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Introduction: Falling is one of the primary concerns for people with Parkinson’s

Disease and occurs predominately during dynamic movements, such as walking. Several

methods have been proposed to quantify dynamic balance and to assess fall risk.

However, no consensus has been reached concerning whichmethod is most appropriate

for examining walking balance during unperturbed and perturbed conditions, particularly

in Parkinson’s Disease individuals. Therefore, this systematic review aimed to assess

the current literature on quantifying dynamic balance in healthy young, elderly and

Parkinson’s individuals during unperturbed and perturbed walking.

Methods: The PubMed database was searched by title and abstract for publications

quantifying dynamic balance during unperturbed and mechanically perturbed walking

conditions in elderly adults and PD. Inclusion criteria required publications to be published

in English, be available in full-text, and implement a dynamic balance quantification

method. Exclusion criteria included clinical dynamic balance measures, non-mechanical

perturbations, pathologies other than PD, and dual-tasking conditions. The initial

database search yielded 280 articles, however, only 81 articles were included after title,

abstract and full-text screening. Methodological quality and data were extracted from

publications included in the final synthesis.

Results: The dynamic balance articles included 26 Coefficient of Variation of

Spatiotemporal Variability, 10 Detrended Fluctuation Analysis, 20 Lyapunov Exponent,

7 Maximum Floquet Multipliers, 17 Extrapolated Center of Mass, 11 Harmonic Ratios,

4 Center of Mass-Center of Pressure Separation, 2 Gait Stability Ratio, 1 Entropy, 3

Spatiotemporal Variables, 2 Center of Gravity and Center of Pressure, and 2 Root Mean

Square in the final synthesis. Assessment of methodological quality determined that 58

articles had a lowmethodological rating, a 22moderate rating, and 1 having a high rating.

Conclusion: Careful consideration must be given when selecting a method to

quantify dynamic balance because each method defines balance differently, reflects

a unique aspect of neuromuscular stability mechanisms, and is dependent on the

walking condition (unperturbed vs. perturbed). Therefore, each method provides distinct

information into stability impairment in elderly and PD individuals.
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INTRODUCTION

Parkinson’s Epidemiology
Parkinson’s Disease (PD) is the second most common
neurodegenerative disease in the world, with an increasing
incidence within elderly individuals over the age of 60 (De
Lau and Breteler, 2006; Hausdorff, 2009). It is well-established
that people with PD are at an increased risk of falling due to
gait instability with fall rates are as high as 70% (Hausdorff
et al., 1998; Plotnik et al., 2007, 2008; Plotnik and Hausdorff,
2008; Hausdorff, 2009; Kerr et al., 2010; Nantel et al., 2011).
Additionally, previous reports indicate that individuals with
a fall history have an increased likelihood for subsequent falls
thereby creating a self-perpetuating cycle (Hamacher et al., 2011;
Francis et al., 2015). Therefore, accurately identifying individuals
with unstable gait is crucial to determining fall risk as well
as to assessing therapeutic intervention effectiveness for PD
individuals.

PD Balance and Gait Issues
Parkinson’s disease is a progressive neurodegenerative disease
that causes loss of dopaminergic neurons that begins in
the substantia nigra pars compacta propagating further into
additional structures of the basal ganglia (Poewe et al., 2017). The
basal ganglia is composed of several midbrain structures that rely
on dopamine as a vital neurotransmitter to regulate movement
(Blandini et al., 2000; Poewe et al., 2017). Dopamine reduction in
PD causes impairment to the basal ganglia’s function that results
in PD’s cardinal symptoms (bradykinesia, rigidity and tremor),
which ultimately result in a multitude of motor impairments
(Blandini et al., 2000; Poewe et al., 2017). Amongst these
impairments is the disrupted gait pattern commonly observed
in PD individuals. Indeed, previous research demonstrated that
PD individuals ambulate with a reduced velocity, shorter stride
lengths, increased double support time, reduced cadence and
reduced interlimb coordination (Hausdorff et al., 2010).

Furthermore, parkinsonian gait is characterized by an increase
in spatiotemporal variability that progressively worsens during
the course of the disease (Hausdorff et al., 1998, 2010; Bloem
et al., 2004). This has been attributed to the impaired basal
ganglia in generating internal cues for rhythmic motor outputs
(Hausdorff et al., 1998). Due its severity and implications
for ensuing fall risk, increased spatiotemporal variability is
considered a hallmark feature of Parkinsonian gait (Hausdorff
et al., 2003; Plotnik and Hausdorff, 2008; Hausdorff, 2009). In
addition, walking stability in PD is further threatened due to
the paroxysmal phenomenon known as Freezing of Gait (FOG)
(Nanhoe-Mahabier et al., 2011, 2013). Freezers, exhibit increased
gait asymmetry and spatiotemporal variability, as well as reduced
interlimb coordination when compared to non-freezers, even
during optimally medicated states (Nieuwboer et al., 2001;
Hausdorff et al., 2003; Bloem et al., 2004; Nantel et al., 2011).

Quantifying Dynamic Balance
Dynamic Balance during steady-state gait is defined as the ability
to stabilize an individual’s COM within a series of alternating
unilateral stances. Typically, clinicians utilize motor performance

tests (e.g., Berg scale, Timed Up and Go, POMA, etc.) to assess
dynamic balance and patient fall risk. However, previous research
demonstrated several limitations in their ability to fully assess
dynamic stability and predict fall likelihood in both healthy and
clinical populations (Bhatt et al., 2011; Hubble et al., 2015).
Therefore, several quantitative dynamic balance measures have
been proposed as alternatives to assess fall risk (Hausdorff,
2009). However, despite these developments, ambiguity exists
concerning which method is more suited to quantify dynamic
balance for a particular demographic during both unperturbed
and perturbed walking. This is primarily due to each test
reflecting different properties of the neuromuscular system
necessary for successful walking (Hausdorff, 2009).

With the widespan of dynamic balance measures, there is
an apparent lack of uniformity in regards to which measure
is most suitable for assessing dynamic stability, in both PD
individuals and healthy adults, and in which specific scenario
(perturbed or unperturbed walking; Hubble et al., 2015). This
ambiguity is further perpetuated when one considers the
various environmental conditions that may result in external
perturbations.

Quantifying Dynamic Balance Recovery
From Mechanical Perturbations
As mechanical perturbations (trips, slips, and surface conditions)
can also disrupt an individual’s balance, previous researchers
suggested that dynamic balance measures must adequately
evaluate the perturbations’ destabilizing effects and their recovery
therefrom. Current evidence on mechanical perturbations
demonstrate that the neuromuscular system employs active
recovery strategies to return the perturbed COM to a dynamic
stability state (Marigold, 2002; Marigold and Misiaszek,
2009). Indeed, Marigold and Patla (2002) suggested that the
neuromuscular system’s ability to adapt to multiple balance
conditions is rudimentary to maintain stability during walking
(Marigold and Patla, 2002). However, during the course of
natural aging, the ability to execute these recovery strategies in a
timely manner becomes impaired. As PD is a neurodegenerative
disease that predominately affects elderly individuals, this
demographic is at increased risk to external perturbations
debilitating effects. By quantifying an individual’s dynamic
stability level before and after perturbations, researchers can
assess the effectiveness, or the lack thereof, of implemented
recovery strategies. To accomplish this, it is necessary to
determine the advantages and limitations of current quantitative
dynamic stability methods in assessing balance and balance
recovery from external mechanical perturbations.

Systematic Review Purpose
Currently, there are a few literature reviews that examine and
compare the various methods for quantifying dynamic stability
(Hamacher et al., 2011; Bruijn et al., 2013). Existing literature
reviews are limited in that they either only examine kinematic
measures or do not conduct the review systematically. As such,
the aims of this systematic literature review are (1) to examine
the various methods of quantifying dynamic stability in PD
individuals and healthy controls during steady-state walking and
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(2) to examine dynamic stability measures in recovering to a state
of dynamic stability from external mechanical perturbations.

METHODS

Identification of Materials
This literature review was conducted in accordance with the
PRISMA 2015 guidelines and protocol (Moher et al., 2009). The
PubMed and Medline electronic databases were searched for
publications assessing dynamic balance in healthy young, healthy
older and people with Parkinson‘s Disease. The key search terms
used included the following combinations:

1) “Gait balance” OR “locomotion balance” OR “ambulation
balance” OR “walking balance” OR “dynamic balance” OR
“falls” OR “falling”

AND
2) “Walking perturbations” OR “walking trip” OR “walking slip”

AND
3) “Adults” OR “Elderly Adults” OR “Parkinson’s Disease”

AND
4) “Faller” OR “Non-Faller”

AND
5) “Freezers” OR “Non-Freezers”

Furthermore, reference lists of articles were scanned for any
additionally relevant articles. If relevant articles were found,
the PubMed and Medline databases were searched for full-text
accessibility for inclusion in the article screening. If an article was
not full-text accessible from the databases, the authors were not
contacted. Articles searched were from 1990 to 2017.

Inclusion/Exclusion Criteria
After removing duplicates, potential articles that were identified
by the database search were independently screened by two
researchers for relevancy. Discrepancies between screeners were
resolved through discussion and comparison. Articles meeting
the following inclusion criteria proceeded to data extraction:

1) Published in English in a peer-reviewed journal and was
full-text accessible.

2) Unperturbed steady-state walking defined as consecutive
strides after the Gait Initiation Phase and before Gait
Termination.

3) Perturbed walking from mechanical perturbations defined as
events that cause an external perturbing force to participants
during walking. Methods comparing non-mechanical and
mechanical perturbations were included.

4) The sample demographic was limited to either solely healthy
young adults, elderly adults (fallers or non-fallers), and
individuals with Parkinson’s Disease (freezers or non-freezers)
or was a comparison between any of the aforementioned
demographics.

5) Implemented a quantitative measure of dynamic balance.
Articles that examined both a clinical measure along with a
quantitative measure were included.

Article exclusion criteria were as follows:

1) The sole use of a clinical gait assessment method (TUG, BBG,
etc.) without an additional quantitative measure.

2) Pathologies outside of Parkinson’s Disease. Articles also
comparing Parkinson’s Disease to another clinical population
were excluded from the analysis.

