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Abstract

The proteins LMO4 and DEAF1 contribute to the proliferation of mammary epithelial cells. During breast cancer LMO4 is
upregulated, affecting its interaction with other protein partners. This may set cells on a path to tumour formation. LMO4
and DEAF1 interact, but it is unknown how they cooperate to regulate cell proliferation. In this study, we identify a specific
LMO4-binding domain in DEAF1. This domain contains an unstructured region that directly contacts LMO4, and a coiled coil
that contains the DEAF1 nuclear export signal (NES). The coiled coil region can form tetramers and has the typical properties
of a coiled coil domain. Using a simple cell-based assay, we show that LMO4 modulates the activity of the DEAF NES,
causing nuclear accumulation of a construct containing the LMO4-interaction region of DEAF1.
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Introduction

The transcriptional co-regulator LMO4 (LIM-only protein 4)

and the transcription factor DEAF1 (Deformed epidermal

autoregulatory factor 1/NUDR/Suppressin) have several proper-

ties that suggest they act in common to regulate normal

development and breast cancer. Both proteins are widely

expressed but show high levels of expression in epithelial cells

and the central nervous system (e.g., [1,2,3,4]), and mice knockouts

of either gene result in similar brain, skeletal and cranial nerve

defects [5]. In breast tissue, both LMO4 or DEAF1 are thought to

play roles in cell proliferation and ductal side-branching [6,7].

Their abilities to increase proliferation of mammary cells mark

both proteins as potential contributors to breast tumour growth

and metastasis.

LMO4 is present in all human breast tumour subtypes, with

.50% of primary tumours showing increased levels of expression

(e.g., [8,9,10]), with a high level of nuclear LMO4 expression being

associated with poor patient survival [9]. Forced overexpression of

LMO4 causes mammary epithelial cells to proliferate ex vivo,

increases mammary cell populations in a transgenic mouse model,

and promotes cell invasion and tumour formation in human cell

lines [9]. Although LMO4 contains little more than two protein-

binding LIM domains, it can affect gene expression by modulating

transcriptional events (e.g., [11,12,13]), presumably by recruiting

transcription factors, including DEAF1.

LMO4 and DEAF1 are co-expressed in breast tissue and were

shown to interact in mammalian two-hybrid assays [4]. Given the

potential functional significance of this interaction in breast cancer,

we sought to understand how LMO4 and DEAF1 might cooperate

to regulate cell proliferation. In this work, we used a combination of

yeast two-hybrid, biophysical and cell-based assays to identify a

tightly defined LMO4-binding region of DEAF1. This region

contains (1) a specific LMO4-interaction domain (DEAF1404–438)

and (2) the majority of a coiled coil domain (DEAF1454–479)

encompassing the nuclear export signal (NES) of DEAF1. Further,

we show that LMO4 can regulate the subcellular localisation of a

DEAF1 construct incorporating the new LMO4-binding region.

Together these results support the idea that high levels of LMO4 in

the nucleus, which is a hallmark of sporadic breast cancers, may

upset the delicate balance between interactions with partner

proteins such as DEAF1.

Results

The LMO4 Minimal Binding Domain of DEAF1
DEAF1 encodes a 566 residue (,60 kDa) protein containing

DNA-targetting SAND (Sp100/AIRE1/NucP41/75/DEAF1) do-

main and Helix-Loop-Helix (HLH) motifs at the N-terminus, a

protein-binding MYND (Myeloid translocation protein 8/Nervy/

DEAF1) domain at the C-terminus, a nuclear localisation

sequence (NLS) and an NES (Figure 1A). Previous mammalian

two-hybrid experiments showed that a large region encompassing

the C-terminal half of DEAF1 (DEAF1334–545) could bind LMO4

[4]. That portion of DEAF1 contains various domains: a putative

unstructured region, a putative coiled coil domain that overlaps

with the NES [14], and the MYND domain. We aimed to define

the LMO4-interaction domain by identifying the smallest region

of DEAF1 that was sufficient to mediate an interaction by yeast

two-hybrid analysis. Thus, we generated a series of DEAF1

truncation mutants, in which either the entire MYND domain was

removed (to avoid generating mis-folded partial domains which
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can be ‘‘sticky’’ and give rise to non-specific interactions), and/or

