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Lipopolysaccharide-binding protein 
(LBP) reverses the amyloid state 
of fibrin seen in plasma of type 2 
diabetics with cardiovascular co-
morbidities
Etheresia Pretorius   1, Sthembile Mbotwe2 & Douglas B. Kell   3,4,5

Type 2 diabetes (T2D) has many cardiovascular complications, including a thrombotic propensity. Many 
such chronic, inflammatory diseases are accompanied (and may be exacerbated, and possibly even 
largely caused) by amyloid fibril formation. Recognising that there are few strong genetic associations 
underpinning T2D, but that amyloidogenesis of amylin is closely involved, we have been seeking to 
understand what might trigger the disease. Serum levels of bacterial lipopolysaccharide are raised in 
T2D, and we recently showed that fibrin(ogen) polymerisation during blood clotting can be affected 
strongly by LPS. The selectivity was indicated by the regularisation of clotting by lipopolysaccharide-
binding protein (LBP). Since coagulopathies are a hallmark of T2D, we wondered whether they might 
too be caused by LPS (and reversed by LBP). We show here, using SEM and confocal microscopy, that 
platelet-poor-plasma from subjects with T2D had a much greater propensity for hypercoagulability 
and for amyloidogenesis, and that these could both be reversed by LBP. These data imply that 
coagulopathies are an important feature of T2D, and may be driven by ‘hidden’ LPS. Given the 
prevalence of amyloid formation in the sequelae of diabetes, this opens up novel strategies for both the 
prevention and treatment of T2D.

There is an increasing recognition that many chronic, inflammatory diseases are accompanied (and may be exac-
erbated, and possibly even largely caused) by amyloid fibril formation1–6. An amyloid fibril (protein) is defined as: 
“a protein that is deposited as insoluble fibrils, mainly in the extracellular spaces of organs and tissues as a result of 
sequential changes in protein folding that result in a condition known as amyloidosis”7. The nature and location of 
the amyloid typically reflects the disease, such that Parkinson’s is accompanied by amyloid forms of α-synuclein 
in the substantia nigra pars compacta8–10, Alzheimer’s by fibrillar forms of Aβ1-40/42 in many parts of the brain11–13, 
and type 2 diabetes – a disease with few genome-wide associations14 – by amylin fibrils in the insulin-producing 
cells of the pancreas15–25.

One characteristic of these kinds of fibril is their diameter, which is typically in the range 10–20 nm. By con-
trast, another type of protein fibre is represented by the fibrin produced during blood clotting. Under normal con-
ditions, the fibres forming the clot have an appearance in a scanning electron microscope like cooked spaghetti, 
and the fibres have diameters of the order of 80–110 nm26–30. We and others have observed that this diameter 
can be decreased to something closer to 40 nm in various vascular and inflammatory diseases, including stroke27 
and diabetes31–33. This is accompanied by many other changes in overall clot morphology and properties (e.g. for 
diabetes31, 33–39).
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Fibrin is produced by the polymerisation of the protein fibrinogen under the action of thrombin, that 
removes two fibrinopeptides, thereby allowing the fibrinogen to self-assemble via a ‘knobs and holes’ mecha-
nism into fibres (e.g. refs 40–44), but with no particularly marked changes in secondary structure40, 45–48. A final, 
transglutaminase-based crosslinking step49 ensures the stability of the clot.

One hallmark of amyloid proteins is the formation of a rich β-sheet structure, perpendicular to the fibres 
with a characteristic spacing (observable in X-ray reflections) of 4.7–4.8 Å (e.g. refs 4, 50–53, while another is the 
strong fluorescence observable (when excited ca 440 nm) when thioflavin T is bound to them (e.g. refs 54–59). 
Normal amyloidosis is rather slow, so needs some kind of ‘trigger’.

