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Abstract

The connection between chromatin nuclear organization and gene activity is vividly illustrated by the observation that
transcriptional coregulation of certain genes appears to be directly influenced by their spatial proximity. This fact poses the
more general question of whether it is at all feasible that the numerous genes that are coregulated on a given chromosome,
especially those at large genomic distances, might become proximate inside the nucleus. This problem is studied here using
steered molecular dynamics simulations in order to enforce the colocalization of thousands of knowledge-based gene
sequences on a model for the gene-rich human chromosome 19. Remarkably, it is found that most (&80%) gene pairs can
be brought simultaneously into contact. This is made possible by the low degree of intra-chromosome entanglement and
the large number of cliques in the gene coregulatory network. A clique is a set of genes coregulated all together as a group.
The constrained conformations for the model chromosome 19 are further shown to be organized in spatial macrodomains
that are similar to those inferred from recent HiC measurements. The findings indicate that gene coregulation and
colocalization are largely compatible and that this relationship can be exploited to draft the overall spatial organization of
the chromosome in vivo. The more general validity and implications of these findings could be investigated by applying to
other eukaryotic chromosomes the general and transferable computational strategy introduced here.
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Introduction

The advent of innovative fluorescence-based techniques has

provided an unprecedented insight into the organization of

eukaryotic chromosomes during various phases of the cell cycle

[1,2]. A notable example is given by the demonstration - based on

imaging techniques - that when the tightly packed mitotic

chromosomes enter interphase they swell and occupy specific

nuclear regions, aptly termed ‘‘territories’’ [1]. More recently, the

salient local and global spatial properties of chromatin fibers inside

these territories have been addressed by the so-called ‘‘chromo-

some conformation capture’’ techniques [3–7], which allow for

probing the cis/trans contact propensity of various chromosomal

loci.

The recent systematic application of these experimental

techniques is providing increasing evidence that chromosomes

are organized in functionally-heterogeneous macrodomains with

different molecular and genetic composition [6,8,9].

Several efforts are being spent to clarify the functionally-

oriented implications of such chromosomal organization. Towards

this goal, some of us have recently carried out a comprehensive

bioinformatic survey of data gathered in more than 20,000 gene

expression profiles measured for several cell lines in different

human tissues [10]. It was thus established that genes can be

grouped into large clusters based on significant pairwise correla-

tions (mutual information) of their expression patterns. In addition,

the matrix of pairwise gene expression correlations displayed

features qualitatively similar to the matrix of pairwise gene

contacts inferred from the HiC [6].

Furthermore, for various model organisms, specific sets of genes

that are systematically coexpressed were shown to be in spatial

contact too [11–13]. A chief example is provided by the human

IFN{b gene, an &800 base pairs-long region on human

chromosome 9. This gene, during virus infection, induces

colocalization and coexpression of 3 distant NF{kB bound

genomic loci [14].

While not all sets of coexpressed or coregulated genes are

expected to be nearby in space [15], several arguments and model

calculations have consistently indicated that the simultaneous

colocalization of multiple genes can occur with appreciable

probability even when the genes are far apart along a chromosome

and in the presence of a crowded nuclear environment [16,17].

Indeed, it has been argued that the cooperative colocalization of

various genes can provide a very efficient means for achieving

their functional coregulation [18,19].

These considerations motivated the present numerical study

where a knowledge-based coarse-grained model of eukaryotic

chromosome 19 is used to ascertain whether the large number of

coregulated gene pairs on a given chromosome can be actually

colocalized in space. The analysis therefore complements recent

efforts through which the organization of model chromatin fibers

was investigated by bringing distant regions into contact by using
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attractive interactions, which either mimicked the effect of

transcription factories [17] or 5C-based distance restraints [20].

Our investigation, is carried out for human chromosome 19

(Chr19). This chromosome, which is typically located at the

nucleus center [6], was chosen because it has the highest gene

density and extensive gene expression data are available for it. By

analysing the mutual information content of thousands of such

expression profiles we identify hundreds of coregulated gene pairs

for Chr19. These coregulated gene pairs are next mapped onto a

previously-validated model for interphase chromosomes (where

the chromatin filament is coarse-grained at a resolution of

&30nm) and their pairwise colocalization is enforced using a

steered molecular dynamics scheme. The protocol is applied to

various initial chromosome configurations where the degree of

entanglement is comparable to that expected for chromosomes in

vivo (based on the crumpled-globule interpretation of HiC data

[6,21]) or much higher (as in equilibrated polymer chains). Further

terms of comparisons were obtained by randomizing the positions

or pairings of the loci to be colocalized.

Notably, for initial chromosome conformations with low

entanglement, it is found that most (&80%) of the coregulated

gene pairs can indeed be brought into contact and this promotes

the formation of spatial macrodomains similar to those inferred

from HiC measurements of human chromosome 19. The

percentage of satisfied colocalization constraints, and the macro-

domain similarity is dramatically reduced when the initial

chromosome arrangements are significantly entangled and when

the coregulatory network is changed by suppressing the numerous

native coregulatory cliques, that are groups of genes all mutually

coregulated.

The observed compliance of the model chromosomes towards

the gene colocalization demonstrates that bringing into simulta-

neous spatial proximity most of the thousands of coregulated gene

pairs for Chr19 is physically viable. The findings are therefore

consistent with the hypothesis that coregulated genes are likely to

be in contact too. This conclusion is further supported by the fact

that the spatial macrodomains found in the constrained, steered

conformations of Chr19 are well-consistent with those inferred

from Hi-C data.