by systematically trimming the unstructured and coiled coil

domains (where truncations are unlikely to have a major effect

on structure; Figure 1B). DEAF1 truncations were fused to an N-

terminal GAL4 activation domain where five residues separate

GAL4 and the beginning of the DEAF1 constructs. Full length

LMO4 was fused to an N-terminal GAL4 DNA binding domain.

An interaction is inferred by yeast growth on selective media

lacking essential nutrients (histidine or histidine and adenine) and/

or the production of blue colour from a-X-gal (5-bromo-4-chloro-

indolyl-a-D-galactopyranoside); the His3, Ade2 and Mel1 reporter

genes are activated by a positive interaction. Although MYND

domains are considered to be protein-binding motifs [15], the

DEAF1-MYND domain was not involved in this interaction.

Rather we identified a minimal LMO4-binding domain,

DEAF1404–479, which includes 50 residues from the C-terminal

end of the predicted unstructured region and the majority of the

putative coiled coil.

Several partners of LMO and related LIM-homeodomain

proteins interact with LIM domains through intrinsically unstruc-

tured domains of ,30 residues [16,17], and a coiled coil domain

has previously been shown to stabilise an unstructured interaction

domain in a yeast two-hybrid assay, but did not contribute to

direct binding [18]. To test if the coiled coil domain (DEAF454–479)

might stabilise a shorter region near the N-terminus of DEAF1404–

479 for interaction with LMO4 we generated an additional set of

internal deletions using the DEAF1404–479 template (Figure 1C). A

17-residue internal stretch of amino acids (DEAF1439–456) could be

deleted without apparently affecting the interaction in the yeast

two-hybrid assay. Fourteen of these residues were from the

unstructured domain, and three from the putative coiled coil.

Thus, within the contiguous DEAF1404–479 region, we identified

DEAF1404–438/457–479 as the new binding motif for LMO4.

To test if the predicted coiled coil directly contacts LMO4, we

compared the ability of LMO4 to bind the contiguous minimal

LMO4-binding domain (DEAF1404–479), and a chimera, in which

the DEAF1 coiled coil was replaced by the leucine zipper domain

from GCN4, using yeast two-hybrid analysis (Figure 1D). Note

that neither the isolated full length native DEAF1 coiled coil

(DEAF1454–487) (data not shown), nor isolated the GCN4 leucine

zipper [16] showed any detectable interaction with LMO4. The

chimera in which the coiled coil domain from DEAF1 was

Figure 1. Establishing the LMO4-binding region of DEAF1. A. Schematic domain structure of the mouse DEAF1 protein containing a DNA-
binding SAND (Sp100, AIRE-1, NucP41/75, DEAF11), a Helix-Loop-Helix (HLH) domain, a predicted coiled coil region (depicted as a helix), a protein-
binding MYND (myeloid translocation protein 8, Nervy, DEAF1) domain, a nuclear localization signal (NLS) and a nuclear export signal (NES). The
previously identified LMO4-binding region (335–545) [4] is indicated (thin grey line). B. Yeast two-hybrid experiments where Saccharomyces cerevisiae
(AH109) were co-transformed with full-length DEAF1 fused to a transcriptional activator domain (pGAD10) and LMO4 fused to a DNA binding domain
(pGBT9). Co-transformants were serially diluted and spotted on growth (2L/2W; growth) and high stringency interaction plates (2L/2W/2H/2A;
selection). Left-most panels show controls. Schematic on right shows corresponding domain truncations of DEAF1 constructs used in the assays.
Growth of yeast or its absence on selection plates indicates an interaction (ticks) or an abrogation of the interaction (crosses) with LMO4 respectively.
C. DEAF1 internal deletion mutants were tested for interaction with LMO4 by yeast two-hybrid assays; interactions are represented as above. D. Yeast
two-hybrid data for DEAF1/LMO4 interactions to assay replacement of the DEAF1 coiled coil domain by the dimeric GCN4 leucine zipper. Selection
was medium/high stringency (2L/2W/2H+3AT)/(2L/2W/2H/2A). Yeast two-hybrid spot test results are shown. Three dilutions (A600nm = 0.2,
diluted serially 261-in-10) are spotted left to right to show differences in growth under each selection condition.
doi:10.1371/journal.pone.0039218.g001
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replaced by the GCN4 leucine zipper showed clear evidence of an