Although fibrin too is an insoluble fibre, fibrinogen has generally not been considered as amyloidogenic, nor 
fibrin as an amyloid protein (although it can become so in the presence of a rare mutation in the fibrinogen a 
chain60–63). However, as part of an extensive study of anomalous blood clotting (e.g. refs 29, 30, 33, 64–68), we 
recently found48, 68–70 that the anomalous clotting was in fact amyloid in nature. The fact that it could be caused by 
tiny amounts of lipopolysaccharide was seen as consistent with a role for dormant bacteria in the aetiology of such 
diseases71–78. A particularly strong pointer was the fact that the amyloid formation was abolished when the LPS 
was administered together with a stoichiometric excess of human lipopolysaccharide binding protein (LBP)68.

There are also strong indications that both iron dysregulation64, 79, 80 and coagulopathies30, 67 accompany a 
variety of inflammatory diseases. Certainly, too, the amount of LPS is raised in diabetics81–83, and this can con-
tribute to insulin resistance84. Thus, the question then arose as to whether the extent of fibrin-type amyloid in 
blood varies between type 2 diabetics and suitably matched controls, and whether the removal of any LPS using 
LBP affected this in any way. The present paper shows that the answers to both these questions are strongly in the 
affirmative.

Materials and Methods
Ethical statement.  This study was approved by the Ethical Committee of the University of Pretoria (South 
Africa): ethics clearance number: 298/2016. A written form of informed consent was obtained from all donors 
(available on request). The methods were carried out in accordance with the approved guidelines. Blood was 
collected and methods were carried out in accordance with the relevant guidelines of the ethics committee. We 
adhered strictly to the Declaration of Helsinki.

Sample population.  26 healthy individuals and 25 type 2 diabetes (T2D) individuals were included in the 
study. We have discussed the changes in clots of healthy individuals in the presence of LPS and LBP extensively 
in a recent publication68. The present healthy population therefore confirms repeatability of our previous results. 
Exclusion criteria for the healthy population were known inflammatory conditions such as asthma, human 
immunodeficiency virus (HIV) or tuberculosis, and risk factors associated with metabolic syndrome (including 
obesity/high BMI), smoking, and if female, being on contraceptive or hormone replacement treatment. This 
population did not take any anti-inflammatory medication. As our healthy population were aged between 22 and 
91 with BMI < 24.9, we classify them as apparently healthy. We specifically chose not to include controls with 
increased BMI levels, as literature suggests that an increased BMI is associated with increased levels of inflamma-
tion, which may indeed be linked to amyloid formation; furthermore, obesity is also associated with increased 

Figure 1.  Representative micrographs of PPP clots prepared from blood of two healthy individuals. (A and B) 
Micrographs were taken with a Zeiss LSM 510 META confocal microscope with a Plan-Apochromat 63x/1.4 
Oil DIC objective. PPP was exposed to thioflavin T (ThT) (5 μM exposure concentration) followed by adding 
thrombin to create extensive fibrin clots.
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endotoxin levels. As there are several levels of increased BMI, from only overweight to morbidly obese, the effect 
of BMI on clot structure, warrants a separate study.

T2D individuals were voluntarily recruited by their medical practitioner, from a Diabetic Clinic at the Steve 
Biko academic hospital, Pretoria, South Africa. Demographic data including age, gender, glucose level at time of 
sample collection, hemoglobin A1c (HbA1c) measures and medication used for typical comorbidities of T2D 

Figure 2.  (A and B) Low magnification micrographs of healthy PPP with added 0.2 ng.L−1 LPS Micrographs 
were taken with a Zeiss LSM 510 META confocal microscope with a Plan-Apochromat 63x/1.4 Oil DIC 
objective. All PPP was exposed to thioflavin T (ThT) (5 μM) followed by adding thrombin to create extensive 
fibrin clots. Areas of increased fluorescence are seen in the great majority of the clot area.