3) All animal and modeling studies.
4) Sole use of non-mechanical perturbations defined as

sensorimotor perturbations.
5) Backward and aquatic walking.
6) Literature reviews and meta-analyses.
7) Articles providing sensorimotor or instructional feedback.
8) Articles examining Gait Initiation and Termination. Current

evidence demonstrates that each is a unique transitory phase
between static balance and steady-state walking, and is
governed by their own balance mechanics (Brenière and Do,
1991; Winter, 1995).

9) Protocols including sit-to-stand walking, lifting, bending,
standing, chairs, stairs, running, inclined/declined treadmill,
wheelchair, obstacle crossing, as well as gait initiation and
termination.

Data Extraction and Quality Assessment
The same two researchers then independently extracted
information from articles that passed both title and
abstract screening as well as for methodological quality.
Discrepancies were resolved through comparison and
discussion. Extracted information from articles included:
(1) author, (2) publication date, (3) dynamic balance
quantification method, (4) study-design, (5) sample size,
(6) sampling method, (7) demographic description, (8)
inclusion/exclusion criteria, (9) unperturbed or perturbed
walking, (10) type perturbation, (11) over-ground or treadmill
walking, (12) number of strides, (13) walking duration,
(14) Faller or Non-faller, (15) Freezer or non-Freezer, (15)
Instrumentation.

To assess methodological quality, publications that proceeded
to data extraction were assessed with a modified version of
the Downs and Black Quality (Hubble et al., 2015). This
checklist consists of 27-item that evaluates publications in regard
to reporting, external validity, internal validity-bias, internal
validity-selection bias, and power. General methodological
quality was determined on 25 of the items with each having a
corresponding single point. If publicationsmet an item’s criterion
then one point was assigned to its score, if not then no point
was assigned for that item. Additionally, no point was assigned
if it was deemed unreasonable to determine if the item’s criterion
was met based on the publication’s provided information. One
item on the checklist assessed publications on a two-point scale
based on reporting of principal cofounders. Specifically, two-
points were given if all cofounders were listed, one-point if
cofounders were only partially described, and zero points if none
were described. The final item on the checklist assessed the
publication’s statistical power, which was measured on a five-
point scale and carried more weight in the final total score. The
higher the publications statistical power, the higher the score that
was provided.
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RESULTS

Study Selection
The initial database search yielded 280 articles based on the
defined search criteria (Figure 1) (Moher et al., 2009). Of the
identified articles, 15 articles were removed as duplicates leaving
265 remaining publications for title and abstract screening.
After title and abstract screening, 216 publications were deemed
eligible for full-text screening based on their relevance to
quantifying dynamic stability during walking. Full-text screening
further excluded an additional 140 articles due to not meeting the
predetermined inclusion criteria of this systematic review. The
remaining 76 publications were included in the final synthesis
and an additional 5 publications were included from manually
scanning reference lists, thereby yielding a total of 81 publications
for inclusion.

Study Characteristics
Several methods for quantifying dynamic stability during
unperturbed and perturbed walking were identified with
some articles quantifying balance with multiple measures:
26 Coefficient of Variation for Spatiotemporal Variability, 10
Detrended Fluctuation Analysis, 20 Lyapunov Exponent, 7
Maximum Floquet Multipliers, 16 Extrapolated Center of Mass,
11 Harmonic Ratios, 4 Center of Mass-Center of Pressure
Separation, 2 Gait Stability Ratio, 1 Entropy, 3 Spatiotemporal
Variables, 2 COG or COP, 2 Root Mean Square.

Of the unperturbed articles: 18 examined dynamic balance
in healthy young adults, 30 examined elderly adults, and 15
examined PD individuals. The age range for young adults was
from 22 to 35 years old, elderly adult age range was 60.6–84 years
old, and age range for PD individuals was 60.2 to 71.9. The PD
severity was commonly assessed by the Hoehn & Yahr (H&Y)
scale and ranged between stages I-III. Additionally, scores on the
Unified Parkinson’s Disease Rating Scale (UPDRS) ranged from
13.8 to 36.1. Within the PD articles, two examined differences
between ON and OFF. All studies reported details on age and
generally provided an appropriate age-matched control group.
Fourteen articles examined differences between fallers and non-
fallers distributed between 12 articles in elderly adults and 2 in
PD individuals. Definitions of fallers varied substantially between
articles, however, only two articles examined falls prospectively.
Two articles examined differences between freezers and non-
freezers. In the perturbed walking articles 13 examined healthy
young adults and 5 in elderly adults. No articles examined
perturbed dynamic balance in PD individuals. The types and
magnitude of the perturbations varied across studies. However,
perturbed walking articles included 3 compliant surface (foam
mat), 4 platform oscillations, 1ML foot translation, 1 trunk pull,
5 slip, 2 trip, and 2 examined differences between both trips
and slips. The articles were summarized into unperturbed and
perturbed walking conditions then further divided by age group
(young, elderly, and PD) and dynamic stability measure. All
data extracted into the final synthesis are listed in Tables 1–3
for unperturbed walking in young, elderly and PD individuals,
respectively and Tables 4, 5 for perturbed walking conditions in
young and elderly individuals, respectively.

Methodological Quality
Seventy-nine of the assessed studies had a cross-sectional design
while two studies used a randomized control protocol. After
assessing methodological quality, 1 article was rated as having a
very low methodological quality (range = 0–25% ), 72 having a
low methodological quality (range = 25.51–50%), and 7 having
a moderate methodological quality (range = 50.1–75%). In
general, the majority of the articles scored poorly on criteria
for internal validity (selection-bias), external validity and on
reporting the statistical power for their paradigms. Figure 2
displays the average percentage of each scoring for articles per
category on the Downs and Blacks checklist sorted by study
design. Articles scoring in the very low to low quality ranking are
listed in Table A while moderately ranked articles are in Table B

of the Supplementary Material.

DISCUSSION

The purpose of this literature review was to examine the various
methods for quantifying dynamic stability during unperturbed
and perturbed walking in elderly and PD individuals. As
falls in these demographics occur primarily during walking,
accurately assessing gait instability is crucial to determine
those with increased fall risk. After full-text screening, 81
publications were assessed for methodological quality and
included in the final article synthesis. From this total 63
publications examined dynamic stability during unperturbed
walking (Table 1) conditions and 18 publications during
perturbed walking conditions (Table 2). Of these articles, 1 article
had a very low methodological quality, 72 articles had a low
methodological quality and 7 articles had a moderate quality.
Articles are grouped by methodological quality in Tables A, B

in the Supplementary Material. The low score in the majority
of the articles was due to many neglecting to report on threats
to internal validity and a priori power Figure 2. Indeed, based
on the information provided, we were unable to determine if
the samples were representative of their respective population.
According to Downs and Black, a poor rating on internal validity
items introduces an inherent amount of bias into the study as
these items were designed to assess if a study’s sample truly
represents its population, which is crucial as statistical measures
are based on the assumption that an unbiased sample was drawn
from the population. By reporting specifications on participant
recruitment, researchers would ensure that they are minimizing
the risk of unsubstantiated conclusions regarding their sample
and the inferences drawn for the associated target population.
Furthermore, none of the articles reported an a priori power
analysis to determine if their sample size was sufficiently large
to achieve statistical significance. Item 27 on the Downs and
Black Checklist scores up to five points based on statistical power.
Overall, the lack of reporting may be due to researchers being
unaware of their necessity in assessments of methodological
quality as both components are generally implied as criteria for
quality research.

The following discussion will elaborate on the main
quantification methods, as reported in the literature, in
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FIGURE 1 | Prisma flow diagram highlighting the progression of the systematic review search and review processes.

succession from unperturbed to perturbed conditions. Within
each section, the method will be discussed in terms of the aspect
of dynamic stability the respective method aims to quantify, how
these measures are similar or different between demographics
(young adults, older adults, and Parkinson Disease Individuals),
the mechanisms of motor output associated with the method,
the method’s predictive ability in fall-risk assessment, and its
limitations.

Unperturbed Walking Methods
Spatiotemporal Variability
Spatiotemporal variability is an overarching term that generally
encompasses variability of stride time and length as well as
step width. The variability in each of these parameters reflects
a distinct aspect of motor control that contributes to stable
walking. For instance, temporal parameters reflects the internal
timing of the lower extremity (Hausdorff et al., 1998, 2003;
Hausdorff, 2005). While spatial parameters, on the other hand,
reflect an individual’s ability to consistently spatially orient the
lower extremity (Maki, 1997; Brach et al., 2005). However,
spatial parameters can be further divided as current evidence
indicates that separate motor processes control the lower
extremity in the AP and ML directions (Kuo, 1999; Bauby
and Kuo, 2000). Indeed, Bauby and Kuo (2000) demonstrated
that lower extremity placement in the AP direction (stride

and step length) is governed by automatic passive mechanisms
while active mechanisms control ML placement (step width;
Bauby and Kuo, 2000). Thus, each spatial parameter reflects
a distinct aspect of motor control that contributes to stable
walking. As the COM’s trajectory dictates lower extremity
placement, the neuromuscular system must integrate these
multiple spatiotemporal parameters to successfully predict the
COM’s future dynamic state to avoid an uncontrolled fall
(Brenière and Do, 1991; MacKinnon and Winter, 1993; Winter,
1995). Therefore, erratic spatiotemporal values reflect an inability
to control extraneous COMmovement within a rhythmic base of
support. Previous research demonstrated that both aging and PD
contribute to neuromuscular deterioration thereby threatening
walking stability (Hausdorff et al., 1997, 2001; Brach et al.,
2005; Baltadjieva et al., 2006; Nanhoe-Mahabier et al., 2011;
Barbe et al., 2014; Kirchner et al., 2014). However, how aging
and PD affects each spatiotemporal parameter specifically is
inconsistently reported in the literature.

For instance, Malatesta et al. (2003) and Chien et al. (2015)
reported increased stride time variability in healthy elderly adults
compared to younger adults (Malatesta et al., 2003; Chien et al.,
2015). In contrast, Hausdorff et al. (1997) demonstrated no
differences in stride time variability between healthy elderly and
young adults (Hausdorff et al., 1997). Additionally, aging’s effect
on spatial variability measures also yielded mixed results. When
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TABLE 1 | Young adults unperturbed walking.