interaction with LMO4 under moderate, but not high stringency

selection conditions, compared with the equivalent native

construct, DEAF1404–479, which resulted in yeast growth under

both moderate and high stringency conditions. The ability of the

chimera to promote yeast growth under any condition suggested to

us that the coiled coil was stabilising the rest of the construct rather

than making specific interactions with LMO4, and that reduction

in yeast growth was a result of less effective stabilisation by the

GCN4 leucine zipper. However, it is also possible that the coiled

coil domain from DEAF1 does make contacts with LMO4, which

can be partially replaced by interactions with the leucine zipper

domain of GCN4, or that self-association of DEAF1404–438 is

required for binding. Although the leucine zipper domain of

GCN4 is a highly characterised dimer (e.g., [19]) the coiled coil

domain from DEAF1 and its self-association properties have not

been fully characterised.

Self-association of DEAF1 by the Coiled Coil Domain
Full length DEAF1 was previously shown to self-associate using

coimmunoprecipitation experiments. Wild type DEAF1 reinstates

nuclear localisation of a DEAF1 mutant in which the nuclear

localisation signal was disrupted, most likely through the in vivo

association of wild type and mutant forms of DEAF1 [14]. Jensik

and co-workers attributed this self-association, at least in part, to

the putative coiled coil.

To characterise the self-association of DEAF1 we first used yeast

two-hybrid analysis to establish that DEAF1404–479 (the new

LMO4 binding region without internal deletions) could associate

with both itself and full length DEAF1 (Figure 2A). The interaction

with full length DEAF1 appeared weaker than that with

DEAF1404–479 as judged by levels of growth under different

stringency conditions. This difference in apparent binding

strengths probably reflects differences in the stabilities of the

DEAF1 constructs in yeast cells. Surprisingly, the isolated coiled

coil construct (DEAF1454–487), was not able to interact with full

length DEAF in this assay; however, only five residues separates

the GAL4 activation domain and the beginning of the coiled coil

in the construct. We postulate that the structured GAL4 activation

domain may sterically prevent formation of the coiled coil.

To determine the oligomerisation state of DEAF1 and the

coiled coil region in vitro, we made a series of DEAF1 constructs as

recombinant proteins fused to the Maltose Binding Protein (MBP)

