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How Genetic and Other Biological Factors Interact
with Smoking Decisions
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Abstract
Despite clear links between genes and smoking, effective public policy requires far richer measurement of the feed-
back between biological, behavioral, and environmental factors. The Kavli HUMAN Project (KHP) plans to exploit the
plummeting costs of data gathering and to make creative use of new technologies to construct a longitudinal panel
data set that would compare favorably to existing longitudinal surveys, both in terms of the richness of the behavioral
measures and the cost-effectiveness of the data collection. By developing a more comprehensive approach to char-
acterizing behavior than traditional methods, KHP will allow researchers to paint a much richer picture of an individ-
ual’s life-cycle trajectory of smoking, alcohol, and drug use, and interactions with other choices and environmental
factors. The longitudinal nature of KHP will be particularly valuable in light of the increasing evidence for how smok-
ing behavior affects physiology and health. The KHP could have a transformative impact on the understanding of the
biology of addictive behaviors such as smoking, and of a rich range of prevention and amelioration policies.
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Introduction
Despite the fact that it has long been understood that
smoking is a leading modifiable risk factor for poor
health,1 estimates suggest that tobacco use continues
to be responsible for nearly one in five U.S. deaths.2

Even though the development of smoking cessation
and prevention strategies has been a major priority
for policy makers for quite some time, progress has
been hampered by our as-of-yet imperfect understand-
ing of the complex genetic and environmental etiology
of smoking behavior. In an era of rapid technological ad-
vances in the measurement and analysis of DNA, the
understanding of robustly established—but difficult-to-
interpret—genetic associations with smoking behavior
made possible by ‘‘big data’’ can be substantially en-
hanced through careful follow-up analyses in rich longi-
tudinal panels with data of high quality.

The advent of genome-wide association studies
(GWAS) has massively increased the ability to identify
genes that impact deleterious behaviors. In particular, ro-

bust and biologically plausible associations have been
discovered between smoking and genes. Yet, different
facets of smoking behavior—initiation, intensity, and
cessation—have distinct biologic and environmental con-
tributors. To test hypotheses about genetic effects on
smoking, it is therefore critical to have reliable measures
of the various facets of smoking behavior over the life
cycle. Yet, current behavioral measures, such as maximum
level of smoking at any point in the life cycle, remain crude.

By radically improving measurement of behavioral
phenotypes, the Kavli HUMAN Project (KHP) will
clarify links between biology and health-impacting be-
haviors such as smoking. For example, self-reported
smoking quantities can be cross-checked against
credit-card records on cigarette purchases and supple-
mented with information from medical records about
health conditions associated with tobacco use. Direct
biological measurement of smoking markers, such as
cotinine—a compound formed after nicotine enters
the body—and exhaled carbon monoxide—a measure
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of exposure to smoked combustible cigarettes—will
also be informative.

The KHP will particularly enrich the understanding
of feedback mechanisms between biology and behavior.
For example, studies have begun to identify several
genes whose levels of methylation are associated with
smoking behavior. Whether these changes can help ex-
plain some of the biological pathways through which
smoking ultimately impacts lung health and lung can-
cer is a vibrant area of research. Longitudinal data sets
with rich behavioral and biological measures can be an
invaluable resource for enhancing the understanding of
the links between smoking and health.

Genetics of Smoking
Beginning around 2005, medical genetics research began
to undergo a paradigm shift, moving to GWAS. In these
studies, made feasible by technological advances, re-
searchers test the outcome of interest for association
with each of the measured single-nucleotide polymor-
phisms (SNPs). Because of the large number of hypothe-
ses tested in a GWAS, a SNP association is considered to
be established only if it reaches the ‘‘genome-wide signif-
icance’’ threshold of p < 0.00000005. Adequate statistical
power at this stringent significance threshold requires
very large samples. Since individual samples are generally
too small, many GWAS are conducted within research
consortia that meta-analyze results from multiple sam-
ples and countries.

