus (red line), respectively.

2.4. Identification of Metabolic Pathways Involved in Klf10 KO Mice

Our results clearly demonstrated a specific signature of change in the metabolomic
profile of Klf10 KO mice. The drastic metabolomics differences observed reliably separated
the two groups of mice (Klf10 KO vs. WT mice) and allowed for the identification of
potential biomarkers that are reflective of decreased Klf10 expression and/or function. To
highlight potential biomarkers of interest in serum and soleus, we applied a strict cut-off of
two-fold change and p-value < 0.05 (Figure 8).
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Figure 8. Metabolites as potential biomarkers of serum (A) and soleus (B) in Klf10 KO vs. WT mice.
Metabolites are selected with a criteria of 2-fold change in regulation and p-value < 0.05. NS identify
metabolites with two-fold increase and no significant p-value. In red are metabolites upregulated,
and in blue are metabolites downregulated.

In serum, we found a set of 17 metabolites highly regulated, which mostly belong to
lipids, phospholipids, and amino acids—derivatives and aromatic compounds—amines
classes. In a global picture, we observed that metabolites from lipids and phospholipid
classes (PE(22:6/18:1), PE(20:4/18:1), PE(16:0/20:4), tetradecanoylcarnitine, glycocholic,
acid, and cholic acid were upregulated whereas metabolites from aromatic compounds-
amines class (indole-3-methyl acetate, N-methyltryptamine, and trigonelline) and amino
acids-derivative compounds (ketoleucine, N-acetylserotonin, serotonin, hippuric acid)
were downregulated. Some others, such as indoleacetic acid and biotin, were upregu-
lated. In serum, guanidoacetic acid and N-acetyltryptophan from amino acid-derivative
groups were also upregulated. All dysregulated metabolites (FC > 2 and p-value < 0.05) de-
scribed here may serve as potential robust biomarker predictors for lack of Klf10 expression
and/or function.

In the soleus, we identified nine metabolites exhibiting a two-fold change but only
three with a p-value < 0.05. Urocanic acid, caprylic acid, and hippuric acid were highly
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dysregulated in soleus and belonged to the chemical classes of lipid: fatty acids-steroids
(caprylic acid, upregulated) and amino acids–peptides derivatives (hippuric acid and
urocanic acid, downregulated).

3. Discussion

In this study, using UHPLC-Mass Spectrometry, we conducted a serum and soleus
metabolic analysis to establish a specific metabolic signature of Klf10 KO mice. Indeed, the
analysis of both serum and soleus in Klf10 KO mice succeeded in detecting a total of 224
and 246 altered metabolites, respectively. The PLS-DA model for serum revealed 96 vari-
ables with importance in projection (VIP) and 88 VIP for the soleus, which contributed to
establishing the models with robust values. We found a drastic change in metabolites that
clearly separated Klf10 KO from wild-type mice in each biological sample. We noticed an
increased number of metabolites significantly regulated in serum when compared to the
soleus, and the overall data demonstrated a profound metabolome alteration in Klf10 KO
compared to WT mice.

Metabolomic profiles found in Klf10 KO mice affected different categories of com-
pounds that belong to various chemical classes, such as lipids, phospholipids, amino
acids, aromatic compounds, vitamins, hormones, and others. The proportion diagram of
compound class repartition is mostly similar between serum and soleus, except for sugar,
phospholipids, nucleotides-nucleosides derivatives, and vitamins–cofactors–hormones
classes. This suggests that Klf10 deficiency impacts carbohydrate, nucleic acid, and lipid
metabolism differently in respect of these two samples. In this context, results indicate a
metabolic change in (1) fatty acid metabolism driven by phospholipids, lipids, and acyl-
carnitine modifications, (2) amino acid metabolism by glucogenic amino acid fluctuations,
and (3) energetic metabolism related to glycolysis and Krebs cycle metabolite alterations.
Changes in serum fatty acid and acylcarnitine levels could have a high predictive value
for segregating Klf10 KO and WT mice, as shown by Houtlooper et al. in plasma [33].
Interestingly, plasma acylcarnitine elevation suggests the transfer of acetyl groups into the
mitochondria for energy production via lipid catabolism. It is worthy to note that increases
in acylcarnitine are found in the pathologies of obesity and diabetes (type II) [34,35]. In
soleus specifically, the elevated levels of glucose, glucose-1-phosphate, and glucose-6-
phosphate suggest changes in glycolysis and glycogen metabolism, while guanine, inosine,
and uric acid affect the metabolism of purine nucleotides. Thus, in agreement with the liter-
ature, there is increasing evidence in favor of KLF members as transcriptional regulators
of energy metabolism [17]. In summary, metabolic results obtained in this study argue in
this direction and give a representative window of the metabolic state of Klf10 KO mice
(Figure 4). In Klf10 KO mice, we observed a drastic metabolome reorganization affecting
mainly lipids, phospholipids, amino acids, and to a lesser degree, nucleotides.