Article Experimental group Quantification method Number of strides Overground or Treadmill

Dingwell, 2006 Young adults = 10 (27.1 ± 3.2) Maximum Floquet multipliers and

Lyapunov exponent

Unstated Overground

Bruijn et al., 2010b Healthy adults = 9 Maximum Floquet multipliers and

Lyapunov exponent

150 Treadmill

Hausdorff et al., 1995 Young adults = 10 (26) Detrended fluctuation analysis 3,500 Overground

Dingwell and Cusumano,

2010

Young adults = 17 Detrended fluctuation analysis 213–334 Treadmill

Jordan et al., 2007 Young adults = 11 (24.9 ± 2.4) Detrended fluctuation analysis,

Coefficient of variation

Unstated Treadmill

Terrier and Dériaz, 2011 Young adults = 20 (35 ± 7) Detrended fluctuation analysis,

Coefficient of variation, Lyapunov

exponent

543 Overground and Treadmill

Stenum et al., 2014 Young adults = 10 (22.6 ± 2.8) Lyapunov exponent 115 Treadmill

Dingwell and Marin, 2006 Young adults = 12 (26.7) Lyapunov exponent Unstated Treadmill

Bruijn et al., 2009a Young adults = 15 (23.6 ± 2.9) Lyapunov exponent 50 Treadmill

Wu et al., 2016 Young adults = 24 (24.94 ± 1.43) Lyapunov exponent 100 Treadmill

Dingwell et al., 2001 Young adults = 10 (27.1 ± 3.25) Lyapunov exponent, Kinematic

variability

30 Overground, Treadmill

Rosenblatt and Grabiner,

2010

Young adults = 10 (24.4 ± 4.5) Extrapolated Center of Mass Unstated Overground, Treadmill

Yang and King, 2016 Young adults = 44 (23.9 ± 4.7) Extrapolated Center of Mass Unstated Overground, Treadmill

Lu et al., 2017 Young adults = 12 (24.5 ± 2.3) COM-COP separation 15 Overground

England and Granata, 2007 Healthy young adults = 19 (22.5 ± 2.8) Lyapunov exponent 30 Treadmill

Ihlen et al., 2012a Young adults = 10 (25 ± 4.7) Lyapunov exponent Unstated Treadmill

Kang and Dingwell, 2006 Middle-age adults = 20 (40) Lyapunov exponent Unstated Treadmill

examining differences in step length variability between healthy
elderly and young adults, Ihlen et al. (2012b) found increased
variability in the elderly group (Ihlen et al., 2012b). The authors
suggested that the increased variability reflects a reduced ability
of elderly individuals to redirect their COM at the beginning
of the double support phase (Ihlen et al., 2012b). Contrastingly,
however, Beauchet et al. (2009) demonstrated that the increased
stride length variability in their sample was due to elderly adults
walking at a slower velocity and not due to aging effects (Beauchet
et al., 2009). Instead, the authors suggested that aging directly
accounts for increases in step width variability and thus is a
more accurate characteristic parameter of elderly gait. Three
additional studies demonstrated significant differences in step
width variability between elderly and young adults. However,
these differences were not consistently due to increased step
width variability in elderly participants (Helbostad and Moe-
Nilssen, 2003; Brach et al., 2005; Hurt et al., 2010). Indeed,
Hurt et al. (2010) found reduced step width variability in elderly
adults compared to their younger counterparts (Hurt et al., 2010).
The authors explained the differences as elderly participants
increasing voluntary control of their trunk in the ML direction
thereby reducing stride width variability (Hurt et al., 2010).
However, Brach et al. (2005) demonstrated that fall likelihoodwas
closely associated with both low and high step width variability in
elderly adults (Brach et al., 2005).

The disparity in the literature may be due to methodological
issues in the samples collected. Indeed, the articles discussed

thus far either did not account for participants’ fall history or
did so retrospectively. In two seminal articles, Maki (1997) and
Hausdorff et al. (2001) examined spatiotemporal gait variability
in elderly adults and their ability to prospectively identify
fallers from non-fallers (Maki, 1997; Hausdorff et al., 2001).
Maki (1997) demonstrated that fallers walked with increased
stride length variability while Hausdorff et al. (2001) found
increased stride time variability characterized elderly fallers
(Maki, 1997; Hausdorff et al., 2001). A plausible explanation for
the differences between fallers and non-fallers is that aging does
not uniformly affect the motor control mechanisms responsible
for rhythmic walking in all elderly adults thereby resulting
in only some elderly falling (Hausdorff et al., 1997). It is
possible that neurodegeneration in some elderly adults (fallers)
is physiologically more akin to individuals with pathological
conditions (Hausdorff et al., 1997). Indeed, four studies in this
literature review reported increased spatiotemporal variability in
PD individuals compared to healthy age matched controls. Three
studies reported increased stride time variability and one study
reported increased stride length variability in PD individuals
compared to elderly adults (Blin et al., 1990; Frenkel-Toledo et al.,
2005a; Plotnik et al., 2007; Nanhoe-Mahabier et al., 2011).

Gait is predominately considered an automatic motor
process that is generated in subcortical structures with
only limited supraspinal input to provide environmental
information (Hausdorff, 2005, 2009). Increased stride time
and length variability in PD and elderly fallers suggests
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TABLE 2 | Elderly adults unperturbed walking.

Articles Experimental group Faller or

Non-faller

Quantification

method

Number of

strides

Overground vs.

Treadmill

Yack and Berger, 1993 Elderly adults = 20 (Fallers 78 ± 7,

Non-fallers 77 ± 9.9)

Young adults = 19 (24 ± 2.6)

Faller = any prior

history of falling

Harmonic ratio 10 Overground

Auvinet et al., 2002 Young adults = 102

Middle-age adults = 100

Elderly adults = 82

n/a Harmonic ratios Unstated Overground

Lowry et al., 2012 Very elderly adults = 13 (82.47 ± 2.2)

Elderly adults = 13 (66.34 ± 2.6)

Young adults = 13 (22.13 ± 0.9)

n/a Harmonic ratios Unstated Overground

Brodie et al., 2015 Elderly fallers = 35 (79 ± 4)

Elderly non-fallers = 61 (80 ± 4)

Fallers = >1 fall in

the past year

Harmonic ratios Unstated Overground

Bisi and Stagni, 2016 Young adults = 10 (27 ± 1)

Middle-age adults = 10 (45 ± 2)

Elderly adults = 10 (67 ± 2)

Very elderly adults = 10 (84 ± 2)

n/a Harmonic ratios,

Sample entropy

10 Overground

Granata and Lockhart, 2008 Young adults = 4 (26.3 ± 2.1)

Elderly non-fallers = 4 (71.3 ± 6.5)

Elderly fallers = 4 (71 ± 3)

Fallers = >2 falls

in past 6 months

Maximum Floquet

multipliers

35 Treadmill

Kang and Dingwell, 2009 Elderly adults = 18 (72.1 ± 6)

Young adults = 17 (23.3 ± 2.6)

n/a Maximum Floquet

multipliers,

Lyapunov

exponent

Unstated Treadmill

Malatesta et al., 2003 Young adults = 10 (24.6 ± 2.6)

Elderly adults = 10 (65.3 ± 2.5)

Very elderly adults = 81.6 ± 3.3)

n/a Detrended

fluctuation

analysis,

Coefficient of

variation

20 Treadmill

Chien et al., 2015 Young adults = 10 (27 ± 4)

Middle-age adults = 7 (50 ± 5)

Elderly adults = 7 (70 ± 10)

n/a Detrended

fluctuation

analysis,

Coefficient of

variation

200 Treadmill

Terrier and Reynard, 2015 20–29 years old = 20 (24.7 ± 2.8)

30–39 years old = 20 (34.6 ± 2.8)

40–49 years old = 20 (43.9 ± 2.9)

50–59 years old = 20 (54.8 ± 2.7)

60–69 years old = 20 (63.3 ± 3.2)

n/a Lyapunov

exponent, Walk

ratio, Root mean

Square

175 Treadmill

Toebes et al., 2012 Elderly fallers = 44 (63.3 ± 6.4)

Elderly non-fallers = 90 (62 ± 6.1)

Fallers = >1 fall in

the past year

Lyapunov

exponent,

Coefficient of

variation

150 Treadmill

Ihlen et al., 2012b Young adults = 10 (25.7 ± 4.7)

Elderly adults = 10 (75.4 ± 4.6)

n/a Lyapunov

exponent,

Coefficient of

variation

Unstated Treadmill

Toebes et al., 2015 Elderly adults = 134 (62.2 ± 6.2) Fallers = >1 fall in

the past year

Lyapunov

exponent

150 Treadmill

Lugade et al., 2011 Young adults = 20 (23.6 ± 3.7)

Elderly non-fallers = 10 (75.4 ± 7)

Elderly fallers = 10 (78.9 ± 4.9)

One or more falls

in the past year.

Extrapolated

Center of Mass

Unstated Overground

Mademli and Arampatzis,

2014

Young adults = 12 (25.2 ± 3.1)

Elderly adults = 12 (68.2 ± 4.2)

n/a Extrapolated

Center of Mass

Unstated Overground

Fujimoto and Chou, 2016 Young adults = 7 (22.1 ± 1.9)

Elderly non-fallers = 15 (70 ± 3.2)

Elderly fallers = 15 (71.9 ± 4.3)

Self-reported two

or more falls in the

past year.

Extrapolated

Center of Mass

Unstated Overground

Wright et al., 2015 Elderly non-fallers = 16 (72 ± 5)

Elderly fallers = 24 (trip 71 ± 6, slip

68 ± 5)

Fallers = >1 fall in

the past year

COM-COP

separation

Unstated Overground

(Continued)
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TABLE 2 | Continued

Articles Experimental group Faller or

Non-faller

Quantification

method

Number of

strides

Overground vs.