Results/Discussion

Colocalization of coregulated genes in human
chromosome 19

A number of experimental studies have given the consensual

indication that various sets of coregulated genes tend to be nearby

in space, even if they are at a large genomic distance (reviewed in

Ref. [12]). Because gene colocalization is not necessary in principle

to achieve gene coregulation or coexpression (the latter can, for

instance, be induced by controlled hormone addition [15]) it is not

clear whether there exists a general connection between gene

coregulation and gene colocalization and what would be the

general biological implications.

In particular, two such important ramifications regard the

interplay of chromosome conformational arrangement and gene

expression or regulation. The first issue relates to the entanglement

of the long and densely packed chromatin filaments: is their

arrangement too intricate to allow for the simultaneous colocaliza-

tion of all (or most) pairs of coregulated genes? Secondly, in case

there exists a strong association between gene coexpression and

colocalization, is it at all feasible to use gene coexpression data as

distance restraints to pin down viable chromosome conformations?

To make progress on these standing issues we developed and

used a knowledge based numerical approach to investigate the

gene coregulation–colocalization relationship in human Chr19

using a coarse-grained chromosome model.

Chr19 which is &60Mbp long, was chosen because it has the

highest gene density compared to other chromosomes [22]. This

property reflects, in turn, in the possibility to use publicly available

gene expression data to derive knowledge based colocalization

constraints that cover extensively Chr19.

To this purpose we started by considering 20,255 expression

measurements for 1,278 probe sets for Chr19. As customary we

shall hereafter refer to the probe sets simply as genes. By analysing

this large pool of data using the approach described in the

Materials and Methods section, we singled out 1,487 pairs of genes

which, according to the high mutual information content of their

expression profiles, are deemed to be significantly coregulated

[23].

Notably, the selected pairs of genes are typically far apart along

the chromosome contour. The median genomic separation of the

midpoints of the coregulated genes is as large as 25Mbp.

To clarify whether, and to what extent, the coregulated gene

pairs can be simultaneously colocalized we used a coarse-grained

model for chromatin filaments that has been previously shown to

be capable of accounting for the fractal-like organization observed

for eukaryotic chromosomes [6,21,24–28]. Specifically, we adopt-

ed the model of Ref. [21] where chromatin is described as a

homogeneous chain of beads with effective diameter equal to

30nm and persistence length equal to 150nm. Accordingly, Chr19

is described as a chain of 19,710 beads, for a total contour length

of &591mm.

To mimic inter-chromosome interactions in the dense nuclear

environment, we considered a system where six copies of Chr19

are placed in a cubic simulation box (with periodic boundary

conditions) of side equal to 3mm. The overall system density is

therefore 0:012bp=nm3, which corresponds to a 10% volume

fraction. Such density matches the typical genomic one in human

cell nuclei (&6:109bp in a nucleus that is *10mm in diameter

Author Summary

Recent high-throughput experiments have shown that
chromosome regions (loci) which accommodate specific
sets of coregulated genes can be in close spatial proximity
despite their possibly large sequence separation. The
findings pose the question of whether gene coregulation
and gene colocalization are related in general. Here, we
tackle this problem using a knowledge-based coarse-
grained model of human chromosome 19. Specifically, we
carry out steered molecular dynamics simulations to
promote the colocalization of hundreds of gene pairs that
are known to be significantly coregulated. We show that
most (&80%) of such pairs can be simultaneously
colocalized. This result is, in turn, shown to depend on at
least two distinctive chromosomal features: the remarkably
low degree of intra-chain entanglement found in chromo-
somes inside the nucleus and the large number of cliques
present in the gene coregulatory network. The results are
therefore largely consistent with the coregulation-coloca-
lization hypothesis. Furthermore, the model chromosome
conformations obtained by applying the coregulation
constraints are found to display spatial macrodomains
that have significant similarities with those inferred from
HiC measurements of human chromosome 19. This finding
suggests that suitable extensions of the present approach
might be used to propose viable ensembles of eukaryotic
chromosome conformations in vivo.

Colocalization of Coregulated Genes
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[21]). To mimic the mitotic state, each model chromosome was

initially prepared in an elongated solenoidal-like configuration

[21], and the six copies were placed in a random, but non-

overlapping arrangement inside the cubic simulation box as shown

in Fig. 1A. To remove any excessive intra-chain strain of the

orderly designed mitotic arrangement, the model chromosomes of

Fig. 1A were briefly evolved with an unbiased MD protocol. The

resulting relaxed mitotic configuration is shown in Fig. 1B.

This mitotic arrangement was further evolved for a much longer

simulation time, roughly corresponding to 7 hours in ‘‘real-time’’

[21], to obtain the fully decondensed arrangement shown in

Fig. 1C. Such configuration exhibits the same power-law decay of

contact probabilities versus genomic separation as observed in

HiC experiments [6,29], see inset of Fig. 1C. The model system

therefore aptly reproduces the salient experimentally-observed

features of interphase chromosomes.

After setting up the mitotic and interphase systems, we next

applied a steered molecular dynamics protocol to each of them (see

Materials and Methods) to promote the spatial proximity of

regions corresponding to coregulated gene pairs.

The compliance of the two systems to the steering protocol is

illustrated in Fig. 2 which shows the increase of the percentage of

target gene pairs that are successfully colocalized.