or the b subunit of the Streptococcal G protein (GB1) tag. These

proteins were subjected to size exclusion chromatography coupled

to multi-angle laser light scattering (SEC-MALLS). This technique

supplies information about weight average molecular weight in

solution and requires relatively large quantities of essentially pure

protein that cannot normally be obtained from mammalian

cellular lysates. DEAF1 contains multiple protein domains,

including the DNA-binding SAND and HLH domains that may

also mediate self-association [20] and could complicate character-

isation of the coiled coil domain. We tested a range of constructs,

including full length DEAF1; DEAF1335–485, which lacks the

SAND, HLH and MYND domains; the minimal LMO4-binding

domain DEAF1404–479; and, the complete putative coiled-coil

domain, DEAF1454–487. The larger constructs all showed evidence

of self association, as indicated by weight average molecular

weights corresponding to tetramers or higher order species (,10

subunits for full length DEAF1, tetramer for DEAF1335–485), but

sloping MALLS data indicating a mixture of species (Figure 2B) or

small amounts of contaminating proteins precluded detailed

analysis. In contrast, the isolated coiled coil, GB1-tagged

DEAF1454–487 eluted from the size exclusion column as one

major peak, with a molecular weight of ,60 kDa, which

corresponds to a tetramer (Figure 2C). Together these data

indicate that DEAF1 can form tetramers through self-association

of the coiled coil region, but other domains outside this region can

also mediate self-association. We further subjected DEAF1454–487

to analysis by far-UV circular dichroism spectropolarimetry (CD)

to probe the secondary structure of the isolated coiled coil

(Figure 2D). The spectrum of the untagged protein is typical of a-

helical conformation with minima at 208 and 222 nm, and a ratio

of signal intensities at 208 nm:222 nm of ,1 which is character-

istic of coiled-coil domains (e.g., [21]). Together these data indicate

that DEAF1454–489 forms a tetrameric coiled coil domain.

LMO4 Blocks DEAF1 Nuclear Export Causing its
Accumulation in the Nucleus

Eukaryotic NESs are often part of coiled coil domains due to

their leucine-rich nature [22,23,24]. The location of the DEAF1

NES in the N-terminus of the coiled coil domain prompted the

question: does binding by LMO4 affect the nuclear localisation of

DEAF1? DEAF1 is a predominantly nuclear protein, and changes

in its subcellular location to cytoplasmic, correlate with prolifer-

ative status of cells (e.g., in colorectal carcinoma [25]). To begin to

address this possibility, we developed a simple cell-based

experiment that could show an effect on the nuclear localisation

of transfected DEAF1404–479 in the absence and presence of

transfected LMO4. We quantified nuclear translocation in

HEK293 cells, which have low levels of endogenous LMO4 and

DEAF1 proteins as determined by Western blotting (data not

shown).

Using fluorescence microscopy of transiently transfected cells,

we first demonstrated that DEAF1404–479 could be delivered to the

nucleus using a well-characterised strong NLS from simian virus

40 large T-antigen (SV40) with an enhanced Green Fluorescent

Protein (EGFP) tag. Transient transfection with EGFP-SV40-

DEAF1404–479 showed essentially complete localisation of the

construct to the nucleus, whereas EGFP-DEAF1404–479 (no NLS)

was largely excluded from the nucleus (Figure S1A). Although

these data demonstrated effective nuclear import of the DEAF1

construct, the presence of the strong SV40 NLS appeared to

prevent net nuclear export via the DEAF1 NES. Thus, we

engineered an NLS that allowed moderate nuclear localisation by

replacing the SV40 NLS with sequences corresponding to the

native DEAF1 NLS, or point mutants of these sequences. Utilising

an extended version of the DEAF NLS [14] allowed for a larger

choice of mutations than simply mutating the SV40 NLS. NLS1

contained the complete extended NLS. NLS2 contained the

extended NLS with a glutamine in place of lysine at position 4,

which has been shown to decrease the strength of an NLS [26].

NLS3 contained the short version of the DEAF1 NLS (nearly

identical to SV40 NLS, thus strong). NLS4 was the short NLS with

a glutamine substitution at position 4 (Figure S1B). Both NLS1

and NLS3 (the wildtype extended and short NLSs) efficiently

directed DEAF1404–479 to the nucleus (87 and 85% nuclear

accumulation, respectively), whereas NLS2 showed a reduced

efficiency (48% nuclear) and NLS4 a markedly reduced efficiency

(36%) compared to NLS1 and NLS3 (Figure S1C, D). GFP-NLS1-

4 constructs without DEAF1404–479 were also tested for percent

nuclear accumulation and showed the same trends (data not

shown). We established that a construct comprising an enhanced

Green Fluorescent Protein (EGFP) tag, the short NLS from

DEAF1 with a glutamine in place of lysine at position 4 (NLS4),

and DEAF1404–479 (EGFP-NLS4-DEAF1404–479), resulted in

,40% nuclear localisation of the expressed protein (Figure S1).