To expand our analysis, we linked changes in VIP metabolites identified with metabolic
pathways. We discovered that the Warburg effect and the citric acid cycle were among the
most highly affected pathways in both the soleus and serum (Figures 5 and 6). Interestingly,
the Warburg effect is an aerobic glycolysis metabolism that occurs mainly in cancer and
proliferating cells. This particular type of metabolism improves nutrient uptake to directly
incorporate biomass, generating nucleotides, amino acids, and lipids. It is a process
that induces cells to acquire proliferation potential rather than using nutrients for energy
production [36].

Our previous study demonstrated that Klf10 KO mice exhibit disruption in the Krebs
cycle and oxidative phosphorylation in mitochondria by acting on citrate synthase (CS) and
succinate dehydrogenase (SDH, complex II) enzymes [28]. Based on the present discovery,
we presented a hypothetical metabolic model of change occurring in the soleus of Klf10
KO mice in Figure 9, where the flux of glucose through glycolysis is slowed down at the
mitochondria level (caused by CS and SDH impairment). As a consequence, it is expected
that a small fraction of pyruvate enters into the Krebs cycle, and the rest is highly converted
into lactic acid, which may accumulate and serve to produce energy by anaerobia. At
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that point, citric acid and isocitric acid are blocked at the Krebs cycle level, and the excess
citric acid may follow the lipid synthesis pathway through acetyl CoA conversion. In
parallel, glycolysis intermediate products may accumulate and be reoriented to amino acid
synthesis and/or glycogen storage. It appears that the soleus of Klf10 KO mice reproduces
Warburg metabolism that is related to the functions of KLF10 described in the pathogenesis
of various cancers [37]. Further research is needed to fully establish these possibilities and
validate the proposed model.

Figure 9. Model of metabolic pathways changes occurring in soleus of Klf10 KO. A summary of the
biochemical pathways related to glucose metabolism in soleus. Metabolites that changed between
Klf10 KO and wild-type mice are indicated in black bold. Red crosses are the metabolic situation and
the name of the two enzymes implicated in the described deterioration of mitochondria functions in
Klf10 KO mice (28). DHAP: Dihydroxyacetone phosphate; PEP: Phosphoenolpyruvate; SDH complex
II: Succinate dehydrogenase.

Aging is a late-life state characterized by a general degradation of cell function leading
to declines in health. Increasing evidence shows that mitochondrial dysfunctions contribute
to the aging process [38,39], including insulin signaling pathways, which are known to affect
longevity [40,41]. Further, mitochondria are required and play a crucial role in skeletal
muscle insulin signaling [42]. As discussed above, KLF10 affects metabolic functions
with strong involvement in impaired mitochondrial functions [28]. In addition, as a
glucose-responsive gene in the liver [7], KLF10 plays a prominent role in regulating insulin
signaling pathways that drive Pi3k-Akt for glycogenesis and mTOR (mammalian target
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of rapamycin) signaling for protein synthesis [16,43,44]. One of the aspects of regulating
the insulin signaling pathway results in glucose and lipid homeostasis, together with
protein synthesis via mTOR. In our study, we observed that Klf10 deletion in mice induced
alterations in a large panel of molecules implicated in the regulation of cell activities
at different levels (energetic metabolism, molecular, and signaling processes, including
hormones and neurotransmitters). We proceeded to compare the metabolic signatures
of Klf10 KO mice to specific metabolic profiles characterized in aged mice, where amino
acids, glucose, and lipid metabolism are affected in both liver and muscle [33], as well as
in adult human plasma [45]. In a more precise manner, linoleic acid decreases have been
shown to be a robust biomarker of aging [33]. We also observed a decrease in linoleic acid
in Klf10 KO serum (Table S1). Similarly, we noticed that metabolic products associated
with phospholipid metabolism are significantly changed in the soleus of Klf10 KO mice;
this is also described in the skeletal muscle of aged mice that seems to reflect membrane
cell modifications and altered functions [46,47]. Importantly, phospholipids take part in
molecular transduction signaling for gene regulation, as well. In the soleus of Klf10 KO
mice, glycogen metabolism is altered by increased levels of G6P and G1P, while increases in
L-lactic acid and glucose levels suggest a Warburg effect (anaerobic glycolysis). A similar
situation is recalled in muscle of aging mice, where some metabolic changes implicate
glycogen metabolism and anaerobic glycolysis, leading to age-related insulin resistance
profiles [33,48]. Comparably, changes in other distinct metabolites such as citric acid or
serotonin neurotransmitter were increased in the skeletal muscle of aged mice [47]; the last
of which was also found to be increased in the soleus of Klf10 KO mice. These observations
provide strong evidence that Klf10 KO mice share features with known aging phenotypes in
skeletal muscle, particularly with regard to impaired mitochondrial function, metabolome
footprint, and insulin (and mTOR) signal pathway regulation. In summary, Klf10 KO mice
refer to the deterioration of skeletal muscle cell structure and organization that coincide
with biological functions altered with age.