Figure 3.  (A) A representative micrograph showing healthy PPP with added 0.2 ng.L−1 LPS (10 minutes 
exposure) followed by 2 ng.L−1 LPS-binding protein and thrombin. PPP with LPS and LBP was then exposed 
to thioflavin T (ThT) (5 μM exposure concentration) followed by adding thrombin to create extensive clot. 
Micrographs were taken with a Zeiss LSM 510 META confocal microscope with a Plan-Apochromatt 63x/1.4 
Oil DIC objective. Nearly no fluorescence is visible.
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were recorded. Inclusion criteria consisted of both male and female participants, aged between 40 and 81 (oldest 
individual), with a diagnosis of T2D for more than 3 months prior to screening and without any signs of infection. 
Diabetic individuals were diagnosed per the Society for Endocrinology, Metabolism and Diabetes of South Africa 
(SEMSDA) guidelines. These guidelines follow the American Diabetes Association (ADA) criteria to define T2D. 
See Table 1 for medication usage. All the T2D individuals had a history of cardiovascular disease, and although 
a full history of co-morbidities including both macrovascular and microvascular co-morbidities are available in 
their patient records, we did not record the specific detail for the purposes of this study. All T2D had BMI’s of 
>25. Exclusion criteria for the T2D were conditions such as previously diagnosed cancer, asthma, human immu-
nodeficiency virus (HIV) or tuberculosis, smoking, and if female, being on contraceptive or hormone replace-
ment treatment. Ethical clearance was obtained from the Human Ethics Committee of the University of Pretoria. 
Whole blood of the participants was obtained in citrate tubes and platelet poor plasma (PPP) was used for con-
focal and SEM experiments.

LPS and LPS-binding protein.  The LPS used was from E. coli O111:B4 (Sigma, L2630). A final LPS expo-
sure concentration of 0.2 ng.L−1 and a final LPS-binding protein (LBP) exposure concentration of 2 ng.L−1 LBP 
was used.

Airyscan and scanning electron microscopy: healthy plasma samples: addition of LPS and 
LBP with thrombin to plasma.  PPP was also incubated for 10 minutes, with either LPS (LPS exposure 

Figure 4.  (A and C) Micrographs of PPP with added thrombin to form extensive fibrin fibres from 2 
individuals with type 2 diabetes; (B and D) PPP from same individuals, but exposed to 2 ng.L−1 LPS-binding 
protein followed by addition of thrombin. Thioflavin T (ThT) (5 μM) was added before thrombin. Micrographs 
were taken with a Zeiss LSM 510 META confocal microscope with a Plan-Apochromat 63x/1.4 Oil DIC 
objective. LBP dramatically reduced the fluorescence seen in samples from patients with T2D.
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concentration: 0.2 ng.L−1) or LBP (final exposure concentration of 2 ng.L−1). Also, samples were prepared where 
PPP was incubated with LPS (10 minutes), followed by addition of LBP (incubated for 10 minutes). Adding 
thrombin to either naïve PPP or PPP with the various added products, in the ratio 1:2, created extensive fibrin 
networks. For Airyscan preparation, before the thrombin addition, we added Thioflavin T (ThT) at a final con-
centration of 5 μM to 200 μL of various prepared PPP samples (incubated for one minute, and protected from 
light). For Airyscan samples, a coverslip was placed over the prepared clot, while the clots were washed, fixed in 
4% formaldehyde and prepared for SEM according to known SEM preparation methods. Samples were viewed 
using a Zeiss LSM 510 META confocal microscope with a Plan-Apochromat 163 and 100×/1.4 Oil DIC objective. 
Excitation was at 488 nm and emitted light was measured at 505–550 nm. A Zeiss cross beam electron microscope 
was used to study fibrin fibres.

Airyscan and scanning electron microscopy: type 2 diabetes samples: addition of LBP with 
thrombin to plasma.  Extensive fibrin networks were created by adding thrombin to naïve T2D PPP in the 
ratio 1:2. PPP was also incubated for 10 minutes with LBP (final exposure concentration of 2 ng.L−1). SEM and 
Airyscan samples were prepared and viewed as for healthy samples.

Statistical analysis.  The non-parametric Mann–Whitney U test (between controls and T2D samples) and 
the parametric T-test was performed (within samples) using the STATSDIRECT software.