Treadmill

Cromwell and Newton,

2004

Young adults = 20 (26 ± 3.4)

Elderly adults = 17 (76.2 ± 6.9)

n/a Gait stability ratio Unstated Overground

Hausdorff et al., 2001 Elderly adults = 52 (80.3 ± 5.9) Fallers = >1 fall

during 1 year

follow-up

Coefficient of

variation

Unstated Overground

Helbostad and

Moe-Nilssen, 2003

Elderly adults = 36 (72.5 ± 3.2) n/a Coefficient of

variation

Unstated Overground

Beauchet et al., 2009 Young adults = 30 (28.1 ± 6)

Elderly adults = 33 (74.4 ± 7.1)

n/a Coefficient of

variation

6–12 Overground

Hurt et al., 2010 Young adults = 12 (24.5 ± 3.3)

Elderly adults = 11 (60.6 ± 5.63)

n/a Coefficient of

variation

Unstated Treadmill

Hausdorff et al., 1997 Young adults = 22 (24.6 ± 1.9)

Elderly non-fallers = 17 (76.5 ± 4)

Elderly fallers = 18 (82.2 ± 4.9)

Fallers = >1 fall in

the past year

Coefficient of

variation

Unstated Overground

Brach et al., 2005 Elderly non-fallers = 81 (79.1 ± 3.9)

Elderly fallers = 422 (80.3 ± 5.1)

Fallers = >1 fall in

the past year

Coefficient of

variation

Unstated Overground

Brach et al., 2007 Elderly adults = 379 (79 ± 4.2) n/a Coefficient of

variation

Unstated Overground

Maki, 1997 Elderly non-fallers = 32 (81 ± 6.7)

Elderly fallers = 43 (82.8 ± 6.2)

Prospective fallers

who fell one or

more times in the

1-year follow-up

Coefficient of

variation, Classic

spatiotemporal

gait parameters

Unstated Overground

Kavanagh et al., 2004 Young adults = 8 (23 ± 4)

Elderly adults = 8 (74 ± 3)

n/a Classic

spatiotemporal

gait parameters

10 Overground

Feltner et al., 1994 Elderly non-fallers = 11 (74.4 ± 1.7)

Elderly fallers = 6 (71.7 ± 2.6)

Fallers = >1 falls

in the past year

Classic

spatiotemporal

gait parameters

Unstated Overground

Brach et al., 2010 Young adults = 30 (24.4 ± 4.3)

Elderly adults = 30 (77.5 ± 5.1)

n/a Harmonic ratios Unstated Overground

Kavanagh et al., 2005 Young adults = 8 (23 ± 4)

Elderly adults = 8 (74 ± 3)

n/a Harmonic ratios Unstated Overground

Mazzà et al., 2008 Young adults = 16 (24 ± 4)

Elderly adults = 20 (72 ± 4)

n/a Harmonic ratios Unstated Overground

that neurodegeneration, although stemming from separate
pathological origins, affects the motor pathways involved in gait’s
passive and internal timing mechanisms (Hausdorff et al., 2001;
Plotnik et al., 2007; Nanhoe-Mahabier et al., 2011; Kirchner et al.,
2014). Additionally, based on the present evidence, aging seems
to have a greater impact on the active mechanisms controlling
walking stability in the ML direction as both fallers and non-
fallers have altered step width variability compared to young
adults (Brach et al., 2005; Beauchet et al., 2009; Hurt et al., 2010).
However, there is currently a lack of literature that examined
step width variability in PD individuals. As frontal plane walking
stability is dependent on active sensory integration, an ability
impaired in PD, examining step width variability would reflect
ML foot placement strategies in this demographic (Bauby and
Kuo, 2000). Overall though, it is interesting to note that some
amount of variability is consistently reported across studies
in healthy young and elderly subjects (stride time <2%, stride
length <3%, stride width <25%; Hausdorff et al., 1997; Maki,
1997; Brach et al., 2005). Brach et al. (2005) discussed the
possibility that a moderate amount of variability is necessary

for an individual to adapt to their environment (Brach et al.,
2005). Thus, variability that is outside of this threshold may
indicate both impairment for environmental adaptability as well
as walking imbalance.

However, when quantifying spatiotemporal variability
through the Coefficient of Variation, it is important to recognize
this method’s limitations. The Coefficient of Variation quantifies
howmuch variability’s magnitude contributes to the mean’s value
in any given gait parameter. While this method has the advantage
of quantifying large spatiotemporal gait inconsistencies, it does
not account for the variability’s structure, which may provide
additional information to the neuromuscular system’s control of
walking stability.

Detrended Fluctuation Analysis
In his seminal article, Hausdorff et al. (1995) demonstrated
that variations in a gait time series are not random but exhibit
long-range correlations, where one stride influences subsequent
strides (Hausdorff et al., 1995). To quantify these correlations,
Hausdorff et al. (1995) implemented the Detrended Fluctuation
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TABLE 3 | Parkinson’s disease unperturbed walking.

Articles Experimental groups N

(Mean age ± SD)

Disease severity Quantification

method

Number of

strides

Overground

or Treadmill

Lowry et al., 2009 PD = 11 (68.92 ± 7.65)

Elderly adults = 11 (68.92 ± 8.84)

Hoehn & Yahr

PD = 1.9 ± 0.8

Harmonic ratios Unstated Overground

Kirchner et al.,

2014

PD = 19 (59.5 ± 10.2)

Young adults = 20 (22 ± 2.7)

Hoehn & Yahr

I & II

UPDRS

36.1 ± 13.5

Detrended fluctuation

analysis, Coefficient of

variation

25 Overground

Bartsch et al.,

2007

PD = 29 (67 ± 1.3)

De novo PD = 13 (68.9 ± 2.3)

Elderly adults = 24 (64.3 ± 1.3)

Unstated Detrended fluctuation

analysis

Unstated Overground

Frenkel-Toledo

et al., 2005b

PD = 36 (61.2 ± 9)

Elderly adults = 30 (57.7 ± 7)

Hoehn & Yahr

2.1 ± 0.2

UPDRS

36.1 ± 11.5

Detrended fluctuation

analysis, Coefficient of

variation

Unstated Treadmill

Cole et al., 2010 PD non-fallers = 17 (66.9 ± 2.1)

PD fallers = 32 (66.2 ± 1.4)

Elderly non-fallers = 17 (65.1 ± 2.1)

Elderly fallers = 17 (70.2 ± 2.3)

Hoehn & Yahr

1.8 ± 0.1

UPDRS

31.8 ± 2.3

Gait stability ratio,

Coefficient of variation

Unstated Overground

Plotnik et al., 2007 Young adults = 15 (26.3 ± 0.5)

Elderly adults = 14 (69.1 ± 1.3)

PD = 21 (71.9 ± 1.5)

Hoehn & Yahr

2.3 ± 0.1

UPDRS

35.8 ± 2.6

Coefficient of variation 267 Overground

Nanhoe-Mahabier

et al., 2011

Elderly adults = 15 (57.9 ± 7.3)

PD freezers = 12 (60.5 ± 7.9)

PD non-freezers = 15 (60.2 ± 9.2)

PD freezers

Hoehn & Yahr = 2.4 ± 0.3

UPDRS =35.4 ± 8.9

NFOG-Q = 11.6 ± 5.3

PD non-freezers

Hoehn & Yahr = 2.1 ± 0.3

UPDRS = 30.6 ± 7

Coefficient of variation Unstated Overground,

Treadmill

Bryant et al., 2011 PD = 33 (70.61 ± 9.23) Hoehn & Yahr

2.58 ± 0.42

UPDRS “Off”

29.12 ± 11.36

UPDRS “On”

18.39 ± 8.55

Coefficient of variation Unstated Overground

Baltadjieva et al.,

2006

Elderly adults = 22 (62.1 ± 11)

De Novo PD Individuals = 35 (59.9 ± 13)

Hoehn & Yahr

1.8 ± 0.5

Coefficient of variation 60 Overground

Blin et al., 1990 Elderly adults = 58 (72)

PD = 21 (69.6)

Hoehn & Yahr

2.8 ± 1.12

Coefficient of variation Unstated Overground

Barbe et al., 2014 PD non-freezers= 11 (63.5 ± 11.3)

PD freezers = 11 (62.7 ± 12)

PD non-freezers

UPDRS “Off” = 31.7 ± 10.1

UPDRS “On” = 13.8 ± 7.2

PD freezers

UPDRS “Off” = 29.45 ± 7.8

UPDRS “On” = 18.0 ± 5.8

Coefficient of variation 15 Overground

Herman et al.,

2007

PD = 9 (70 ± 6.8) Hoehn & Yahr

1.5–3

Coefficient of variation Unstated Overground

Auriel et al., 2006 PD = 21 (70.2 ± 9.2) Hoehn & Yahr

2–3

Coefficient of variation Unstated Overground

Frenkel-Toledo

et al., 2005a

Elderly adults = 30 (57.7 ± 7)

PD = 36 (61.2 ± 9)

Hoehn & Yahr

2.1 ± 0.2

Coefficient of variation Unstated Both

Latt et al., 2009 Elderly adults = 33 (67 ± 4)

PD non-fallers = 33 (67 ± 4)

PD fallers = 33 (67 ± 2)

PD non-fallers

Hoehn & Yahr 1

PD fallers

Hoehn & Yahr 3

Harmonic ratios Unstated Overground
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TABLE 4 | Young adults perturbed walking articles.

Article Experimental groups N (Mean

age ± SD)

Disease severity Quantification

method

Number of

strides

Perturbation

type

Overground

or Treadmill

MacLellan and Patla,

2006

Young adults = 8 (20.6 ± 1.7) n/a COM-COP

separation

Unstated Mat perturbations Overground

McAndrew Young

et al., 2012

Young adults = 12 n/a Extrapolated

Center of Mass

Unstated Platform

oscillations

Treadmill

Wang et al., 2012 Young adults = 16 (25 ± 3) n/a Extrapolated

Center of Mass

Unstated Trip Overground

Yang et al., 2013 Young adults = 43 (26 ± 5) n/a Extrapolated

Center of Mass

Unstated Slip Overground

Bhatt et al., 2013 Young adults = 32 (26 ± 4) n/a Extrapolated

Center of Mass

Unstated Slip and trip Overground

Yang et al., 2014 Young adults = 36 (24.9 ± 3.7) n/a Extrapolated

Center of Mass

Unstated Slip Overground

Rankin et al., 2014 Young adults = 10 (23 ± 1) n/a Extrapolated

Center of Mass

250 ML foot translation Treadmill

McAndrew et al., 2011 Young adults = 12 n/a Maximum Floquet

multipliers,

Lyapunov

exponent

150 Platform

oscillations

Treadmill

Sinitksi et al., 2012 Young adults = 11 (26 ± 7) n/a Maximum Floquet

multipliers,

Lyapunov

exponent

150 Platform

oscillations

Treadmill

Chang et al., 2010 Young adults = 14 (25.2 ± 3) n/a Lyapunov

exponent, Root

mean square

100 Foam mats Overground

Bruijn et al., 2010a Young adults = 11 (27.7 ± 3.3) n/a Euclidean

distances

140 Trunk pull Treadmill

Ilmane et al., 2015 Young adults = 10 (22.3 ± 1.7) n/a Extrapolated

center of Mass

Unstated Slip and trip Treadmill

McAndrew et al., 2010 Young adults = 12 (29 ± 7.5) n/a Coefficient of

variation

Unstated Platform

oscillations

Treadmill

Analysis (DFA) method from Dynamical Systems Theory to
quantify the amount of persistence (correlation) in a time
series data (Hausdorff et al., 1995). When applied to gait,
the DFA assesses the amount of correlation between stride
intervals in a walking session along a spectrum, with lower
values (approaching 0) indicating strides are uncorrelated and
larger values (approaching 1) indicating greater stride correlation
(Hausdorff et al., 1995; Frenkel-Toledo et al., 2005b; Jordan et al.,
2007).