In addition to metabolome characterization, another important goal is to identify
specific metabolic biomarkers of Klf10 deletion. Extensive analysis of the metabolome in
serum and soleus allowed us to identify metabolite groups associated with Klf10 deficiency.
At a high level, lipids and amino acids were highly disrupted classes of metabolites
altered in both the serum and soleus of Klf10 KO mice. Some metabolites appeared highly
discriminatory and, as such, may represent ideal biomarkers. Present in both matrices,
hippuric acid, a derived amino acid, was highly decreased in serum and soleus. Tracking
this metabolite in real-time could provide additional information about compartment
exchanges and pathophysiology. Additionally, some metabolites were sample-specific
such as cholic acid and glycocholic acid that were altered in serum, and caprylic acid and
urocanic acid that were altered in the soleus. Among these sets of interesting candidate
biomarkers (Figure 8), cholic acid and glycocholic (derivatives of cholic acid) are the major
conjugated bile acids that facilitate lipid absorption. When found at high levels, cholic and
glycocholic acids provoke hepatic and metabolic toxicities leading to possible membrane
disruption. It can be assumed that KLF10 may regulate bile acid synthesis and affect
the lipids and phospholipid levels. A similar function has been described for KLF15, a
member of the KLF family [49]. One may hypothesize that the lack of Klf10 leads to a global
toxicity profile, implicating Klf10 as a protective factor against cellular, tissue, and/or organ
injury [50–52].

4. Materials and Methods
4.1. Animals

The generation of Klf10 KO mice has been previously described [19]. To be consistent
with our previous studies, we utilized 3-month-old littermate female animals derived from
heterozygous breedings. Female mice were chosen based on preliminary results indicating
higher expression of Klf10 in female mice compared to male animals. All mice were
maintained in a temperature-controlled room (22 ± 2 ◦C) with a light/dark cycle of 12 h.
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Animals had free access to water and were fed with standard laboratory chow ad libitum.
The protocol was approved by the French ministry of higher education, research and
innovation (Permit Number: DUO-4776) and the local ethics committee Comité Régional
d’Ethique en Matière d’Expérimentation Animale de Picardie (CREMEAP; Permit Number:
APAFIS #8905-2021011109249708).

4.2. Sample Collection and Preparation

Slow twitch-muscle (soleus) was utilized given the defects observed in this glycolytic
muscle following the deletion of Klf10 and the 4-fold higher Klf10 expression in soleus
compared to EDL (28). Thus, the soleus of 3-month-old female mice were isolated from
Klf10 KO (n = 10) and WT (n = 9) mice, immediately frozen, and subsequently stored
at −80 ◦C until metabolomics analysis. For metabolite extraction, 1 mL of MeOH:H2O
(50:50) was added to frozen muscle samples and agitated for 30 min at 4 ◦C followed by
centrifugation at 5000× g for 15 min at 4 ◦C. In total, 900 µL of supernatants were collected
for solvent evaporation in a SpeedVac (ThermoFisher, Villebon sur Yvette, France) at 35 ◦C
for 2 h. The remaining supernatants were pooled for quality control (QC) samples and
evaporated.

Serum samples from Klf10 KO (n = 9) and WT (n = 10) mice were prepared as pre-
viously described [53]. Approximately 50 µL of serum were added to 400 µL of MeOH,
centrifuged, and the supernatant was collected before evaporation. QC samples (10 µL of
each sample) were also prepared.

For UHPLC-MS, evaporated samples were solubilized with 70 µL of solvent MeOH:H2O
(1:9) for RP-LC columns and 70 µL of ACN:H2O (9:1) for HILIC columns.

4.3. Ultra-High-Performance Liquid Chromatography-Mass Spectroscopy (UHPLC-MS)
4.3.1. Data Acquisition

As previously described [54], UHPLC-MS analysis was performed on a UHPLC
Ultimate WPS-3000 system (Dionex, Idstein, Germany), coupled with a QExactive mass
spectrometer (Thermo Fisher Scientific, Bremen, Germany).

The chromatography system was equipped separately with two columns: an RP-LC
(Reverse Phase Liquid Chromatography) Phenomenex Kinetex® XB-C18 (1.7 µm 100 A
150× 2.1 mm from Phenomenex, Torrance, CA, USA) and a HILIC (Hydrophilic Interaction
LIquid Chromatography) Waters Cortecs® (unbonded silica; 1.6 µm 100 A 150 × 2.1 mm
from Waters, Dublin, Ireland).