Figure 5.  (A) Representative clot structure from a healthy individual; (B) same PPP sample with added LBP; 
(C) same PPP sample with added LPS; (D) same PPP sample with added LPS, followed by LBP. All clots were 
created by adding thrombin to PPP.

HEALTHY INDIVIDUALS (n=26) (BMI: Normal: < 24.9)

Gender Age

Median; STD; % F: 69%; M:31% 59 (± 25)

TYPE 2 DIABETES INDIVIDUALS (n=25) (BMI: Overweight: >25)

Gender Age HbA1c Chol HT AC

Median; STD; % F: 56%; 
M: 44%

61 (± 
11)

8.3 (± 
2.19) 88% 84% 80%

Table 1.  Demographics for the healthy and the T2D individuals. HbA1c (%): (levels that are >7% are too 
high); Cholesterol medication (Chol): Simvastatin, Atorvastatin. Hypertension medication (HT): Coversyl, 
Amlodopin, Carvedilol, Adalat. Anticoagulant medication (AC): Aspirin or Disprin.
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Results
Table 1 shows demographics for the healthy and the T2D groups, including HbA1c levels of T2D and their med-
ication usage. The healthy individuals were on no medication and did not suffer from any inflammatory condi-
tion. Our diabetes population contains patients that are mostly on a plethora of medications for cardiovascular 
co-morbidities e.g. hyperlipidaemia, hypertension and they have high HbA1c levels. We used the definition and 
the diagnostic criteria used in defining “diabetes” according to the Society for Endocrinology, Metabolism and 
Diabetes of South Africa (SEMSDA) guidelines. These guidelines follow the American Diabetes Association 

Figure 6.  (A to D) PPP with added thrombin from 4 naïve type 2 diabetes samples (5 k machine magnification); 
(E to H) Same samples (5 k machine magnification) with added LBP (incubated for 10 minutes).
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(ADA) criteria to define T2D (https://diabetes.medicinematters.com/guidelines/diagnosis/what-is-new-in-the
-2017-american-diabetes-association-standards-/11932360).

Airyscan results are shown in Figs 1, 2, 3 and 4 for the healthy and T2D population.

Airyscan super-resolution microscopy.  Healthy plasma with added LPS and LBP (Figs 1, 2 and 3).
In healthy PPP, in the presence of ThT, little to no fluorescence was noted, although (as in Fig. 1) there were 

occasional very small patches of fluorescence. However, when LPS had been added to the mixture prior to throm-
bin, fluorescence was greatly enhanced, suggesting increased binding of ThT to β-sheet-rich areas on the fibrin(o-
gen) (Fig. 2). Previously, we concluded that LPS binding causes the fibrinogen to polymerise into a form with a 
greatly increased amount of ß-sheet (in the presence of thrombin), reflecting amyloid formation68. This results in 
a strong fluorescence observable (when excited ca 440 nm) in the presence of ThT (see e.g. refs 56, 57). Here we 
also showed that even if we add LBP after LPS exposure, less ThT binding (fluorescence) is observed (Fig. 3). This 
suggests that LBP protects the fibres from LPS damage by binding to the pre-added LPS in the PPP, before clot 
formation is induced with thrombin.

Airyscan super-resolution microscopy.  Naïve type 2 diabetes with and without added LBP (Fig. 4).
Extensive fluorescence was noted in all our T2D samples after incubation with ThT (examples in Fig. 4A,C). 

However, when PPPs from T2D patients was incubated with LBP, very little to no fluorescence was observed 
(Fig. 4B,D). This suggests that the added LBP binds to something, removing its effect, and here we suggest (i) that 

Figure 7.  (A to C) PPP with added thrombin from 3 naïve type 2 diabetes samples (35 k machine 
magnification); (D to F) same samples (35 k machine magnification), with added LBP (incubated for 10 
minutes).

https://diabetes.medicinematters.com/guidelines/diagnosis/what-is-new-in-the-2017-american-diabetes-association-standards-/11932360
https://diabetes.medicinematters.com/guidelines/diagnosis/what-is-new-in-the-2017-american-diabetes-association-standards-/11932360
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it is LPS that is present in the naïve T2D, which is known, and (ii) that it is this presence of the LPS that is in part 
responsible for the anomalous clotting in T2D plasma.