However, the degree to which stride intervals are correlated
with one another in young, elderly and PD individuals varies
considerably in the literature. Despite these discrepancies, an
emerging pattern does appear demonstrating that long-range
correlations naturally occur in healthy adults (Hausdorff et al.,
1995; Jordan et al., 2007; Dingwell and Cusumano, 2010; Terrier
and Dériaz, 2011; Chien et al., 2015). Indeed, six studies
examined long-range correlations in healthy young adults and
reported DFA values ranging from 0.72 to 0.81 (Hausdorff et al.,
1995; Malatesta et al., 2003; Jordan et al., 2007; Dingwell and
Cusumano, 2010; Terrier and Dériaz, 2011; Chien et al., 2015).
However, it remains unclear as to how aging affects the presence
of these long-range correlations. For instance, Malatesta et al.

(2003) reported no differences in DFA values between young
and elderly adults (Malatesta et al., 2003). Contrastingly, Chien
et al. (2015) demonstrated that long-range correlations begin to
deteriorate when adults reach middle-age (DFA values of 0.76
in young adults and 0.64 in middle-aged adults), although no
further DFA break downs were demonstrated between middle-
aged and elderly adults (Chien et al., 2015). As such, it remains
unclear as to what effects aging have on the motor pathways
responsible for stride interval correlations. Hausdorff et al. (1996)
suggested that the presence of long-range correlations in healthy
adults potentially reflect gait rhythmicity and automaticity
generated by Central Pattern Generators (CPGs) in human
subcortical structures (Hausdorff et al., 1996; Hausdorff, 2007,
2009). The contribution of CPGs to long-range correlations
would explain the results found in PD. Three studies that
investigated DFA in PD demonstrated reduced correlations in
PD stride intervals compared to age-matched controls (Frenkel-
Toledo et al., 2005b; Bartsch et al., 2007; Kirchner et al., 2014).
For instance, Bartsch et al. (2007) reported DFA values of 0.72
in PD individuals and 0.80 in age-matched controls (Bartsch
et al., 2007). Similarly, Kirchner et al. (2014) demonstrated
lower DFA values in PD (0.76) compared to healthy elderly
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TABLE 5 | Elderly perturbed walking articles.

Article Experimental groups N

(Mean age ± SD)

Disease severity Quantification method Number of

strides

Perturbation

type

Overground

or Treadmill

Bhatt et al.,

2011

Elderly adults = 119 (71 ± 6) n/a Extrapolated Center of Mass Unstated Slip Overground

McCrum

et al., 2016

Young adults = 11 (25.5 ± 2.1)

Middle-aged adults = 11 (50.6 ±

6.4)

Elderly adults = 14 (69 ± 4.7)

n/a Extrapolated Center of Mass Unstated Trip Treadmill

Yang and Pai,

2013

Elderly adults = 73 (72.6 ± 5.4) n/a Extrapolated Center of Mass Unstated Slip Overground

Yang and Pai,

2014

Elderly adults = 187 (71.9 ± 5.1) n/a Extrapolated Center of Mass,

Maximum Floquet multipliers,

Lyapunov exponent, Classical

gait parameters, Coefficient of

variation

20 Slip Overground

Menz et al.,

2003

Elderly adults = 100 (79.9 ± 4) Classified into fall risk

based on tests of

vision, peripheral

sensation, strength,

reaction time, and

balance.

Harmonic ratios, Coefficient of

variation

Unstated Foam surface Overground

adults (0.93) (Kirchner et al., 2014). This suggests that each
step, in PD individuals, is more independent and unrelated to
previous steps indicative of gait fluidity impairment (Hausdorff,
2009). Therefore, previous research proposed that PD individuals
continuously restart the motor process that controls stepping
instead of building off of the lower extremity’s previous stepping
states (Hausdorff, 2009). Interestingly, however, Bartsch et al.
(2007) reported no differences between de novo PD individuals
and age-matched controls (Bartsch et al., 2007). Hausdorff (2009)
suggested that deterioration in the long-range correlation motor
pathways may not be an early symptom of the disease but stated
that it remains unclear whether this is due to compensatory
mechanisms or if damage to the basal ganglia is not yet severe
enough to impact this parameter (Hausdorff, 2009).

Although the exact mechanisms responsible for long-range
correlations remain inconclusive, their presence in human gait
is well-substantiated. However, the studies included in this
literature review also demonstrate that a certain amount of
anti-correlation is present in healthy human gait (Hausdorff
et al., 1996; Jordan et al., 2007; Dingwell and Cusumano, 2010;
Terrier and Dériaz, 2011). Hausdorff (2009) proposed that this
may be to reduce the risk of perturbations leading to “mode
locking” or resonance and may reflect an individual’s capacity
to adapt environmentally (Hausdorff, 2009). Thus, suggesting
that an optimal correlation threshold may naturally exist in
healthy gait. In support of this theory, Hausdorff (2007, 2009)
borrowed evidence from research examining heart beat signals
that demonstrated when signals exceeded or receded from the
correlation threshold observed in healthy individuals, it was
indicative of cardiovascular disease (Hausdorff, 2007, 2009).

Overall, DFA results are currently difficult to interpret and
there is limited research that demonstrates its predictive ability
to quantify fall risk. Indeed, of all the studies included in this
literature review, none of the authors examined differences

between fallers and non-fallers. Therefore, it is difficult to draw
a conclusion as to the DFA’s ability to identify fallers or predict
future fall risk. Furthermore, a comparison between results of
different studies is difficult due to the lack of standardization in
both the DFA’s formulaic computation and the number of strides
quantified, a value that directly affects the DFA’s calculation.

Lyapunov Exponent
Another common method that quantifies gait stability from
a dynamical systems approach is the maximum Lyapunov
Exponent. This method quantifies a system’s average logarithmic
rate of divergence after infinitesimal perturbations (Dingwell and
Marin, 2006; Bruijn et al., 2009a, 2010b, 2013). The underlying
notion of the maximum Lyapunov Exponent is that if a system’s
current state is altered from that of its previous state, then
either state is deemed as perturbed from the other (Bruijn et al.,
2013). When applied to human walking, these perturbations are
considered to arise from “noise” in either the neuromuscular
system or from the environment. Calculating the Lyapunov
Exponent is dependent on the construction of a proper and
comprehensive state-space that adequately defines the state of
the system in any point in time (Dingwell et al., 2001). In the
literature, the predominate method for state-space construction
is derived from an anatomical segment’s kinematic data, such
as velocity, acceleration, position and jerk (Dingwell et al.,
2001; Dingwell and Marin, 2006; Bruijn et al., 2009a, 2010a).
When computed, the Lyapunov Exponent quantifies the rate of
convergence (<0) or divergence (>0) of the system’s trajectory
to its nearest neighboring trajectory in the reconstructed state
space over the course of 0–1 strides (short-term Lyapunov
Exponent) and 4–10 strides (long-term Lyapunov Exponent;
Bruijn et al., 2009a).When the trajectories converge, the observed
system is considered to have Local Dynamic stability while
divergence indicates Local Dynamic Instability (Bruijn et al.,
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FIGURE 2 | Average percentage scores on quality assessment sub-sections.

2009a, 2013). However, as only a link between the short-term
Lyapunov Exponent and gait stability has been established, only
this component will be discussed and referred to Bruijn et al.
(2013).

Currently, results from studies using the Lyapunov Exponent
are difficult to interpret due to several methodological
discrepancies. For instance, it is unclear which anatomical
segment is most appropriate for calculating Local Dynamic
Stability (LDS) and the literature is currently divided between
the trunk and lower extremity joints. Indeed, three studies
calculated the Lyapunov Exponent on lower extremity joints
while twelve studies based their calculations on trunk kinematic
parameters (Dingwell et al., 2001; Dingwell and Marin, 2006;
Kang and Dingwell, 2006, 2009; England and Granata, 2007;
Bruijn et al., 2009a, 2010b; Terrier and Dériaz, 2011; Ihlen
et al., 2012a,b; Toebes et al., 2012, 2015; Stenum et al., 2014;
Terrier and Reynard, 2015; Wu et al., 2016). In a comparison
between the lower and upper extremities, Kang and Dingwell
(2009) demonstrated greater local dynamic instability in the
lower extremity in healthy young adults (Kang and Dingwell,
2009). The authors explained their results as the greater LDS
of the upper extremity, compared to the lower, is plausibly
due to greater trunk inertia (Kang and Dingwell, 2009).
Furthermore, the authors suggested that, due to the different
anatomical properties of each extremity, different motor control
mechanisms may be responsible for maintaining Local Dynamic
Stability (Kang and Dingwell, 2009). As stable motion of each
extremity is necessary for successful locomotion, comparison
between them may not be feasible as they would reflect different
aspects of neuromuscular control and dynamic balance.