We used EGFP-NLS4-DEAF1404–479 (Figure 3A) to readily

Interaction of DEAF1 and the Breast Oncogene LMO4
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visualise and quantify changes in nuclear retention of transfected

DEAF when co-transfected with LMO4.

The addition of pCMV-LMO4 to cells transfected with EGFP-

NLS4-DEAF1404–479 had a marked effect on the nuclear

localisation of EGFP-NLS4-DEAF1404–479; the GFP-tagged

Figure 2. Characterising DEAF1 and the coiled coil domain. A. Schematic showing DEAF1 constructs used in yeast two-hybrid self-association
experiments. Selection was medium/high stringency as in Figure 1D; +++ indicates strong growth, - indicates no growth, ND indicates not
determined. B. SEC-MALLS analysis of full length and DEAF1335–485 constructs (left panel) and DEAF1404–479 and the coiled coil domain (right panel).
DEAF1 proteins (,200 mg) were applied to a Superose 12 column with an in line MALLS detector to determine weight-averaged molecular weight in
solution. The elution (continuous line) and light-scattering (&) are shown. C. Summary of the theoretical monomeric and experimentally determined
molecular weight of DEAF1 proteins in A and B were used to calculate the oligomeric state. D. Far-UV circular dichroism spectropolarimetry (CD)
spectrum of the DEAF1 coiled coil domain.
doi:10.1371/journal.pone.0039218.g002
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protein became predominantly localised in the nucleus in the

presence of LMO4 (Figure 3B). The data shown were at plasmid

ratios of 1:1 DEAF:LMO4, (total of 4 mg plasmid) but the data

were identical over all plasmid ratios tested (1:1, 1:1.5, 1:2, data

not shown), suggesting a relatively strong interaction between the

two proteins. Quantification of DEAF1404–479 nuclear accumu-

lation in Figure 3B, expressed as a percentage of cell area in two

dimensions, showed a visually and statistically significant

difference in the absence and presence of LMO4 (Figure 3C).

Approximately 44% of GFP-NLS4-DEAF1404–479 is located in

the nucleus in the absence of LMO4, but this nearly doubles to

,78% when LMO4 is co-transfected. To control for the effect of

LMO4 on nuclear localisation, we transfected EGFP-DEAF1404–

479 (no NLS) with and without pCMV-LMO4 and showed that

LMO4 had no effect on the nuclear localisation of DEAF1404–479

without an NLS; the EGFP protein appeared to be excluded

from the nucleus (Figure S2). When we transfected EGFP-

DEAF1404–479 (no NLS) in the presence of LMO4 we noted that

DEAF1404–479 was concentrated to distinct foci around the

periphery of the nucleus (Figure S2). This could indicate an

LMO4-DEAF1404–479 interaction in the cytoplasm concentrated

within these foci. Nuclear import with this construct should not

be possible given the lack of an NLS, unless facilitated by

additional binding partners within the cells.

Discussion

Our data indicate that the DEAF1 coiled coil forms a tetramer

in vitro, and contributes to a bipartite LMO4-binding motif

(DEAF1404–438/457–479) in yeast two-hybrid assays. The native

tetrameric coiled coil can be replaced by a non-native dimeric

coiled coil with only a moderate loss of apparent affinity in this

assay. Our current model for binding is that DEAF1404–438 makes

direct contacts with LMO4 in a manner similar to other well

characterised LMO and LIM-homeodomain binding domains

[16,17,27,28] and DEAF1457–479 either stabilises the construct, or

provides an appropriate self-association state for the interaction

with LMO4.