We also looked at the clot structure of plasma from healthy and T2D individuals, with added thrombin, using 
scanning electron microscopy (SEM). Previously we reported, and we confirm here, that LPS causes healthy 
plasma to from denser and more hypercoagulable clots (confirmed by using PPP form healthy individuals and 
purified fibrinogen, using thromboelastography, confocal microscopy, SEM and we also tested whether LPS 
would bind to fibrinogen directly, using isothermal calorimetry). In this paper, we also showed that added LBP 
has the capability to reverse the damage of the LPS. We suggested that LPS causes anomalous clotting that is 
actually amyloid protein48, 68.

Here, Fig. 5A shows a representative airyscan micrograph of a typical clot from a healthy individual and 
Fig. 5B shows a clot where LBP was incubated with plasma before clot formation. In our hands, LBP on its own 
does not change clot structure significantly. Figure 5C shows a clot formed when plasma had been pre-incubated 
with LPS, while Fig. 5D shows a clot that was formed with plasma, also pre-incubated with LPS, but followed 
by addition of LBP, and both with added thrombin. Raw data, extensive SOPs for airyscan and SEM, including 
micrographs can be accessed at https://1drv.ms/f/s!AgoCOmY3bkKHhHp9zfDsIR_0g9_f and on EP’s research-
gate profile, https://www.researchgate.net/profile/Etheresia_Pretorius.

SEM micrographs show that clots created from T2D PPP (Figs 6 and 7) have a structure similar to those 
from healthy PPP with added LPS. However, when LBP is added to PPP followed by thrombin, the structure is 
reverted to that of healthy PPP with added thrombin: see 5 k machine magnification micrographs of clots from 
T2D (Fig. 6A to D) and with added LBP (Fig. 6E to H). Figure 7A to F show micrographs with higher SEM mag-
nifications (35 k machine magnification). Consequently, in this paper, we show that LBP added to naïve T2D 
plasma, followed by the addition of thrombin, led to a fibrin fibre structure similar to that of healthy PPP. The 
fluorescence (Airyscan) results were therefore confirmed by SEM.

For a schematic model of a ‘healthy’ clot structure (i.e. a clot formed from the PPP of a healthy individual), and 
that found in T2D, see Fig. 8A,B. A typical clot is created by adding thrombin to PPP, and this is spread out onto a 
glass coverslip. The coagulum (clot) is then processed by fixation and dehydration. Such processed clots consist of 
three layers. These layers vary in thickness and structure depending upon whether the plasma was from a healthy 
individual or an individual with inflammation. A clot from a healthy individual consists of a bottom layer, which 

Figure 8.  (A) Model of a fibrin clot formed from plasma from a healthy individual. (B) Model of a clot made 
using PPP taken from an individual with type 2 diabetes. A typical clot consists of 3 layers, fast coagulating top 
layer, middle fibrous layer and bottom, contact activation layer. The thickness and presence of these 3 layers vary 
between clots from healthy individuals and inflammatory clots.