Empirically, it is now well established that results
from such GWAS replicate very consistently.3 There
are several reasons for the robustness of GWAS find-
ings (see Rietveld et al.4 for a discussion). Before the
modern era of GWAS, most molecular genetic studies
of smoking had been candidate gene studies, which fo-
cused exclusively on studied variations in genes in bio-
logical systems known to play an important role in
nicotine addiction. The replication record of these
early studies turned out to be disappointing, and the
estimates of the effect sizes were often highly heteroge-
neous across studies.5 An influential review6 concluded
that the ‘‘evidence for a contribution of specific genes to
smoking behavior remains modest.’’ Ten years later,
the GWAS have uncovered a handful of genetic associ-
ations with smoking behavior for which the evidence is
very strong and the replication record is excellent.

A landmark event in the study of the genetics of
smoking was the publication of the first GWAS of
smoking in Nature,7 along with two studies of lung
cancer in Nature8 and Nature Genetics.9 This work

was followed by three GWAS of smoking behavior in
the May 2010 issue of Nature Genetics.10–12 By far the
strongest results came from a set of SNPs located in the
chromosome 15 cluster of virtually adjacent nicotinic re-
ceptor genes (CHRNA3, CHRNA5, and CHRNB4), which
were identified in all studies as a risk factor for heaviness
of smoking defined by number of cigarettes smoked
per day (CPD), as well as the strongest genetic risk for
the development of lung cancer. The SNP rs16969968,
known colloquially among researchers as ‘‘Mr. Big,’’
is widely believed to be the causal variant underlying the
signal. In particular, it is known to cause an amino acid
change in the alpha-5 subunit of the nicotinic receptors,
and experiments have found that this change alters the re-
sponsiveness of the nicotinic receptors to nicotine.13

Despite many strengths, the GWAS also have some
obvious limitations. First, it is often necessary to sac-
rifice phenotype quality to attain sample sizes needed
for studies to have adequate power to detect associa-
tions. As a result, it is not always easy to interpret
an observed association. For example, the ‘‘TAG’’
study11 combined quite different measures in a single
study: some cohorts asked smokers about their maxi-
mum daily consumption at peak consumption, whereas
others asked about contemporaneous consumption.
Moreover, GWAS are useful for identifying genetic
signals, but are of limited value for understanding how
an identified genetic effect might vary across environ-
mental conditions. In the case of smoking, it is a priori
plausible that such interactions are often of first-order
importance.

Thus, GWAS are of great value for detecting real and
replicable genetic associations, but they are merely a
necessary first step toward the more ambitious twin
goals of identifying the ensemble of genes that, along
with environmental factors, account for heterogeneity
across individuals, and understanding how environmen-
tal factors can amplify or dampen genetic risk. Credibly
establishing such pathways requires rich longitudinal
measures of behavior, biological markers, and environ-
mental factors. Because no such data set presently exists,
the KHP could potentially fill an important void.

Figure 1 shows why it is likely that this void will con-
tinue to grow in the coming years, as larger and larger
discovery samples lead to the discovery of more and
more genetic associations with various complex out-
comes. For example, the first study of schizophrenia
identified a single polymorphism,14 but the availability
of larger and larger samples has brought the number up
to 108.15 Early studies of height identified 10–20
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polymorphisms,16–18 whereas new research by the
GIANT consortium,17 based on a sample of 250,000 in-
dividuals, identifies 700.

It seems exceedingly likely that in the coming years,
we will similarly be awash in genetic associations with
smoking phenotypes as well as measures of other sub-
stance use. To have the greatest scientific impact, these
associations will require interpretation and follow-up
work on behavioral and biological mechanisms. Below,
three concrete examples are given of the complementar-
ities believed to exist between the use of ‘‘big data’’ for
gene discovery and the use of high-quality longitudinal
data with rich behavioral, biological, and environmental
measure to refine the understanding of mechanisms.