However, two commonalities emerge in the literature
regardless of the extremity assessed. First, it is apparent that
a certain amount of local dynamic instability exists in healthy
individuals. Of the publications that examined local dynamic
stability in healthy young adults, all authors reported Lyapunov
Exponents that were greater than zero thereby confirming
divergence rates of neighboring trajectories in this demographic

(Dingwell and Marin, 2006; England and Granata, 2007; Bruijn
et al., 2009a, 2010a,b; Kang and Dingwell, 2009; Ihlen et al.,
2012a; Stenum et al., 2014; Wu et al., 2016). This may be due
to inherent biological noise of the neuromuscular system and
may additionally reflect an individual’s attempt to attenuate
unintended trajectories to maintain dynamic balance. Secondly,
the literature converges on the notion that this divergence
increases due to aging thus demonstrating that elderly adults have
reduced local dynamic stability compared to younger controls.
Indeed, both Ihlen et al. (2012b) and Kang and Dingwell (2009)
demonstrated that lower extremity local dynamic stability was
significantly reduced in elderly compared to healthy young adults
(Kang and Dingwell, 2009; Ihlen et al., 2012b). Ihlen et al. (2012b)
suggested that this may indicate an inability of elderly adults in
controlling their COM’s direction (Ihlen et al., 2012b). Similarly,
in regard to the upper extremity, the literature demonstrates
that aging reduces the trunk’s local dynamic stability (Kang
and Dingwell, 2009; Terrier and Reynard, 2015). Terrier and
Reynard (2015) examined Local Dynamic Stability between
young, middle-aged, and elderly adults and demonstrated that
the trunk’s mediolateral (ML) dynamic stability decreased as a
function of aging (Terrier and Reynard, 2015). Current evidence
demonstrates that trunk ML stability is achieved by “active”
motor control mechanisms to maintain the COMwithin the base
of support’s frontal plane boundaries (Bauby and Kuo, 2000).
Therefore, the reduced ML trunk stability in elderly adults may
indicate an impairment in this demographic’s ability to active
mechanisms to maintain frontal plane dynamic balance, which
potentially may result in falling. Indeed, Toebes et al. (2012)
demonstrated that trunk Local Dynamic Stability in the ML
direction was effective at retrospectively identifying elderly fallers
from non-fallers.

Additional evidence examining dynamic stability differences
between fallers and non-fallers is currently limited, and it
is unclear whether the reduced LDS in elderly fallers causes
falls or develops as a result of already falling. Additionally,
the current methods for state-space reconstruction, the
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number of strides examined, and the Lyapunov Exponent’s
formulaic computation are to-date unstandardized, making
comparison between studies difficult to interpret. Finally,
current evidence lacks a direct link that elaborates on the
exact mechanisms of neuromuscular output involved in the
control of dynamic stability and how these mechanisms are
affected in the presence of PD. Indeed, during the course
of this literature review, no studies were found that met the
inclusion criteria that examined local dynamic stability in PD
individuals.

Floquet Multipliers
The last commonly employed method from dynamical systems
theory is Maximum Floquet Multipliers (FM), which measures
a system’s orbital stability. This method quantifies how the
current state of a system diverges or converges away from a
nominal periodic cycle at a discrete point (Dingwell, 2006; Bruijn
et al., 2013). When applied to gait data, the nominal period is
calculated as the average gait cycle in a time normalized state
space (reconstructed from trunk kinematic parameters; Dingwell,
2006; Granata and Lockhart, 2008; Kang and Dingwell, 2009;
Bruijn et al., 2010b). Afterward, a gait cycle is compared to
the nominal period (average gait cycle) at a fixed discrete point
along a Poincare Section, to assess if the cycle converges or
diverges away from the nominal (average) period. When Floquet
Multipliers are below the value of one, the system is considered
orbitally stable, however, if the value approaches or exceeds one,
then the system is considered to be diverging from the nominal
period thereby threatening its orbital stability (Dingwell, 2006).

Similar to the Lyapunov Exponent, the results from Floquet
Multipliers are difficult to compare and contrast due to
a lack of standardization in the reconstructed state-space,
the number of strides investigated and in their formulaic
computation. Therefore, conflicting evidence exists regarding
its ability to determine stability and differentiate between
different demographics. For instance, Granata and Lockhart
(2008) found that elderly fallers had reduced orbital stability
compared to elderly non-fallers and young adults (Granata and
Lockhart, 2008). However, the authors reported no additional
differences between healthy elderly and young adults (Granata
and Lockhart, 2008). In contrast, however, Kang and Dingwell
(2009) demonstrated that healthy elderly adults were less
orbitally stable compared to healthy young adults (Kang and
Dingwell, 2009).

The motor control implications from FM remain largely
inconclusive. Nevertheless, based on the literature, it appears
that healthy young and elderly adults are capable of preserving
orbital stability by minimizing deviations from their nominal
limit cycle. Specifically, of the evidence included, all publications
reported FMs of less than one (Dingwell, 2006; Granata and
Lockhart, 2008; Kang and Dingwell, 2009; Bruijn et al., 2010b).
Previous research suggests that when values exceed the value of
one, then orbital stability is considered lost, which leads to falling
(Dingwell, 2006). Granata and Lockhart (2008) discussed the
possibility that FM quantify the neuromuscular system’s ability
to return to the limit cycle by attenuating arising deviations,
which if left unmodulated would continue to expand (Granata

and Lockhart, 2008). In turn this would threaten an individual’s
orbital stability, thus theoretically increasing fall likelihood.
However, it is unclear whether this ability deteriorates uniformly
in an aging population or if certain individuals (elderly fallers)
are more impaired. Furthermore, it is unclear whether this
impairment is a consequence from prior falls or is a factor that
leads to falling.

Additionally, several limitations to FM need to be considered
when applying this method to gait research. It is important
to note that FM are based exclusively on the assumption that
the system being quantified is strictly periodic (Dingwell, 2006;
Bruijn et al., 2010b). Biological systems, such as human walking,
are considered stochastic in nature thus drawing into question
FM’s applicability to quantify gait stability (Ashkenazy et al.,
2002; Bruijn et al., 2013). Furthermore, this method analyzes
orbital stability at discrete time points to an average value and
does not examine differences between neighboring trajectories
(Bruijn et al., 2013). Finally, during the course of this literature
review, no publications were found that examined orbital stability
in PD individuals. Thus, in addition to the aforementioned
limitations, further investigation of FM is necessary to determine
its ability in identifying fall risk, uncover the motor control
mechanisms that contribute to orbital stability, and whether PD
affects these mechanisms.

Harmonic Ratios
Based on harmonic theory, Harmonic Ratios (HR) quantify
walking balance by examining the periodicity from an
acceleration signal (Lowry et al., 2009, 2012). Since control
of the COM is crucial for maintaining walking balance,
harmonic ratios are typically applied to trunk acceleration data
(MacKinnon and Winter, 1993; Winter, 1995; Auvinet et al.,
2002; Lowry et al., 2012). When examining the anteroposterior
and vertical trunk accelerations, harmonic ratios assume that
continuous walking consists of regular stride patterns with each
stride consisting of two steps (Auvinet et al., 2002; Lowry et al.,
2009, 2012). Therefore, rhythmic and stable acceleration signals
should repeat in even-numbered multiples to be considered “in-
phase” with the stepping actions and result in a larger HR value
(Auvinet et al., 2002). If, however, acceleration signals repeat as
multiples of odd numbers then they are considered irregular and
“out of phase” resulting in a smaller HR value (Auvinet et al.,
2002). Overall, stability of an individual’s walking pattern is then
determined as a ratio of the summed amplitudes of the even to
odd harmonics. In contrast to the AP and VT direction, rhythmic
and stable acceleration signals in the mediolateral direction are
characterized by multiples of odd numbers (Yack and Berger,
1993; Auvinet et al., 2002; Lowry et al., 2009, 2012). This is due
to the fact that during heel strike, the COM is shifted in the
frontal plane to the contralateral limb during stepping causing a
monophasic, as opposed to biphasic, acceleration pattern during
weight transfer in the double support phase (Auvinet et al.,
2002).

Harmonic ratios, although grounded in a logical framework,
is still an emerging method for quantifying walking stability. Of
the publications found, conflicting evidence exists regarding HR’s
ability to differentiate trunk accelerations between demographics.
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For instance, Auvinet et al. (2002) and Lowry et al. (2012)
demonstrated no differences between healthy young and elderly
adults when participants walked at preferred walking speeds
(Auvinet et al., 2002; Lowry et al., 2012). However, Bisi and Stagni
(2016) reported a lower HR in the trunk’s vertical accelerations
for elderly adults over the age of 80 years old (Bisi and Stagni,
2016). Similarly, Yack and Berger (1993) found differences in
the HR’s of the anteroposterior and vertical accelerations in
their “unstable” elderly participants compared to “stable” elderly
and young adults (Yack and Berger, 1993). In opposition to the
aforementioned studies, Kavanagh et al. (2005) demonstrated
that elderly adults over the age of 70 years old exhibited lower
HR’s only in the trunk’s mediolateral accelerations (Kavanagh
et al., 2005). Furthermore, although still limited in the amount of
research available, current evidence indicates a similar disparity
in the trunk HR’s for PD individuals. Indeed, two studies
demonstrated lower trunk HRs for PD individuals compared
to age-matched controls (Latt et al., 2009; Lowry et al., 2009).
However, Lowry et al. (2009) reported lower HRs only in the
mediolateral direction while PD participants in the study by Latt
et al. (2009) had lower trunk HRs in all three movement planes
(Latt et al., 2009; Lowry et al., 2009). Additionally, the authors
reported differences between PD fallers and non-fallers in the
anteroposterior and vertical planes (Latt et al., 2009).

Theoretically, rhythmic trunk accelerations indicate that the
COM progresses between stance limbs along a smooth controlled
trajectory (Auvinet et al., 2002). Control of the COM along
the AP direction is considered largely “passive” as the COM’s
forward and downward momentum begins the stepping action
with guiding input derived from the somatosensory system
and subcortical cortical structures (Bauby and Kuo, 2000).
Contrastingly, ML control is considered “active” as supraspinal
input is required to determine lateral lower limb placement
to stabilize the COM in this plane (Bauby and Kuo, 2000).
Irregular COM acceleration may indicate an impairment in
either the “passive” or “active” mechanisms responsible for COM
movement. However, the disparity in the current literature
makes it difficult to establish if and where impairments in
trunk accelerations occur in elderly non-fallers, fallers and
PD individuals. This disparity likely arises from the various
methodologies used in each study. For instance, one issue arises
from quantifying accelerations at different areas of the trunk. For
instance, Yack and Berger (1993) as well as Mazzà et al. (2008)
calculated HRs based on upper trunk accelerations (Yack and
Berger, 1993; Mazzà et al., 2008). Contrastingly, Latt et al. (2009)
and Brach et al. (2010) based their calculations on lower trunk
accelerations (Latt et al., 2009; Brach et al., 2010). In a literature
review, Winter (1995) collected evidence demonstrating that
accelerations decreased in amplitude if measured on the upper
trunk instead of the lower trunk (Winter, 1995). The author
proposed that this is a stability mechanism whereby the
neuromuscular system reduces perturbation amplitudes as they
propagate toward the head in order to stabilize the visual
field. As such, acceleration profiles between studies may not
be comparable depending on whether the authors examined
upper or lower trunk accelerations. A second cause for the
lack of uniformity is caused by the different criteria used for

participants. Auvinet et al. (2002) suggested that the inclusion
criteria for participants, even within a specific demographic,
will affect their gait performance (Auvinet et al., 2002). Future
research should consider for example recording participants’
activity level, fall history, and fear of falling level as these have
been demonstrated to affect gait parameters and may potentially
influence an individual’s trunk acceleration patterns (Hausdorff
et al., 1997; Toebes et al., 2012, 2015). Finally, it is important to
consider that Harmonic Ratios do not directly quantify the COM
in relation to the stability limits of the base of support (the lower
extremity). As such, it is difficult to discern when altered trunk
accelerations cause the COM to approach the base of support’s
stability limits.