It is striking to observe that for both system it is possible to

simultaneously colocalize a very high fraction of the target pairs,

namely 80% of them (averaged over the six chromosome copies).

The conformations reached at the end of the steering protocol are

shown in the right panels of Fig. 2.

Considering the relatively-high density of the simulated system

of chromosomes and that most of the coregulated pairs lie at large

genomic distances, the results point to an unexpectedly high

degree of plasticity of the mitotic and interphase conformations,

which is presumably ascribable to their fractal-like metric

properties which keeps at a minimum the entanglement of the

chromatin fiber [6,21,24–28,30].

A second noteworthy feature of the results of Fig. 2 emerges

considering the diversity of the sources used to derive the

knowledge-based coregulation data. In fact, granted the validity

of the coregulation–colocalization hypothesis, one might have

envisaged a priori that the chromosomal configurations corre-

sponding to different tissues or experimental conditions would be

so heterogeneous that it would be impossible to satisfy the

cumulated set of colocalization constraints. By contrast, the results

of Fig. 2 demonstrate a posteriori, that the set of pairwise

colocalization constraints are largely mutually compatible because

most of them can be simultaneously satisfied.

The findings are therefore not only consistent with the

coregulation–colocalization hypothesis but, based on such hypoth-

esis, also suggest that the conformations adopted by a chromosome

in various conditions can share a common underlying pattern of

colocalized genes.

Spatial macrodomains: comparison with data based on
HiC maps

To further characterize the overall organization of the steered

conformations shown in Fig. 2 we identified their spatial

macrodomains and compared them with those inferred from the

analysis of HiC data collected by Dixon et al. [9].

In both cases, the starting point of the analysis was the

construction of the chromosome contact map with a 60kbp
resolution, which is commensurate with both the experimental

resolution (20kbp) and the bead equivalent contour length (3kbp).

The HiC-data based contact map was derived from the contact

enrichment values reported by Dixon et al. [9] while the

simulation-based one was computed from the bead pairwise

distances at the end of the steering protocol (averaged over the six

chromosome copies), see Materials and Methods. Both matrices

are shown in Fig. 3.

A clustering analysis of the contact maps was next used to

subdivide Chr19 into up to ten spatial macrodomains, each spanning

an uninterrupted chromosome stretch, and with the proviso that one

domain should cover the centromere. For both maps the consensus

domain boundaries were well-captured by the subdivision into eight

spatial domains, see Fig. S1. The corresponding macrodomain

partitions are overlaid on the contact maps of Fig. 3.

The good consistency of the domains found using HiC-based

and steered-MD contacts maps is visually conveyed by the

matching colored regions in the schematic chromosome partition-

ing of Fig. 3. It is interesting to notice that the two domain

subdivisions consistently indicate larger domains for the upper

arm. Quantitatively, the overlap of the two subdivisions is 0:79,

which has a p-value smaller than 0:03. This means that random

partitions of the chromosome into eight domains (one always being

the centromere) yields overlaps §0:79 in less than 3% of the cases,

see Fig. S2. The quantitative comparison therefore indicates a

statistically-significant consistency of the spatial macrodomains

arising in the steered chromosome conformations and those

inferred from experimental data.

Chromosome entanglement, regulatory network
properties and gene colocalizability

Besides the previous considerations, the results of Fig. 2 prompt

the question of whether, and to what extent the feasibility to

colocalize a significant fraction of the coregulated gene pairs

depends on distinctive chromosomal features, such as the spatial

arrangement of the mitotic and decondensed states or the network

of coregulated genes.

To address these issues we re-applied the steering protocol

starting from 3 different initial conditions, which correspond to

specifically designed variants of the model chromosomes. Specif-

ically, the three systems are:

1. A random-walk-like chromosome arrangement as shown and

described in Fig. 4A.

2. A mitotic-like spatial arrangement but with randomized gene

pairings, see Fig. 4B. The chromosome spatial configuration is

the same as in Fig. 1B, but the native 1,487 coregulatory

pairings between the 412 selected genes have been randomly

reshuffled. The number of pairings that each selected gene

takes part to in the reshuffled network is the same as the native

coregulatory network.

3. A mitotic-like spatial arrangement but with randomized gene

positions, see Fig. 4C. As in case 2 above, the chromosome

spatial configuration is again the same as in Fig. 1B, but the

positions of the 412 genes involved in the native coregulatory

network are randomly assigned along the chromosome (except

for the centromeric region). The repositioned genes inherit the

native coregulatory pairings.

As for the native network of target gene pairs, we report on the

properties measured at the end of the steering protocol after averaging

them over the six chromosome copies in the simulation cell.

We stress that the three variants are prepared so to preserve the

native overall density, number of coregulated genes and also the

number of coregulated pairs to which a selected gene takes part to.

They nevertheless present major differences which allow for

probing the impact of different system properties on gene

‘‘colocalizability’’.