https://1drv.ms/f/s!AgoCOmY3bkKHhHp9zfDsIR_0g9_f
https://www.researchgate.net/profile/Etheresia_Pretorius
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is caused by contact activation of the coagulum and the glass substrate. The second layer is the “true” clot, con-
sisting of a fibrin fibre network of elongated fibres. Sometimes, the contact activation layer is visible through the 
spaghetti-like fibres. Depending on the preparation procedures, a third, top layer may form on the spaghetti-like 
fibres. This layer typically washes away during the fixing and dehydration process. However, it may sometimes 
be visible as patches of coagulum, similar to that of the contact activation layer at the bottom (see Fig. 8A). In 
T2D, the bottom contact activation layer is not easily distinguishable from the middle “true” clot area, and sparse 
spaghetti-like fibres are fused into the contact activation layer. This fused layer of matted fibrin may consist of 
thin branching individual fibres, with very small openings between the individual fibres, giving the impression of 
a matted plate. In previous publications, we have also referred to this complex and hypercoagulable clot structure 
as “dense matted deposits” (DMDs) (e.g. refs 48, 65, 68, 85). In T2D, a top netted layer is frequently observed. It 
mostly does not wash away during the various fixing and dehydration steps, and it forms nearly instantaneously 
when mixing thrombin with plasma to create the clot. This is due to the hypercoagulable nature of the plasma (see 
Fig. 8B). During confocal clot preparation, a wet clot is studied. The PPP and thrombin are mixed on a micro-
scope slide and covered after 30 second with a coverslip. Although contact activation happens directly on the glass 
microscope slide, we therefore look at the fibrous part, which is similar to the middle “true clot” layers of the SEM 
clots in clots from healthy individuals.

Although Airyscan and SEM analysis are both typically used only as qualitative methods, we aimed to quan-
tify the changes in clot structure. By inspection (see figures above) the control samples without LPS showed 
much more variance between light and dark pixels, while the samples forming dense matted deposits were more 
uniformly grey. It thus seemed logical to use this to seek to quantify and discriminate the images. We therefore 
used the coefficient of variation (CV) as our metric. Thus, while recognising that the pixel intensity data were not 
normally distributed, we used ImageJ to calculate the mean and standard deviation of the intensity of the pixels 
in the images of the clot, using the histogram function, followed by the calculation of the coefficient of variation 
(i.e. SD/mean) of the intensity of the clot structure. Figure 9A to D show examples of representative histograms of 
the 8-bit intensity for a typical SEM and confocal clot with and without LBP of a patient with T2D. Within-sample 
analysis was done with the paired T-test and between-samples analysis was done using the Mann-Whitney test. 
Table 2 shows statistical analysis of the difference in the coefficients of variation (CV) of the pixel intensities in the 
images of the different clots studied using SEM and Airyscan technology and Fig. 10 shows boxplots of the data.

As shown in our stored raw data, our controls included 7 young controls (≤30 years). We used the paired t-test 
to compare SEM data from our younger group to our older group. No significant difference was seen between 
them (P = 0.1388), suggesting that, in this population, age did not affect clot structure.

Figure 9.  (A and B) Representative histograms of the 8-bit intensity for a typical SEM clot from PPP of an 
individual with type 2 diabetes (T2D) (A) and after addition of LBP (B). (C and D) Representative histograms of 
the 8-bit intensity for a typical Airyscan clot from PPP of an individual with T2D (C) and after addition of LBP.
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Discussion
Notwithstanding the difficulty of defining its ‘concentration’ in serum73, as most of it is bound to macromolecules, 
it is known that in type 1 diabetes the serum load of endotoxin (LPS) is raised relative to that of controls86, and 
that this is associated with disease progression87. There can also be an association between LPS levels in the serum 
and T2D81–83, though the direction of causality (if any) is seemingly not known. It is also known that T2D is 
accompanied by various kinds of coagulopathies (with both hypercoagulability, e.g. refs 88–95 and hypofibrinol-
ysis31, 36, 37, 39, 89, 92, 94, 96–101 being observable.

A question that can arise is why we did not measure the amount of LPS in the plasma. LPS is typically not a 
molecularly defined substance, and its activity is sometimes reported in ‘endotoxin units’ (EU); this is based on a 
standard taken from an E. coli O55:B5 strain; an approximate relationship is that 1 ng endotoxin ~10 EU73, 102. The 
only assay currently available is the Limulus amoebocyte lysate assay; however, its use in the estimation of LPS in 
blood is not considered especially reliable103–107.

Certainly, some of the fibrin(ogen) changes we see in this paper may be due to glycation of fibrinogen by the 
raised glucose levels38, 108–112, as well as the increased levels of fibrinogen itself (e.g. refs 35, 112–115). However, 
because we had recently shown the extreme sensitivity of the form of the fibrin structure to tiny amounts of (free) 
LPS, including the formation of amyloid48, 68, it was of interest to enquire as to whether diabetic subjects were 
more likely to produce an amyloid form of clot.