The presence of an NES in the coiled coil domain is not

uncommon; NESs can be found in leucine rich segments of

proteins, including coiled coil domains, located proximal to

disordered regions [29,30]. Leucine rich NESs from at least two

different proteins bind the exportin protein CRM1 as helices.

Conserved leucine (or other hydrophobic) residues that form the

hydrophobic core of the coiled coil are critical for recognition by

the exportin protein [31,32]. The DEAF1 coiled coil sequence

resembles a typical NES [24], suggesting that formation of a

DEAF1 tetramer through the coiled coil domain would disfavour

nuclear export. In this scenario the DEAF NES would only

become available to exportins either by movement of the helix

containing the NES, or monomerisation of individual helices.

Although it is not yet clear if oligomerisation of DEAF1 is a

requirement for the interaction with LMO4 in vivo, binding by

LMO4 could prevent nuclear export of DEAF1 by stabilising

DEAF1 tetramer (or higher order oligomers) through mass action

effects, or by recruiting other protein partners that form

oligomers and/or promote molecular clustering. Alternatively,

LMO4 binding to DEAF1 may inhibit tetramerisation and

prevent binding of an exportin to the DEAF NES, through direct

steric inhibition, or by recruiting other partners that block

binding. These hypotheses remain to be tested, although similar

‘masking effects’ of NESs have been shown for other proteins

Figure 3. Nuclear localisation of EGFP-NLS4-DEAF1404–479 in the presence of LMO4. A. DEAF1 construct in pEGFP-C2 that was used for
transfection. It has an N-terminal EGFP tag followed by the altered DEAF1 NLS4 and DEAF1404–479. The NLS4 and NES protein sequences and DEAF1
numbering are shown. B. HEK293 cells grown on cover slips in 6 well plates were transfected with a total of 4 mg of DNA: control pEGFP (panel 1),
2 mg EGFP-DEAF1404–479+2 mg empty pCMV vector (panel 2), 2 mg EGFP-NLS4-DEAF1404–479+2 mg empty pCMV (panel 3) and EGFP-NLS4-DEAF1404–

479+2 mg pCMV LMO4 (panel 4). After 24 h transfection, cells were fixed with paraformaldehyde and nuclei stained with Hoechst dye. Cells were
imaged for EGFP fluorescence (green) and nuclear staining (blue) by fluorescence microscopy. C. Quantification of A. The two-dimensional areas of
n = 8 fields of view were measured for % nuclear localisation of EGFP-NLS4-DEAF1404–479 in the presence and absence of LMO4. Difference is
statistically significant as p,0.05.
doi:10.1371/journal.pone.0039218.g003
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[33,34,35]. For example in the tetrameric form of p53 tumour

suppressor, the NES lies within the tetramerisation domain and

nuclear export appears to be regulated by the oligomerisation

state of p53 [35]. Or in the case of the APC tumour suppressor

where binding of CRM1 exportin and active–Ran allow

movement of the helix containing the NES within the coiled

coil moiety that then unmasks the NES [34]. An alternative

explanation of our results is that DEAF1 could simply act as a

nuclear localisation mechanism for LMO4. LMO4 is predom-

inantly nuclear, although it does not have an NLS of its own.

Other known binding partners of LMO4 all have NLS

sequences, e.g., LIM-domain binding protein 1 [36], CtBP-

interacting protein ([37]) and oestrogen receptor a and metas-

tasis-associated gene 1 [38]. LMO4 can therefore be transported

into the nucleus by the most abundant/available partner, via a

piggy-back mechanism. This is commonly seen for many NLS-

deficient nuclear proteins (e.g., [39,40,41]). Whichever is the case,

the effect on either protein on the subcellular localisation of the

other will modulate the activity of that protein, modulating the

type and composition of complexes formed.