Colocalization of Coregulated Genes
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In particular, the random-walk-like arrangement has a much

higher degree of intra- and inter-chain entanglement than all other

arrangements, as illustrated by the much wider distribution of gene

pairwise distances in the initial configuration, see Fig. 5. For

randomly-paired and randomly-repositioned genes, instead, the

distributions of genomic distances of the target genes to be paired

is similar to the native one. This is clearly shown by the

distributions in Fig. 5. However, the same figure clarifies that the

Figure 1. Mitotic and interphase configurations of the model system chromosomes. (A) Initial mitotic-like arrangement, constituted by 6
copies of model human chromosome 19. Following ref. [21], the chromatin fiber is helicoidally arranged into loops of &50kbp each, and departing
radially from a central axis. The six solenoidal arrangements were next placed in a random, but non-overlapping manner inside a cubic simulation box
of side equal to 3:0mm and with periodic boundary conditions. (B) Chromosome spatial arrangement after short relaxation with a standard push-off
protocol of 105 MD time steps (see Materials and Methods). (C) Interphase-like configuration obtained by evolving the initial mitotic configuration for
108tint MD time steps (approximately corresponding to 7 hours in ‘‘real-time’’ [21]). (Inset) The corresponding contact probabilities between loci of
model interphase chromosomes decay as a power law of the genomic distance, &L{1 , consistent with recent experimental observations [6,29]. In all
panels, chromosome regions involved in the coregulatory network are highlighted in red.
doi:10.1371/journal.pcbi.1003019.g001

Colocalization of Coregulated Genes
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Figure 2. Increase of the percentage, Q, of Chr19 coregulated pairs which colocalize during the MD steering protocol. The two curves
reflect different initial conditions corresponding to the mitotic and the interphase conformations of panels (B) and (C) of Fig. 1. The final
configurations, corresponding to Q&80% are shown on the right. Chromosome regions involved in the coregulatory network are highlighted in red.
These and other graphical representations of model chromosomes were rendered with the VMD graphical package [47].
doi:10.1371/journal.pcbi.1003019.g002

Figure 3. Spatial macrodomains. The contact maps for Chr19 obtained at the end of the steered-MD simulations and inferred from HiC data are
shown on the left and right, respectively. The grey bands mark entries involving the centromere region. The boundaries of the 8 principal spatial
domains, identified with a clustering analysis of the contact maps, are overlaid on the matrices. The consistency of the two macrodomain
subdivisions is visually conveyed in the chromosome sketch at the center. The overlapping portions of the domain subdivisions are colored (different
colors are used for different domains). Non-overlapping regions are shown in white, while the centromere region is shown in grey. The overlapping
regions accounts for 79% of the chromosome (centromere excluded).
doi:10.1371/journal.pcbi.1003019.g003

Colocalization of Coregulated Genes
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two randomized cases differ markedly from the native one for the

clustering coefficient. The clustering coefficient captures the

degree of cooperativity of the (putative) coregulatory network in

that it measures how frequently two genes that are both

coregulated with a third one, are themselves coregulated too.

The inspection of the rightmost graphs in Fig. 5 therefore indicates

that the clustering coefficient distribution of the randomly-paired

system is shifted towards much smaller values than the others,

which all inherit the native pairings network. This fact indicates

that the clustering coefficient of the native network is significantly

larger than random. This implies that genes can frequently

interact concertedly in groups of three or more.

The results of the steering protocol applied to the three system

variants are shown in Fig. 6. The data indicate that: (i) for random-

walk-like chromosomes only a minute fraction (v1%) of the target

contacts can be satisfied; (ii) for randomly-paired genes about 47%
of the gene pairs can be colocalized, while (iii) for randomly-

repositioned genes about 75% of the gene pairs can be colocalized,

similarly to the native case (Fig. 2).

These findings provide valuable clues for interpreting the high

degree of ‘‘colocalizability’’ of coregulated genes observed in Fig. 2

for the mitotic and interphase arrangements.

In particular, the very low asymptotic value of the percentage of

successfully colocalized gene pairs for the random-walk-like system

clarifies that the low intra- and inter-chromosome entanglement of

both the mitotic and decondensed configurations is crucial for

bringing into contact the coregulated gene pairs.

Furthermore, the comparison of the randomly-paired and

randomly-repositioned gene cases shows that the connectivity

properties of the native coregulatory network appear even more

important than the detailed positioning of the coregulated genes

along the chromosomes. In fact, the randomly-repositioned genes

– which retain the same clustering coefficient of the native

coregulatory graph – have the same high degree of colocalizability

of the native system. By converse, the low clustering coefficient of

the randomly-paired gene case – corresponding to a significant

disruption of the original network – reflects in an appreciably

lower value of percentage of successfully colocalized gene pairs. It

is also worth noticing that, in all cases, a significant fraction of gene

pairs brought in contact are at large genomic distances

(w20Mbp), see Fig. S3.

Finally, the network randomization effects on the spatial

organization of the steered conformations was addressed by

measuring the overlap of their spatial macrodomains with those

established from HiC data. We recall that for chromosome

subdivisions into eight macrodomains, the native case overlap was

0:79. For the randomized gene positions and randomized gene

pairings we instead observe the lower values 0:73 and 0.63,

respectively. These values clearly have a much lower statistical

significance than the native case; their p-values being respectively

0:113 and 0:490, see Fig. S2. Their non-significant similarity with

the reference, HiC-data based macrodomain subdivisions under-

scores the randomized, non-native constraints result in apprecia-

bly-different, and less realistic, chromosomal features.