Although we have seen anomalous clotting structures in diabetes before32, 33, 116, this is the first time that we 
have shown them to be amyloid in character. This is entirely consistent with the fact that at least some of the amy-
loidogenesis must be catalysed by fibrinogen-bound LPS, given too, as we show here, that it could be removed, 
and the amyloidogenesis largely reversed, by LBP. Interestingly, fibrin deposition has also previously been noted 
in term placentas from diabetic mothers117.

Type 2 Diabetes Sem Data Coefficient of Variation Healthy Individual SEM data Coefficient of variation

Naïve T2D
T2D treated 
with LBP

Naïve 
controls

Controls treated 
with LPS

Controls treated 
with LBP

Controls treated with 
LPS followed by LBP

MEDIAN AND STD 0.41 (± 0.10) 0.63 (± 0.14) 0.70 (± 0.12) 0.41(± 0.09) 0.75 (± 0.16) 0.65 (± 0.19)

Scanning Electron Microscopy

Choice of Samples Test Used P-value

Analysis between naïve T2D and naïve 
controls Mann-Whitney Two sided P < 0.0001

Analysis between naïve controls and 
controls treated with LPS Paired T-test Two sided P < 0.0001

Analysis between naïve T2D and T2D 
treated with LBP Paired T-test Two sided P < 0.0001

Analysis between naïve controls and 
controls treated with LBP Paired T-test Two sided P = 0.20

Analysis between naïve controls and 
controls treated with LPS followed by LBP Paired T-test Two sided P = 0.22

Analysis between controls treated with LPS 
and naïve T2D Mann-Whitney Two-sided P = 0.82

Analysis between T2D treated with LBP and 
naïve controls Mann-Whitney Two-sided P = 0.07

Analysis between T2D treated with LBP and 
controls treated with LPS followed by LBP Mann-Whitney Two sided P = 0.4

Analysis between controls treated with LBP 
and T2D treated with LBP Mann-Whitney Two sided P = 0.13

Airyscan Technology

Choice of Samples Test Used P-value

Analysis between naïve T2D and naïve 
controls Mann-Whitney Two sided P = 0.001

Analysis between naïve controls and 
controls treated with LPS Paired T-test Two sided P = 0.009

Analysis between naïve T2D and T2D 
treated with LBP Paired T-test Two sided P < 0.0001

Analysis between naïve controls and 
controls treated with LPS followed by LBP Paired T-test Two sided P = 0.27

Analysis between controls treated with LPS 
and naïve T2D Mann-Whitney Two sided P = 0.80

Analysis between T2D treated with LBP and 
naïve controls Mann-Whitney Two sided P = 0.41

Analysis between T2D treated with LBP and 
controls treated with LPS followed by LBP Mann-Whitney Two sided P = 0.48

Table 2.  Scanning electron microscopy data for type 2 diabetes and healthy individuals showing the coefficients 
of variation (CV) of the intensity of the pixels in the clot images and statistical analysis of the difference in 
the CV of the pixel intensities in the images of different clots studied using scanning electron microscopy and 
Airyscan technology.



www.nature.com/scientificreports/

1 1Scientific REPOrTS | 7: 9680  | DOI:10.1038/s41598-017-09860-4

As well as for islets16, 18–20, 118–122, amyloid deposition in diabetes is known in kidney123–125, as is the deposition 
of serum amyloid A126, 127 (which may have prognostic value128). We also note the various comorbidities between 
T2D and CVD129–132; one interpretation is a common cause. In our T2D sample, most of the individuals suffer 
from hypertension and increased cholesterol and take anticoagulant medication. These co-morbidities are also 
common in CVD, and T2D is well known as a major cardiovascular risk factor133. Both T2D and CVD are known 
to have vascular pathology134, and this is directly associated with coagulation pathology116. We also looked to see 
it there are any relationships been our newly determined blood parameters and e.g. fasting glucose, but we could 
not discern any.