Extrapolated Center of Mass
In classical biomechanics, walking stability is defined as
maintaining the COM within a series of unilateral stances (Pai
and Patton, 1997). Therefore, the COM’s position in relation
to the stability regions of the stance limb (range of the Center
of Pressure) has been used as a method for measuring stability
(Pai and Patton, 1997). However, Hof et al. (2005) suggested
that quantification of COM-COP position alone is insufficient
for assessing dynamic balance (Hof et al., 2005). The authors
demonstrated that although the COM may lie outside the base
of support, stability can be achieved if the COM velocity is
directed toward the COP (Hof et al., 2005). Therefore, to
accurately quantify dynamic balance, the Extrapolated Center of
Mass (xCOM) was proposed as a single parameter that assesses
both COM position and velocity in relation to the base of
support (COP) (Hof et al., 2005). Stability is then determined
by quantifying the distance between the xCOM and the base of
support. Within the literature, a shorter xCOM-BOS distance
indicates greater stability as the COM’s dynamic state lies closer
to the Base of Support’s boundaries (Lugade et al., 2011; Süptitz
et al., 2012; Mademli and Arampatzis, 2014; Fujimoto and Chou,
2016; Yang and King, 2016). Typically, the xCOM is quantified
at heel-strike and toe-off as these points are considered more
unstable due to the transfer of the COM between limbs over a
smaller base of support (Lugade et al., 2011; Fujimoto and Chou,
2016; Yang and King, 2016).

When examining this method, a consistent pattern emerges
when elderly fallers are compared to elderly non-fallers and
healthy young adults. Indeed, both Lugade et al. (2011) as well
as Fujimoto and Chou (2016) demonstrated that elderly fallers
ambulate with a reduced xCOM-BOS distance compared to the
other two age demographics in the sagittal plane (Lugade et al.,
2011; Fujimoto and Chou, 2016). Less consistent differences were
reported between elderly non-fallers and young adults (Lugade
et al., 2011; Mademli and Arampatzis, 2014; Fujimoto and Chou,
2016). Indeed, Lugade et al. (2011) reported no differences
between elderly non-fallers and young adults, however, both
Fujimoto and Chou (2016) as well as Mademli and Arampatzis
(2014) found that elderly adults walked with a reduced xCOM-
BOS distance compared to younger controls (Lugade et al., 2011;
Mademli and Arampatzis, 2014; Fujimoto and Chou, 2016).
Additionally, Fujimoto and Chou (2016) demonstrated that
when the xCOM was derived from the COM’s acceleration data
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elderly non-fallers had even greater reductions in xCOM-BOS
distances compared to young adults(Fujimoto and Chou, 2016).
The authors suggested that acceleration may be more sensitive to
age-related differences and that the altered acceleration profiles
indicate an inability to control the COM’smomentum to preserve
balance (Fujimoto and Chou, 2016). Interestingly, out of all
the included publications, only Lugade et al. (2011) examined
mediolateral xCOM-BOS, despite instability in this plane being
closely associated with increased fall risk, and reported no
differences between elderly fallers, non-fallers and young adults
(Lugade et al., 2011).

In general, findings in the AP direction indicate that elderly
fallers employ a strategy to keep the xCOM closer to their
base of support’s boundaries(Lugade et al., 2011; Fujimoto
and Chou, 2016). Current evidence demonstrates that elderly
adults, particularly fallers, modify their gait, compared to young
adults, by reducing their walking velocity and stride length,
and increasing step width (Maki, 1997; Herman et al., 2005).
The combination of these modifications has been termed as
the “cautious gait strategy” (Maki, 1997; Herman et al., 2005).
Yang and King (2016) proposed that individuals implement
this strategy to control the COM’s dynamic state in order to
more readily return the COM within the Base of Support in a
potential balance loss (Yang and King, 2016). However, “cautious
gait” does not explain the lack of differences found in the
mediolateral direction. Although increasing step width would
increase an individual’s lateral base of support, previous research
demonstrates that this action simultaneously increases trunk
acceleration and velocity (Rosenblatt and Grabiner, 2010). This
in turn only maintains an individual’s already existing frontal
plane balance instead of enhancing it (Rosenblatt and Grabiner,
2010).

When quantifying walking stability with the xCOM several
limitations should be considered. For instance, a paradox exists
within the xCOM theoretical definition and what is reported
in the literature. According to the evidence, an individual is
considered more stable when the xCOM is closer to their BOS
(Lugade et al., 2011; Süptitz et al., 2012;Mademli andArampatzis,
2014; Fujimoto and Chou, 2016; Yang and King, 2016). However,
based on the publications found, the demographic that displayed
the closest xCOM-BOS distance were elderly fallers (Lugade
et al., 2011; Fujimoto and Chou, 2016). In contrast, healthy
young individuals consistently exhibited the largest xCOM-BOS
distance compared to both elderly non-fallers and fallers (Lugade
et al., 2011; Mademli and Arampatzis, 2014; Fujimoto and Chou,
2016). As such, the current definition of stability for the xCOM
is counterintuitive as elderly individuals are established to have
a substantially increased fall risk, particularly if a history of
falling exists (Hausdorff et al., 1997, 2001). Lugade et al. (2011)
proposed the possibility that an increased xCOM-BOS may
indicate increased stability as an individual can handle more
dynamical states of the COM (Lugade et al., 2011). In addition
to this paradox, the xCOM is only capable of assessing COM
velocity and position in relation to the base of support at discrete
time points and is therefore incapable of determining temporal
effects on these variables. Furthermore, this method is based
on the inverted pendulum theory and does not account for the

effects of segments that are not represented in this model (Hof
et al., 2005). Lastly, there appears to be an inconsistency in how
authors define the base of support in their studies. When Hof
et al. (2005) proposed the xCOM the authors defined the BOS
as the range of the COP (Hof et al., 2005). However, several
publications neglected to report how they defined the BOS or
provided alternatives to this method. A clear and standardized
definition of the BOS would be beneficial when examining
xCOM-BOS distance.

Unperturbed Walking Summary
Falling is one of the primary concerns for individuals with
Parkinson’s Disease and their caregivers. Therefore, there is a
need for methods that can identify both individuals with fall
risk and provide information on the neuromuscular system’s
impaired stability mechanisms. However, when examining the
different quantification methods, it is important to consider how
one defines stability. Indeed, this definition is crucial as it affects
which anatomical structures are quantified (the lower or upper
extremity), the quantification method itself, and the associated
implications for motor control.

During walking, each extremity has a unique role that is
controlled by different neuromuscular parameters. For instance,
previous research proposed that CPG’s control lower limb
movement during walking (Hausdorff, 2009). Thus, lower
extremity based methods may reflect the CPG’s ability to control
the stride-to-stride sequence. Evidence from spatiotemporal
variability and detrended fluctuation analysis suggest that healthy
adults are capable of stepping consistently (spatial variability),
rhythmically (temporal variability) and in a correlated (DFA)
manner culminating in regular stepping. In PD, however, these
stepping processes are impaired to a degree beyond aging’s
effects. Indeed, compared to elderly adults, PD individuals walk
with increased spatiotemporal variability and reduced long-range
correlations. Plotnik and Hausdorff (2008) suggested that this
increased variability is caused by impaired CPG output in this
demographic (Plotnik and Hausdorff, 2008).

However, upper extremity stability may be controlled by
alternative mechanisms. To accurately control the trunk during
walking the neuromuscular system integrates multiple sensory
systems to provide feedback information (Horak, 2006). As
such, methods that quantify stability based on upper extremity
parameters (Lyapunov Exponent, Floquet Multipliers, Harmonic
Ratios) may reflect trunk stability mechanisms. The evidence
from these various methods indicate that elderly adults are less
capable of maintaining trunk stability compared to younger
adults. Although still limited in research, thesemethodsmay hold
direct implications for PD individuals due to their impairment in
processing sensorimotor feedback.

Additionally, each quantification method reflects a unique
aspect of neuromuscular control. For instance, both the
Coefficient of Variation and DFA quantify variability in the
lower extremity. However, the former quantifies variability
magnitude while the latter quantifies variability in terms of its
temporal structure. Hausdorff (2009) noted the magnitude and
the temporal structure are two distinct characteristics and the
value of each is independent of the other (Hausdorff, 2009).
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Similarly, Kang and Dingwell (2009) suggested that FM and the
Lyapunov Exponent quantify different aspects of neuromuscular
control as the upper extremity was more orbitally unstable and
locally stable in both healthy young and older adults (Kang
and Dingwell, 2009). Both methods quantify the divergence
or convergence of variability in its own manner but are each
based on specific assumptions about the investigated system.
Finally, HRs and the xCOM both quantify the COM’s kinematic
state in relation to the base of support. However, HRs quantify
stability through the trunk’s cyclical movement, while the xCOM
quantifies the trunk’s motion state to the stability range of the
base of support. As such, HRs represent an individual’s ability to
synchronize changes in trunk mechanics with that of the lower
extremity. On the other hand, the xCOM indicates one’s ability to
withstand more dynamic conditions of the COM.