Figure 4. Variant systems subjected to the MD steering protocol. (A) Initial configuration of 6 random-walk like chains the linear size the
model chromosome 19. (B) Model chromosomes were initially arranged as in the mitotic-like configuration of Fig. 1B, but the pairings between genes
were randomized. The randomization preserved the number of pairs that each probe set takes part to. (C) Model chromosomes were initially
arranged as in the mitotic-like configuration of Fig. 1B, but the gene positions along the chromosome were randomized. The randomization
preserved the native pairings of the genes. In all panels chromosome regions involved in the native or randomized coregulatory network are
highlighted in red. For all the three systems considered the same physical conditions of fiber density, stiffness and excluded volume interactions of
the original system apply.
doi:10.1371/journal.pcbi.1003019.g004

Colocalization of Coregulated Genes
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Summary and conclusions
Recent experimental advancements have provided unprece-

dented insight into the occurrence of concerted transcription of

multiple genes. In particular, it was reported that the chromatin

fiber can rearrange so that genes, concertedly transcribed upon

activation, are found nearby in space too.

Because of its important ramifications, the possible existence of

a general relationship between gene coregulation and gene

colocalization, the so called ‘‘gene-kissing’’ mechanism [11,12],

is a subject of very active research.

This standing question was addressed here numerically by

carrying out molecular dynamics simulations of a knowledge-based

coarse-grained model of human chromosome 19. The model

consisted of a coarse-grained representation (30nm resolution) of

the chromatin fiber complemented by the knowledge-based

information of the loci corresponding to (&1500) coregulated gene

pairs. These pairs were identified from the analysis of extensive sets

of publicly-available gene expression profiles. To mimic the

crowded nuclear environment, we considered a system where

several copies of the model chromosome 19 were packed at typical

Figure 5. Summary of the structural properties of the native system (Fig. 1B) and its three variants (Fig. 4). (First column) Distribution
of the spatial distances between steered loci. The distribution of the random-walk-like is broader than the native case one. The randomized position
and randomized pairs cases have instead a similar distribution with respect to the native case. (Second column) Distribution of the genomic distances
between steered loci. (Third column) Clustering coefficients (see Materials and Methods) of the corresponding networks of pairings between steered
loci. Dashed lines correspond to the median values. The results are cumulated over all 6 chromosome copies in the simulation box.
doi:10.1371/journal.pcbi.1003019.g005

Colocalization of Coregulated Genes
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nuclear densities. The colocalization of the coregulated gene pairs

was finally imposed by applying a steered molecular dynamics

protocol.

It was found that most (&80%) of the coregulated pairs could be

colocalized in space when the steering protocol was applied to

chromosomes initially prepared in mitotic-like and interphase-like

arrangements, see Fig. 2. Notably, the pattern of intra-chromo-

some contacts established for the steered conformations exhibited

significant similarities with that of experimental contact propen-

sities [6,7] of chromosome 19. Furthermore, the overall chromo-

somal organization into spatial macrodomains showed significant

similarities with that inferred from experimental HiC data.

By converse, the percentage of colocalized target pairs

decreased substantially (or vanished altogether) when the system

was initially prepared in a random-walk like arrangement, or if the

genes to be colocalized were randomly paired or displaced along

the chromosome. Likewise, the macrodomain organization of

these alternative systems was found to be much less similar to the

HiC-data based one.

The present findings allow to draw several conclusions. First, the

data in Fig. 2 demonstrate that, even in a densely packed system of

mitotic or interphase chromosomes it is physically feasible to

achieve the simultaneous colocalization of a large number of pairs of

loci that can be very far apart along a chromosome. This result is

therefore well compatible with the gene coregulation–colocalization

hypothesis. In fact, the findings can be read as adding support to the

hypothesis in consideration of the fact that if no meaningful

relationship existed between coregulation and colocalization one

might have expected the unfeasibility of bringing into simultaneous

contact so many coregulated pairs.

The much poorer compliance of alternative systems (random-

walk-like chromosome conformations, randomized gene pairings

and positions) to the steering protocol provides valuable insight into

the native chromosomal properties that allow for gene colocalization.

The first and most important property is the low degree of

entanglement that mitotic or interphase chromosomes are known

to have compared to equilibrated polymer solutions of equivalent

density [6,21,24–28,30,31]. The second property is that the

number of gene cliques that is present in the native gene regulatory

network of chromosome 19 is much higher than for the equivalent

random network. In this respect it is worth pointing out that the

atypically large number of cliques found in biological regulatory

networks has also been observed and pointed out in different

contexts and for a different set of chromosomes [32].

To further validate this conclusion we considered an additional

target network for the steered-MD simulations. This network was

obtained by a partial randomization of the native gene pairings and

its average clustering coefficient was 30%, which is intermediate to

the native one (47%) and the fully-randomized case (12%) discussed

previously. As shown in Fig. S4, 64% of the target colocalization

constraints were satisfied. This value is intermediate between the

native and fully-randomized case (82% and 47%, respectively) and

hence supports the existence of a meaningful correlation between

gene colocalizability and the regulatory network cliquishness.

In perspective, because the computational strategy employed

here is formulated in a general and transferable way, it would be

Figure 6. Increase of the percentage, Q, of Chr19 coregulated pairs which colocalize during the MD steering protocol, for the three
variants of the native systems. The configurations reached at the end of the steering protocol are shown on the right. Chromosome regions that
take part to the pairs of loci to be colocalized are highlighted in red.
doi:10.1371/journal.pcbi.1003019.g006

Colocalization of Coregulated Genes
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most interesting to apply it to other eukaryotic chromosomes for

which extensive co-regulatory data is available. This could clarify

the more general validity of the gene coregulation-colocalization

relationship as well as the broader implications of using it (possibly

with other knowledge-based constraints [20,33,34]), for charting

the spatial organization of eukaryotic chromosomes, and possibly

of systems of chromosomes.