Improving Phenotype Measurement by Leveraging
Multiple Data Sources
A major challenge in addiction research is phenotype
measurement. By combining conventional longitudinal
survey-based measures with novel ways of measuring
smoking behavior, the KHP will allow researchers to
paint a much richer picture of an individual’s life-cycle
trajectory of smoking, alcohol, and other substance use.
For example, measuring substance use behavior is associ-
ated with three major difficulties. First, subjects who are
surveyed on a single occasion may exhibit recall biases.
Second, because of the social stigma associated with sub-
stance use, some respondents may systematically color
their responses. Third, many surveys ask about sub-
stance use at a single point in time, and responses to

these questions may be poor proxies for an individual’s
life cycle of substance use behavior.

The KHP data could be leveraged in a number of
ways to obtain more reliable measures of substance
use. By tracking people longitudinally, it is possible to
measure changes in substance use behavior much
more accurately over time. Moreover, a number of
other data sources could be used to improve phenotype
measurement and validate survey responses. For
example, self-reported smoking quantities could be
cross-checked against credit-card records on cigarette
purchases. There are also a number of well-known bio-
markers for smoking behaviors and other substance use.
Cotinine, which can be measured from saliva,19 is often
used to obtain an objective measure of an individual’s ex-
posure to tobacco.20 An exciting development in recent
years is the fact that it is becoming feasible to measure
DNA methylation, an epigenetic mechanism for the reg-
ulation of gene expression. Epigenome-wide association
studies have identified several genes whose methylation
is strongly associated with smoking behavior.21 Finally,
survey questions could be supplemented with informa-
tion from medical records about health conditions asso-
ciated with tobacco use (such as diagnostic codes for
pulmonary disease and lung cancer) or diagnostic
codes for treatment of tobacco use and dependence.

Existing genetic studies suggest that the genetic
architecture of different facets of smoking behavior—
initiation, intensity, cessation—show quite modest ge-
netic overlap. To test hypotheses about genetic effects
on smoking, it is therefore critical to have reliable mea-
sures of the various facets of smoking behavior over the
life cycle.

Illuminating Biological Consequences
of Health Behaviors
A very robust finding emerging from the epigenome-
wide association studies of methylation conducted to
date is that smoking is associated with the methylation
of many genes. Whether these methylation patterns can
help to explain some of the biological pathways through
which smoking ultimately impacts lung health22 and
lung cancer23 is a vibrant area of research. The KHP
would be a valuable resource for testing hypotheses
about several of the genes whose methylation is believed
to play an important role in the causal pathways from
smoking to poor health. Most studies measure methyl-
ation from the blood, but methylation can also be mea-
sured in other types of tissue, including saliva, which is
easier and cheaper to collect on a large scale.

FIG. 1. Number of polymorphisms identified as
a function of meta-genome-wide association
studies sample size. Note the logarithmic scale on
the x-axis. (Source: Visscher et al.3).
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Gene–Environment Interactions
and Behavioral Pathways
Finally, the KHP data could be a valuable resource for
testing hypotheses about gene–environment (G · E) in-
teractions. Efforts to understand interactions between
environmental factors and tobacco and alcohol con-
sumption are already well underway.24,25 A major chal-
lenge for studies of G · E is that the measures of
environmental exposures are often imperfect; the
KHP’s ambitious plans for gathering high-quality data
on life events and other environmental variables would
thus fill an important void. A second challenge is that
to deliver convincing answers, G · E studies need to
have adequate statistical power.26 The large and richly
phenotyped KHP sample would thus help to overcome
two serious obstacles to scientific progress in this area.
Indeed, the large sample would permit meaningful ana-
lyses even in fairly narrowly defined subgroups. Hypoth-
eses about interactions could be tested in suitably selected
subsamples through randomized interventions.