Our results begin to shed light on the mechanism of some breast

cancers where high levels of LMO4 are present. Under these

circumstances DEAF1 may become sequestered into nuclear

LMO4-DEAF1 complexes, perturbing the normal functions of

DEAF1. Forming aberrant transcription complexes can prevent

the formation of normal complexes. For example Rac3 GTPase,

which is linked to breast cancer, cellular migration and adhesion,

is transcriptionally upregulated by DEAF1 in immortalised

mammary epithelial cells [10]. Rac3 is a candidate target for

LMO4:DEAF1 complexes. If these complexes are aberrantly

forming due to the persistence of LMO4, it could provide a

mechanism to increase cell proliferation and migration during

breast oncogenesis. In contrast, the expression of hnRNP, a

repression target of DEAF1 that is seen at high levels in some

cancers [42], may be free to accumulate if other DEAF1

complexes are unable to form. Manipulating the interaction

between LMO4 and DEAF1 to prevent the formation of aberrant

transcriptional complexes may represent a potential novel

therapeutic strategy with which to combat breast cancer.

Materials and Methods

Yeast Two-hybrid Assay
Mouse LMO4 (NCBI accession: NP_001155241) and DEAF1

(NM_016874) were used throughout. Full length DEAF1 was a gift

from Jane Visvader. DEAF1 mutants and fusion constructs were

generated by standard or optimised PCR methods [43]. Yeast two-

hybrid assays were performed as described previously [16]. Co-

transformants were serially diluted (A600nm = 0.2, diluted serially

261-in-10) and spotted on selection plates for growth (2L/2W),

medium (2L/2W/2H +1 mM 3-amino-1,2,4,-triazol (3-AT)) or

high (2L/2W/2H/2A) stringency selection.

Recombinant DEAF1 Protein Production
Full length DEAF1 and DEAF1335–485 were cloned into

pMALC2 to produce an N-terminal maltose-binding protein

(MBP) fusion when expressed in Escherichia coli Rosetta 2 strain

(Novagen) induced with 0.1 mM isopropylthiogalactoside (IPTG),

20uC, 16 h. The MBP fusion was purified by amylose affinity

chromatography in 20 mM Tris-HCl pH 8.0, 500 mM NaCl,

1 mM dithiothreitol (DTT) and eluted in 50 mM maltose. MBP

fusion proteins were further purified by size exclusion chroma-

tography (SEC) on a Superdex 200 column (GE Healthcare). The

DEAF1454–485 construct was expressed in Rosetta 2 cells (induced

with 0.4 mM IPTG, 30uC, 16 h) with an N-terminal His-GB1

(hexa-histidine/Gb-1 domain of streptococcal protein G) tag [44].

This construct contains a 17-residue linker between the GB1 tag

and DEAF1 to eliminate possible problems with steric hindrance.

Protein was purified by batch anion exchange chromatography

(DEAE sepharose, GE Healthcare) in 20 mM Tris-HCl pH 8.0,

100 mM NaCl, 1 mM DTT, 10% glycerol and eluted in 20 mM

Tris-HCl pH 8.0, 600 mM NaCl, 20 mM imidazole, 5% glycerol,

1 mM 2-mercaptoethanol, 0.2 mM phenylmethylsulfonyl fluoride.

Eluate was applied to a Ni-NTA resin (Invitrogen) equilibrated in

the same buffer, eluted with 300 mM imidazole, and exchanged

into 20 mM Tris-HCl pH 8.0, 150 mM NaCl and 1 mM DTT

using a PD-10 desalting column (GE Healthcare). Sample purity

was assessed by SDS-PAGE. The hexa-his-GB1 tag was cleaved

from DEAF1454–487 using TEV protease (20uC, 16 h). Tag was

removed by Ni-NTA affinity chromatography prior to SEC using

a Superose 12 column (GE healthcare) to yield a 95% pure sample

(as judged by SDS-PAGE).

Protein Characterisation
Size exclusion chromatography coupled to multi-angle laser

light scattering (SEC-MALLS) was carried out as described

previously [17]. Far-UV circular dichroism spectropolarimetry

(CD) was used to probe the secondary structure of DEAF1.