Materials and Methods

Coregulated gene pairs on Chr19
To identify the set of significantly coregulated gene pairs on

Chr19 we processed a set of 20,255 expression profiles of human

probe sets measured in 591 distinct microarray experiments. The

gene expression profiles, which were all measured on HG-U133A

Affymetrix chip, pertain to different human cell types and tissues

in various experimental conditions. This extensive dataset was

recently compiled and curated by some of us [10] starting from the

public ArrayExpress database [35].

The analysis was restricted to the set of 1,278 probe sets which

exclusively target a single sequence (i.e. an uninterrupted stretch)

of chromosome 19. Next, to perform a robust comparison between

the differently normalized gene expression profiles we coarse-

grained all expression levels to one of three discrete states only:

low, medium and high, as done in Ref. [10]. For each possible

probe set pair, I and J , we next computed the mutual information

[10] content (MI) of the expression profiles:

MIIJ~
X

i

X
j

pij ln
pij

piz pzj

� �
ð1Þ

where i [j] runs over the three coarse-grained expression levels for

probe set I [J]. In Eq. 1, pij is the joint probability that, in a given

experiment, the expression levels i and j are respectively observed

for probe sets I and J , while the quantities piz ~
P

j pij and

pzj ~
P

i pij are the probabilities to observe expression level i [j]

for probe set I [J] (marginal probabilities). The MI thus provides a

statistically-founded measure of how the gene expression pattern for

gene I is predictable assuming the knowledge of another pattern J
(or, vice versa).

To single out the pairs of probe sets with statistically-significant

coexpression we proceeded according to the procedure described

below and summarized graphically in Fig. 7.

First, to account for the expected dependence of gene coregula-

tion on genomic distance, we subdivided the probe set pairs in 15
groups. The first, second, etc. group gathered pairs of probe sets

whose central bases had a genomic distance falling in the intervals

0–4 Mb, 4–8 Mb, etc. Next, for each group we fitted the histogram

of the pairwise MI values, with the analytical expression

f xð Þ~axe{b x which is known to approximate well the distribution

of MI values expected for two random variables (expression of the

two genes) assuming 3 possible distinct values (low, medium and

high) [36]. In the previous expression x is the mutual information

and a and b are the free fitting parameters.

The comparison with the reference, null distribution is used to

define the Mutual Information threshold above which at most one

false-positive entry is expected to occur. All probe set pairs

exceeding this stringent MI threshold were retained (see Fig. 7C).

The number of selected pairs for each bin ranged from 59 to

334, for a total of 1,991 probe pairs. It should be noted that several

of these pairs involve chromosome regions that are highly

overlapping and are hence degenerate (or nearly degenerate). To

eliminate this redundancy, we grouped together the pairs of

coregulated probe sets that assure the coregulation of regions,

whose central beads are separated by less than 300nm (which

corresponds to the chromatin fiber statistical (Kuhn) length [21]).

For each of these groups, we retained only the pair with the largest

MI value. This filtering procedure returned 1,487 non-degenerate

probe set pairs, that involved 412 probe sets (native case). As

customary, the significant degree of coexpression of such pairs was

deemed indicative of their coregulation [23].

Randomized cases. Besides the ‘‘native case’’, in which the

gene pairs to colocalize are obtained from coregulatory network of

Chr19, we considered another non-native set of target gene pairs.

As described hereafter, these alternative sets were generated by

randomizing the native gene pairing network while preserving

various overall network properties.

1. Randomized pairings. The 1,487 native pairings between the

considered set of 412 probe sets were randomly reshuffled

while preserving the native number of pairings for each gene.

This alternative set of probe set pairs is obtained by applying

the iterative randomization method described in ref. [37]. The

asymptotic fraction of randomized gene pairs matching the

native ones is &10%.

2. Randomized positions. The set of 412 native probe sets are

randomly repositioned along the contour length of the

chromosome, but the target gene pairings are kept the same

as the native ones. Gene repositioning in the centromeric

region (which is mostly void of genes) was disallowed.

The feasibility to colocalize in space the 1,487 pairs of probe sets

was explored using the coarse-grained model chromosome and the

steering molecular dynamics protocol described in the following

subsections.

The chromosome polymer model
A system of densely packed chromosomes was modelled at a

resolution of 30nm. Specifically, we considered n~6 model

chromosomes packed at the typical nuclear density of

&0:012bp=nm3. Each of the six chromatin fibers was described

as a chain of N~19,710 beads with diameter s~30nm, which

corresponds to the total contour length Lc~59:13Mbp of human

chromosome 19. Each bead therefore represents &3,000 base

pairs [38].

The potential energy of each chain is written as,

Hintra~

XN

i~1

½UFENE(i,iz1)zUbr(i,iz1,iz2)z

XN

j~iz1

ULJ (i,j)�

ð2Þ

where i and j run over the bead indices and the three terms

correspond to the FENE chain-connectivity interaction [39], the

bending energy, and the repulsive pairwise Lennard-Jones interac-

tion. The three energy terms are parametrized as in previous studies

of coarse-grained chromosomes [21,29]. Specifically,

UFENE(i,iz1)~
{

k

2
R2

0 ln 1{
di,iz1

R0

� �2
" #

, di,iz1ƒR0

0,di,iz1wR0

8><
>: ð3Þ
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where dij is the distance of the centers of beads i and j, R0~1:5s,

k~30:0E=s2 and the thermal energy kB T equals 1:0E [39]. UFENE

ensures the connectivity of the chain, i.e. the centers of two

consecutive beads must be at a distance about equal to their

diameter. The bending energy has instead the standard Kratky-

Porod form (discrete worm-like chain):