The autosampler temperature (Ultimate WPS-3000 UHPLC system, Dionex, Germany)
was set at 4 ◦C.

A HESI (Head ElectroSpray Ionization) source was used for both chromatography
systems operated in positive (ESI+) and negative (ESI−) electrospray ionization modes
(one run for each mode).

Detection was performed with a full-scan acquisition at 70,000 resolution (m/z = 200),
which ranged from 58.0 to 870.0 m/z, with an automatic gain control target of 105 charges
and a maximum injection time (IT) of 250 ms. Xcalibur 2.2 software (Thermo Fisher
Scientific, Bremen, Germany) controlled the system.

4.3.2. Data Processing

The acquired data were processed using Xcalibur® software (Thermo Fisher Scientific,
San Jose, CA, USA) by integrating selected product ion chromatographic peak areas,
which were exported to an excel file containing the areas of each metabolite and finally
normalized to the total sum of integrated metabolites. Detected peaks were identified
using accurate m/z and retention time (RT) compared to the internal database made by
the Mass Spectrometry Metabolite Library of Standards (MSMLS®, IROA Technologies™,
Bolton, MA, USA). According to Rathato-Paris et al. [55], our annotation is considered
putative metabolite identification (level 2). Only metabolites detected in quality control
(QC) samples with a coefficient of variation (CV) <30% were kept for further analysis.
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4.3.3. Data Analysis

Once the RP+/− (positive or negative ionization)-LC and HILIC+/−-LC lists were
generated, the web interface Metaboanalyst (https://www.metaboanalyst.ca, accessed on
20 September 2021) [32] was used to standardize the generic name and to generate Human
Metabolome Data Base (HMDB) or Kyoto Encyclopedia Genes and Genomes (KEGG)
numbers for each metabolite. A fusion step was used to merge the four lists according
to their HMDB or KEGG numbers. When metabolites were present in several lists, the
platform having the lower CV (for reproducibility on QC samples) was kept for further
analysis.

A Venn diagram (http://jvenn.toulouse.inra.fr/app/example.html, accessed on
20 September 2021) [56] was used to identify the common metabolites between serum
and soleus.

4.4. Statistical Analysis
4.4.1. Multivariate Analysis

In the first intention, a principal component data analysis (PCA) was performed
in order to observe and exclude outlier samples. Once these outliers were excluded, a
supervised multivariate statistical data analysis based on PLS-DA (Partial Least Squares
Discriminant Analysis) was then performed on the metabolomics data generated by RP
and HILIC-LC using SIMCA®15 software (Umetrics, Umea, Sweden). The model qualities
were evaluated by R2Y (goodness of fit), Q2 (goodness of prediction), and CV-ANOVA
(Cross Validation-ANalysis Of VAriance). The PLS-DA models were improved according
to the regression coefficients of each metabolite that expressed how strongly the Y (WT or
Klf10 KO) is related to the X-variables (metabolites). According to these criteria, metabolites
(variable with importance in projection = VIP) with a greater contribution to the separation
of the groups were identified.

4.4.2. Univariate Analysis

Univariate analysis was performed on metabolites identified by the PLS-DA using a
t-test on Metaboanalyst (https://www.metaboanalyst.ca, accessed on 20 September 2021).
The results were considered to be significantly different when the p-value was ≤ 0.05. The
fold changes were calculated.

4.4.3. Metabolites Set Enrichment

The metabolites implicated in the clustering on the PLS-DA analysis were loaded to
identify the most significantly affected metabolic pathways by metabolite-set enrichment
analysis (MSEA) as previously described by Beauclercq S. et al. [57]. A cut-off was chosen
to present the first 25 metabolic pathways corresponding to the most significantly enriched.

5. Conclusions

In conclusion, the results of the studies presented here support that KLF10is highly
related to the dynamic processes of metabolism regulation that manage energy (glucose
and lipids) production, which are essential to cellular physiology. Considering KLF10′s
involvement in gene expression, signal transduction, and metabolism [16], it has significant
potential to become a biological cell sensor. It is clear that metabolomics has helped
to establish characterized footprints of phenotypes resulting from many interconnected
biological mechanisms [58]. In this case, characterizing metabolic profiles and identifying
potential metabolic biomarkers are of therapeutic interest and may serve to understand
metabolic homeostasis related to disease development and/or various (patho)physiological
conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12060556/s1, Table S1: VIP metabolites of serum with
their contribution scores, p-values, fold changes and chemical classes; Table S2: VIP metabolites of
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muscle with their contribution scores, p-values, fold changes and chemical classes; Table S3: Common
and unique VIP metabolites in serum and muscle.
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