Endotoxin levels in T2D have previously been found to be, in part, the cause for hypercoagulation and that 
T2D patients treated with e.g. the anti-glycemic agent, rosiglitazone showed significantly lower endotoxin 
levels81. Our sample did not use this medication. Besides medication for glucose control, our T2D group also 
includes individuals on medication for dyslipidaemia and hypertension, while some are taking anticoagulants 
(see Table 1). Anticoagulants (e.g. aspirin/disprin) increase fibrin clot porosity and susceptibility to lysis135, 136 
(i.e. the exact opposite effect from that noted here with LPS/LBP; Pretorius et al. 2013, 2015); they also have an 
antiplatelet effect136–139 and are known to reduce the risk of thrombosis140–144. Such products are also inhibitors 
of both cyclooxygenase COX-1 and COX-2145. We could not find evidence in the literature that LBP acts as an 
anti-coagulant.

Concluding remarks
T2D is accompanied by long-term inflammation, and this inflammation is mediated in part by increased fibrino-
gen levels, as well as a changed cytokine profile that is driven, at least in part, by dysregulated glucose and insulin 
function. The origin of this inflammation is mostly unclear and remains unresolved in diabetes. It is known that gut 
dysbioses and atopobioses71 (colloquially referred to as ‘leaky gut’) are a well-known contributor to the pathogenesis 
of many metabolic diseases, including obesity146, T1D147, 148, T2D146, 149, 150, and CVD151. We have previously sug-
gested that there is a fundamental link between gut dysbioses, the presence of a (dormant) blood microbiome and 
the presence of the highly inflammatory LPS71–73. As discussed in the introduction and shown recently, LPS is known 
to cause hypercoagulability and anomalous blood clotting, even at very low concentrations48, 68. We have also shown 
that LPS may directly bind to fibrinogen monomers68. Anomalous clotting is well-known in T2D31, 33–39, and here we 
show that LBP added to PPP from individuals with T2D changes fibrin structure to resemble that of healthy fibrin. 
We confirmed our results with healthy PPP, adding LPS and mopping it up again with added LBP. It is known that 
LBP is an acutely induced plasma protein that binds avidly to LPS aggregates, and delivers them to CD1473, 152, 153.  
Our results therefore suggest that, at least in part, the anomalous blood clotting seen in T2D is due to the pres-
ence of the potent inflammagen LPS, that can be removed by LBP. A future study could additionally investigate the 
effect of glucose addition to healthy PPP, with and without the addition of LPS. This will give insights regarding 
amyloidogenesis and the effects of glucose on such a process. It now seems no coincidence that most of the more 
serious sequelae of diabetes are accompanied by amyloid formation (e.g. retinopathy154–156, nephropathy123, 157–160, 
neuropathy161, and cardiovascular problems162, 163). It is well-known that all of these macro- and microvascular com-
plications that form part of the T2D comorbidities cause hypercoagulation and are associated with an upregulated 

Figure 10.  Boxplots of the distribution of the coefficients of variation (CV) of the pixel intensities of the SEM clot 
images from the different sample classes analysed (median CV for each group is above boxplots). Note that that the 
CVs of the clot structures of PPP from naïve T2D and that of healthy individuals with added LPS are both 0.41.
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inflammatory profile. A follow-up study should investigate the specific influences of comorbidities like a history 
of macrovascular (cardiovascular diseases such as coronary artery disease, ischemic stroke, and peripheral artery 
disease), and microvascular (retinopathy, nephropathy, and neuropathy). This will give further insight with regards 
to the exact role that these comorbidities play in hypercoagulation.

Thus, the recognition from the present work that amyloid formation is a strong function of the presence of 
cryptic LPS in type 2 diabetes might have important applications in both the treatment of inflammation in T2D, 
and the progression of the condition generally. The fundamental question that now remains is how to translate 
these results into clinical practice.
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