Figure 7. Statistical analysis of mutual information. (A) Mutual information values for any pairs of probe sets on Chr19. The middle point of
each probe set identifies its position along the chromosome. The gray stripes correspond to the centromere. (B) Histograms of values of mutual
information for pairs of probe sets located at various intervals of their genomic separation. The black lines correspond to fitting the histograms with
the theoretical (null case) MI distribution [36]. The vertical black dashed lines correspond to the estimated threshold values (see next and main text).
(C) Example of E-value (expected number of false positives) distribution for probe set pairs located at genomic separation in the range 28{32Mbp.
The threshold is the value of mutual information at which the E-value is equal to 1:0. For different genomic separations, analogous curves were
obtained. (D) Network of coregulated pairs of genes at 28{32Mbp separation. The analysis illustrated in (C) singles out significantly-high values of
Mutual Information. These contributions corresponds to connections (cyan links) between coregulated gene pairs (red dots). The scale is in mm. (E)
Networks of coregulated pairs of loci used to fix the spatial constraints between corresponding regions of the model chromosomes. For the sake of
clarity, the whole network has been represented as three sub-networks for pairs of loci at genomic separations of 0–20 Mbp (left), 20–40 Mbp
(middle) and 40–60 Mbp (right), respectively.
doi:10.1371/journal.pcbi.1003019.g007
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Ubr(i,iz1,iz2)~
KB T jp

s
1{

~ddi,iz1
:~ddiz1,iz2

di,iz1 diz1,iz2

 !
ð4Þ

where jp~5s~150nm. Ubr ensures that the chain of beads bends

over contour lengths the size of the persistence length jp to model

the experimental rigidity of the chromatin fiber [40].

Finally, the excluded volume interaction between distinct beads,

including consecutive ones, corresponds to a purely repulsive

Lennard-Jones potential:

ULJ (i,j)~
4E½(s=di,j)

12{(s=di,j)
6z1=4�,di,jƒs21=6

0,di,jws21=6

(
ð5Þ

This repulsive interaction controls the inter-chain excluded

volume too:

Hinter~
Xn{1

I~1

Xn

J~Iz1

ULJ (i,j) ð6Þ

where n is the number of chains in solution and the index i ½j� runs

over the beads in chain I ½J�. ULJ ensures that any two regions

along the same chain or on different chains cannot pass through

each other. In this way, intra- and inter-chain topology is

preserved.

Simulation details
The LAMMPS molecular dynamics software package [41] is

used to integrate the system dynamics at constant temperature and

volume. The integration time step was set equal to tint~0:012tMD,

where tMD~s(m=E)1=2 is the Lennard-Jones time and m is the

bead mass which was set equal to the LAMMPS default value.

Periodic boundary conditions apply.

The ‘‘native case’’ system was evolved from three different

starting conditions shown in Fig. 1: mitotic, interphase and random

arrangements, whereas the randomized cases systems were evolved from

the mitotic one.

Steered Molecular Dynamics protocol. The colocalization

of the 1,487 coregulated genes was attempted by using a steered

molecular dynamics protocol which progressively favoured the

spatial proximity of the pairs of genes in each of the six model

chromosomes.

Specifically, for each pair of selected genes, A and B, we added

to the system energy an harmonic constraint,

Uharm~
1

2
k tð Þd2

A,B

where dA,B is the distance of the centers of mass of the

chromosome stretches (mapped onto the discrete beads using the

Affymetrix annotation table (http://www.affymetrix.com)) cov-

ered by the two genes. The stiffness of the harmonic constraint was

controlled by the time-dependent parameter k(t). The latter is

ramped linearly in time from the initial value k t~0ð Þ~0:001E=s2

up to the value k Tendð Þ~16:384E=s2. The total duration of the

steered dynamics was Tend~107tint. This protocol favours the

progressive reduction of the width of the distribution of probe set

distances from the initially generous value of &50s (see 5) down to

&0:4s. The simultaneous application of the 1,487 constraints to

each of the six chromosomes, which clearly are not necessarily

compatible a priori, was implemented using the PLUMED plugin

for LAMMPS [42]. The protocol is sufficiently mild that no

crossings of the chains should occur. This was checked by running

the steering protocol on a circularized variants of the mitotic

conformation shown in Fig. 1A, and checking that the initially

unknotted topological state is maintained [43].

Order parameters
To monitor the progress of the steered molecular dynamics

simulations and to characterize the salient properties of the

resulting configurations we computed two order parameters,

namely the percentage of coregulated pairs that are colocalized and the

clustering coefficient of the coregulated pair graph. The two

parameters are defined hereafter.

N The percentage of coregulated pairs that are colocalized, Q, is

calculated as:

Q~
1

G

X
(A,B)

H rc{dA,Bð Þ|100 : ð7Þ

In the above expression, the sum runs over the coregulated pairs

of genes, A and B which are in total G~8,922 (i.e. 1,487 for each

of the six chromosome copies), dA,B is the distance of their centers

of mass. H xð Þ is the Heaviside step which takes a value of 1 if xw0
and 0 otherwise. H is used to restrict the sum to those gene pairs

that are at distance within the contact range, rc~120nm. This

cutoff distance was chosen because it is about equal to the typical

size of a ‘‘transcription factory’’ [19].