DEAF1454–487 was dialysed into 20 mM Trisma pH 8.0, 50 mM

NaF and 0.5 mM TCEP-HCl. Data were collected on a 20 mM

sample using a Jasco J-720 spectropolarimeter at 20uC. The

spectrum in Figure 2D represents the average of three accumu-

lations collected at 20 nm/min and is buffer-baseline corrected.

DEAF1 Nuclear Localisation
pEGFP-C2 and pCMV plasmids were from Clontech. The

pEGFP-SV40 plasmid (enhanced Green Fluorescent Protein,

EGFP, fused to the simian virus 40, SV40, large T-antigen NLS

(PPKKKRKVEDP)) was a gift from Richard Grant. The SV40

NLS was replaced with synthetic DEAF1 NLS sequences to

make pEGFP-NLS1–4. HEK293 cells (from ATCC) were

cultured without antibiotics in high-glucose Dulbecco’s modified

Eagle’s medium supplemented with 10% foetal bovine serum

(Invitrogen) in a humidified 5% CO2 atmosphere at 37uC. For

transfection experiments, HEK293 cells were grown on glass

cover slips in 6-well plates. Transfection (4 mg of plasmid DNA)

was carried out for 24 h using GeneJuice (Novagen) according

to the manufacturer’s instructions. Adherent cells were washed

with phosphate buffered saline pH 8 (PBS), fixed with 3% (wt/

vol) paraformaldehyde, 2% sucrose in PBS, stained with

Hoechst dye H33342 (which stains nuclei by binding AT-rich

regions of DNA) and mounted onto class slides in ProLong

Gold antifade medium (Invitrogen). Bright field and GFP

fluorescent (FITC) images were obtained using a 1006objective

on an Olympus BX51 System microscope and analySIS LS

software (Olympus).

Statistical Analysis of Cell Localisation
All data were derived from at least three independent

experiments, with at least n = 8 fields of view measured. Cell

images were analysed using ImageJ image processing and analysis

software, and the amount of EGFP protein in the cytoplasm and

the nucleus was quantified as previously described [45]. Percent

nuclear localisation 6 s.e.m. was plotted in a bar graph in Fig 3B.

Statistical significance was determined using Student’s t-test with

p,0.05 considered significant.
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Supporting Information

Figure S1 Choosing an appropriate NLS for DEAF1
nuclear localization experiments. A. EGFP-DEAF1404–479

was first fused to the SV40 NLS. This strong NLS targeted all

EGFP-DEAF1404–479 to the nucleus. B. Four EGFP-DEAF1404–

479 constructs were made using variations to the native DEAF1

NLS to find a weaker NLS that did not target all DEAF1 to the

nucleus. C. These EGFP-NLS-DEAF1404–479 constructs (4 mg)

were transfected into HEK293 cells grown on cover slips in 6-well

plates. After 24 h transfection, cells were fixed with paraformal-

dehyde and the nuclei stained with the Hoechst dye. Cells were

imaged for EGFP fluorescence and nuclear staining by fluores-

cence microscopy. D. Quantification of percent nuclear accumu-

lation of n = 6 fields of cells for each EGFP-DEAF-NLS construct

used in C.

(TIF)

Figure S2 Specificity of the LMO4 effect on EGFP-NLS4-
DEAF1404–479 nuclear retention. EGFP-DEAF1404–479 (no

NLS, 2 mg) with and without LMO4 (2 mg) was transfected into

HEK293 cells as stated previously. LMO4 has no effect on the

nuclear localisation of DEAF1404–479 without an NLS. Although,

in the presence of LMO4 this DEAF1404–479 (no NLS) construct

appeared to concentrate to distinct foci around the periphery of

the nucleus. This may indicate an LMO4-DEAF1404–479 interac-

tion in the cytoplasm concentrated within these foci.

(TIF)
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