In studies of G · E, it is also envisioned that there will
be large gains from collaborations between geneticists,
who contribute critical biological expertise, and econo-
mists, who are well trained in teasing out causal relation-
ship from observational data. In the social sciences,
controlled experiments are not always a feasible research
strategy for establishing causality. Confronted with this
reality, researchers have shown great ingenuity in devel-
oping methods to tease out causal relationships from
‘‘quasi-experiments,’’ events that produce variation that
plausibly resembles the experimental variation gener-
ated by a controlled experiment (for an overview, see
Angrist and Pischke27). For example, studies have
studied lottery winners to study the causal impact of
wealth on labor supply,28 and adoptees assigned to
families using plausibly random mechanisms to
learn about the impact of family environment on
child outcomes.29 During the course of the study, it
is likely that some subjects will be exposed to plausibly
exogenous environmental insults, for example a large
unanticipated bequest or serious injury from an acci-
dent. Such naturally occurring variation can be lever-
aged to gain insight into causal interactions between
genetic and environmental factors.

Implementation in the KHP
Investigation of factors that contribute to smoking de-
cisions would utilize the following KHP data sets,
among others: (a) Smoking use data would be available
via medical history and records forward, and through

KHP’s biological samples (see below), as well as by
mining for purchase of tobacco products in the finan-
cial data. Mining financial data would offer addi-
tional benefits over the limitations of survey-only
methods due to its continuous basis, and it would
also help confirm actual cessation of smoking versus
‘‘claimed’’ cessation. (b) Air quality and ambient
noise levels would be measured via sensors placed
in the home. (c) Exposure to toxins and other chem-
icals would be measured via silicone wristbands
worn periodically. (d) Information on financial sta-
tus and participation in government assistance pro-
grams (Supplemental Nutrition Assistance Program,
Social Security, Temporary Cash Assistance to Needy
Families) would be available via financial data gath-
ered using a combination of automated and survey-
based methodologies.

The impact of smoking decisions on health would be
analyzed via the following KHP data sets, amongst oth-
ers: (a) Medical information on study participants’
health would be available from the medical history
and records going forward (medical records, doctors’
notes, hospital records, dental records). Prescription
data would be gathered via the NY State Prescription
database. This information would be complemented
by the Statewide Planning and Research Cooperative
System database and KHP’s own tests: blood tests
(blood metals, vitamins, lipids, glucose and other bio-
markers), urine and hair tests (smoking, alcohol and
substance use) every 3 years. (b) Information of a ge-
netic nature, including telomere length, would be gath-
ered via whole genome sequencing of blood samples for
adults (saliva for children) performed at study intake.
In addition, data on variation in epigenetics would be
gathered via triennially performed assays.

Conclusion
It has been emphasized that there is no conflict be-
tween research approaches that leverage enormous
data sets to discover basic patterns of association and
research approaches leveraging rich longitudinal data
sets to test specific causal hypotheses. Rather, two ap-
proaches should be viewed as mutually reinforcing
and necessary for making progress on designing effec-
tive health interventions.

Author Disclosure Statement
Laura J. Bierut is listed as an inventor on Issued U.S.
Patent 8,080,371, ‘‘Markers for Addiction’’ covering
the use of certain SNPs in determining the diagnosis,

GENETIC/BIOLOGICAL FACTORS AND SMOKING BEHAVIOR 201



prognosis, and treatment of addiction. For David
Cesarini, no competing financial interests exist.

References
1. Centers for Disease Control and Prevention. How Tobacco Smoke Causes

Disease: The Biology and Behavioral Basis for Smoking-Attributable
Disease: A Report of the Surgeon General. Atlanta, Georgia 2010.
Available online at www.cdc.gov/tobacco/data_statistics/sgr/2010/
index.htm?s_cid=cs_1843 (last accessed June 1, 2015).

2. Mokdad AH, Marks JS, Stroup DF, et al. Actual causes of death in the
United States, 2000. JAMA. 2004;291:1238–1245.

3. Visscher PM, Brown MA, McCarthy MI, et al. Five years of GWAS discovery.
Am J Hum Genet. 2012;90:7–24.

4. Rietveld CA, Conley D, Eriksson N, et al. Replicability and robustness of
GWAS for behavioral traits. Psychol Sci. 2014;25:1975–1986.

5. Aljasir B, Ioannidis JP, Yurkiewich A, et al. Assessment of systematic ef-
fects of methodological characteristics on candidate genetic associations.
Hum Genet. 2013;132:167–178.
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