N The clustering coefficient, CC, is used to characterize connectivity

properties of graphs. In the present case the graph of

coregulation of pairs of genes. Each gene is represented by a

node in the graph. Pairs of coregulated genes are represented

by a link connecting the two corresponding nodes.

The clustering coefficient of the individual ith node in the graph

is defined as [44,45]

ci~
Ci

ci (ci{1)
ð8Þ

where ci is the number of neighbours of i while Ci is the number of

distinct links between the neighbours of node i. The clustering

coefficient per node, ci, is clearly defined only for nodes with at

least two neighbours. The clustering coefficient of the whole graph

is obtained by averaging ci over all nodes with ci§2. The

clustering coefficient provides a measure of the incidence of cliques

of size 3 (‘‘triangular linkages’’) in the graph.

Identification of spatial macrodomains
The overall spatial organization of Chr19 was encoded in a

binary contact matrix, C, with a 60kbp resolution. The generic

matrix entry Ci,j takes on the value 1 or 0 according to whether

the ith and jth 60kbp-long segments (equivalent to 20 beads) are in

spatial proximity or not. The recent high-resolution HiC

measurements of Dixon et al. [9] were used to derive the

experimental, reference contact map. Specifically, for every

significant HiC entry (i.e. normalized contact enrichment §1)

the corresponding contact-matrix elements were set equal to 1.

The resulting HiC-based contact map is sparse in that only 5% of
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its entries are non-zero. For an equal footing comparison, we next

populated the theoretical contact maps by considering in spatial

contacts (entries equal to 1) only the top 5% 60kbp-strands ranked

for increasing average distance. The distance average is taken over

the six Chr19 copies at the end of the steering protocol.

A clustering analysis of the contact maps was next used to

subdivide Chr19 into up to ten spatial macrodomains. Each

domain spans an uninterrupted stretch of the chromosome and

one domain always matches the centromere region. Following the

K-medoids clustering strategy [46] the optimal domain partition-

ing was identified by minimizing the total intra-domain dissimi-

larity. Quantitatively, the internal dissimilarity of one specific

domain, covering the chain interval i to j is measured as:

D~
Xj

l~i

(1{Cl,r) , ð9Þ

where C is the contact map and r, which is the domain

representative, is the element belonging to the i–j interval for

which D is minimum. Consistently with intuition, the dissimilarity

score, D, takes on small or large values if respectively many or few

domain members are in contact with the representative. For a

given number of domains, the optimal domain partitioning is the

one that minimizes the sum of the D scores for the domains.

For a given number of domains, the consistency of the steered-

MD and HiC-based subdivisions was measured by establishing a

one-to-one correspondence of each domain in the two cases and

next measuring the percentage of elements, q, having identical

domain assignment. The one-to-one domain correspondence was

identified by exploring the combinatorial space of correspondences

and picking the one yielding the largest value of q.

Supporting Information

Figure S1 Chr19 spatial macrodomains. The filled circles

mark the boundaries of the Chr19 spatial macrodomains obtained

from the clustering analysis of the steered-MD contact maps (top) and

inferred from HiC data (bottom). The number of imposed macro-

domains is shown on the x axis. In all cases, one domain was fixed to

correspond to the centromere (for which no HiC data are available)

which is shown in grey. The dashed guidelines mark the subdivision

into eight macrodomains which, by visual inspection provides robust,

consensual boundaries in both cases. For clarity, the eight-domain

subdivision is also reported on the chromosome sketch on the right.

(TIF)

Figure S2 Comparison of macrodomain subdivisions.
(A). Schematic representation of the Chr19 partitioning in 8
macrodomains (one being the centromere) based on the clustering

analysis of contact maps inferred from HiC data and from steered-

MD simulations on the native and randomized versions of the

gene pairing network. In all cases, one domain was constrained to

match the centromere (shown in grey). The overlap, q and

associated p-value of the steered-MD subdivisions against the

reference HiC-data based one are as follows, (i) native case:

q~0:79, p-value = 0.027; (ii) randomized gene positions: q~0:73,

p-value = 0.113; (iii) randomized gene pairings: q~0:63, p-

value = 0.49. The p-values were computed by comparing the

observed overlap against a reference distribution of overlaps of

1000 random chromosome partitions into 8 domains (one always

corresponding to the centromere). The reference distribution is

shown in panel B. The arrows indicate the overlaps of the native

and randomized cases.

(TIF)

Figure S3 Genomic distance distribution for the target
gene pairings established at the end of the steering
protocol. The plots on the left provide the genomic distance

distributions of target gene pairings that are actually satisfied at the

end of the steering protocols for the native and randomized cases.

The analogous distribution for non-satisfied pairings is shown on the

right. Dashed lines correspond to the median values. The results are

cumulated over all 6 chromosomes copies in the simulation box.

(TIF)

Figure S4 Gene colocalizability and gene network
cliquishness. The time evolution of the fraction of
satisfied gene pairings for three different steered-MD
simulations. The target gene pairing networks for the

simulations are: the native network and two variants of it obtained

by partial and full randomizations of gene pairings. The curves for

the native and fully-randomized cases are the same as in Fig. 6.

The different cliquishness of the three target networks is captured

by their clustering coefficient: 0:47 for the native case, 0:30 for the

partially-randomized case and 0:12 for the fully-randomized case.

The fraction of established pairings shows a clear monotonic

(increasing) dependence with the clustering coefficient.

(TIF)
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