Overall, it appears that a certain amount of variability
exists in the neuromuscular system and alterations outside this
range increases fall likelihood. It is clear that aging and PD
affect variability in some form indicating an altered capacity
to process sensorimotor input, maintain rhythmical movement
and execute corrective strategies. As walking is a complex skill
requiring multiple neuromuscular control aspects and sensory
input, implementing a single method to quantify stability is
insufficient to reflect overarching balance impairment issues.
Although all quantification methods have a grounded theoretical
framework, additional research is necessary to determine their
ability to predict fall risk in elderly and PD individuals. Indeed,
only the Coefficient of Variation included studies that examined
the differences between fallers and non-fallers prospectively
thereby demonstrating its robustness in future fall prediction.
Although methods, such as the Lyapunov Exponent, xCOM,
and HR’s examined differences between fallers and non-fallers,
they did so retrospectively. Therefore, it is unclear whether these
differences lead and caused the fall or if they arose only after
fall onset. Thus, future research should consider prospectively
examining potential differences within these demographics to
determine each method’s ability to predict falls. As elderly and
PD individuals that have sustained a fall are at the greatest risk
for future falls, quantifying dynamic stability with the Coefficient
of Variation would assist clinicians in the early identification of
individuals with unstable gait prior to fall onset. Additionally,
implementing the Coefficient of Variation would assist clinicians
in determining which aspect (passive or active mechanisms)
are contributing to individuals’ unstable gait. This subsequently
would aid in the development of tailored gait therapy programs.

Perturbed Walking Methods
Extrapolated Center of Mass
The xCOM was proposed as a single parameter that accounts for
both the COM’s position and velocity together (Hof et al., 2005).
Previous research demonstrated that the Central Nervous System
is capable of proactively and reactively adapting the COM’s
motion state (position and velocity) in relation to the BOS before
and after perturbations (McAndrew Young et al., 2012; Wang
et al., 2012; Yang and Pai, 2013). These adaptations are theorized
to reflect an individual’s feedforward (proactive) and feedback

(reactive) mechanisms to maintain and return the COM’s to a
stable motion state (Wang et al., 2012; Yang and Pai, 2013).

Wang et al. (2012) demonstrated that in response to
tripping, young adults reactively reduce their COM velocity
while simultaneously shifting it posteriorly (Wang et al., 2012).
This adaptive response would bring the perturbed COM’s
motion state closer toward the BOS and would help neutralize
the trunk’s forward angular momentum induced by the trip.
Additionally, the authors demonstrated that after repeated trip
exposure, young adults proactively reduced their COM velocity
in anticipation of the upcoming trip (Wang et al., 2012).
Similarly, Yang et al. (2014) demonstrated that young adults
proactively and reactively shift their COM forward and reduced
its velocity in response to induced slips (Yang et al., 2014).
However, the aging process appears to have detrimental effects
on an individual’s ability to engage in adaptive responses. Indeed,
McCrum et al. (2016) found a reduced rate of adaptation in
elderly adults, compared to young and middle-aged, during
the onset of initial perturbations (McCrum et al., 2016). The
authors suggested that the reduced adaptation rate increases
fall risk in this demographic when exposed to continuous
perturbations, such as uneven walking surfaces. However, the
authors further demonstrated that after multiple perturbation
exposure, elderly adults exhibited the same adaptationmagnitude
as the young and middle-aged groups. This finding indicates
that aging affects the feedback mechanisms responsible for
perturbation onset recognition, which in turn delays their
response in executing adaptation strategies (McCrum et al.,
2016). In contrast, it appears that feedforward mechanisms
remain largely intact over the course of aging as no differences
were found between age groups after repeated perturbation
exposure (McCrum et al., 2016). Current evidence suggests that
reactive adaptations differ from proactive ones in that they
are rapidly executed in response to afferent input (Yang et al.,
2014). However, despite the unpredictability of perturbations
outside a laboratory setting, previous research demonstrated
that feedforward mechanisms can facilitate feedback-controlled
recovery mechanisms (Yang et al., 2014; McCrum et al., 2016).
Yang et al. (2014) demonstrated that in anticipation to upcoming
slips, young adults proactively implemented a “cautious gait”
strategy that causes their COM position to be shifted anteriorly
and reduce their COM velocity (Yang et al., 2014). Furthermore,
Yang and Pai (2013) demonstrated that elderly adults exhibited
similar proactive adaptations after exposure to repetitive slips
that reduced post-training the percentage of falls in their sample
during a novel slip (Yang and Pai, 2013). It is well-established in
the literature that this “cautious gait” strategy is a characteristic
feature in elderly adults during unperturbed walking conditions
(Maki, 1997; Herman et al., 2005). Thus, it is plausible that
this may be an implemented strategy that attempts to facilitate
feedback recovery mechanisms, through proactive adaptations,
in the event of a potential environmental perturbation.

One limitation that must be considered when interpreting
xCOM results from perturbation studies is the lack of uniformity
as to how the COM’s motion state is defined. Several researchers
reported the COM’s position and velocity in relation to the
BOS separately as opposed to a single measure. We chose to
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include these authors in this section as both position and velocity,
in relation to the BOS, are the two necessary components for
the xCOM and still provide an adequate representation of an
individual’s balance recovery mechanisms. However, differences
between individuals may be more distinct when both COM
position and velocity are combined as indicated by previous work
(Fujimoto and Chou, 2016).

Lyapunov Exponent
Compared to unperturbed walking, relatively few articles were
found that met this systematic review’s inclusion criteria
when examining the effect of perturbations on the Lyapunov
Exponent’s calculation of Local Dynamic Stability. Indeed, of
the studies found, three examined the effect of minor surface
perturbations and one examined an induced slip on participants’
Local Dynamic Stability (Chang et al., 2010; McAndrew et al.,
2011; Sinitksi et al., 2012; Yang and Pai, 2014). However,
similar to unperturbed conditions, results from perturbation
publications yield conflicting evidence.

For instance, McAndrew et al. (2011) reported that young
adults had reduced Local Dynamic Stability (LDS), depicted by
an increased Lyapunov Exponent, in all three cardinal planes
(AP, ML, and VT) when perturbed by surface oscillations during
walking (McAndrew et al., 2011). Additionally, the authors
demonstrated that reductions in LDS were greatest when the
Lyapunov Exponent was calculated in the same plane that
the oscillation occurred in McAndrew et al. (2011). Similarly,
Sinitksi et al. (2012) examined the effect between increasing
amplitudes in ML surface oscillations and overground walking,
and demonstrated that young adults were more unstable during
perturbed trials than unperturbed but maintained LDS levels
between oscillation amplitudes (Sinitksi et al., 2012). In contrast
to these findings, no differences between surface conditions
were found by Chang et al. (2010) when examining compliant
foam surface and overground conditions (Chang et al., 2010).
Furthermore, Yang and Pai (2014) demonstrated that LDS had
a low ability in predicting falls from an induced slip in elderly
adults (Yang and Pai, 2014).

Several methodological differences, in addition to the
limitations mentioned previously, may account for the
variable findings between studies. For instance, induced
perturbations varied in type, intensity, and in their cardinal
direction. In a literature review, Marigold and Misiaszek
(2009) provided evidence that the neuromuscular system
employs biomechanical recovery strategies that are specific
to the encountered perturbation to maintain walking balance
(Marigold and Misiaszek, 2009). Therefore, differences between
Lyapunov Exponent values may reflect the various balance
responses elicited by these specific perturbations. Additionally,
these findings may indicate that certain walking conditions
are more destabilizing to human walking than others. Indeed,
Sinitksi et al. (2012) discussed the possibility that perturbation
type has greater implications for walking stability than changes
in perturbation amplitude (Sinitksi et al., 2012). However,
previous research suggests that the Lyapunov Exponent has
limited sensitivity in detecting local dynamic stability changes
between various walking conditions due to the unstandardized

methodology in its calculation (Bruijn et al., 2009b; Stenum et al.,
2014). Furthermore, of the included publications, the Lyapunov
Exponent was calculated based on trunk accelerometer data
(Chang et al., 2010; McAndrew et al., 2011; Sinitksi et al., 2012;
Yang and Pai, 2014). However, placement of the accelerometer
varied between the Lumbar and Cervical regions amongst
studies. As current evidence demonstrates that acceleration
magnitudes diminish in superior trunk segments, this would
affect the rate of divergence quantified by the Lyapunov
Exponent thereby diminishing comparability between studies
(Winter, 1995). Finally, the Lyapunov Exponent is only capable
of quantifying a trajectory’s divergence rate after infinitesimal
perturbations (Bruijn et al., 2013). Thus, larger perturbations
(trips or slips), may not be quantifiable with this method as they
destabilize an individual globally (Bruijn et al., 2010a; Yang and
Pai, 2014).

Floquet Multipliers
Maximum Floquet Multipliers measures a system’s convergence
toward or divergence from a nominal (average) gait cycle
due to neuromuscular noise or small environmental
perturbations (Bruijn et al., 2013). Therefore, the majority
of perturbation research on FM concentrates on the effect
small surface perturbations, as opposed to trips or slips,
has on an individual’s orbital stability (McAndrew et al.,
2011; Sinitksi et al., 2012; Yang and Pai, 2014). However, it
is important to note that although a substantial amount of
perturbation research was conducted on FM through modeling
and robotics studies, relatively few experimental articles exist by
comparison.

Of the studies included, two examined the effect small
surface oscillations had on the trunk’s orbital stability while one
article examined FM’s fall-predictive ability after an induced
slip (McAndrew et al., 2011; Sinitksi et al., 2012; Yang and
Pai, 2014). In a study of AP and ML surface oscillations on
trunk orbital stability, McAndrew et al. demonstrated that heathy
young adults became less orbitally stable in the direction of
the induced oscillation (McAndrew et al., 2011). Additionally,
the authors reported that participants were more sensitive
to ML oscillations as the direction specific effects on trunk
orbital stability were greatest in this direction (McAndrew et al.,
2011). Indeed, Kuo (1999) demonstrated that humans are more
unstable in the ML direction during walking (Kuo, 1999).
Additionally, current literature has established that increased
ML instability is closely linked with fall risk (Porter and
Nantel, 2015). However, it is unclear how strong a destabilizing
effect an individual can withstand before orbital stability is
lost and a fall ensues. Sinitksi et al. (2012) reported that
increasing surface oscillation amplitudes in the ML direction
reduced orbital stability in the same direction in healthy young
adults (Sinitksi et al., 2012). Additionally, the authors further
stated decreases in orbital stability were marginal despite being
statistically significant, therefore perturbation type may be
more critical than magnitude (Sinitksi et al., 2012). This may
explain findings by Yang and Pai (2014) who demonstrated
that FM had a low predictive ability in differentiating fallers
from non-fallers from an induced slip (Yang and Pai, 2014).
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However, an alternative explanation may account for these
findings. As previously stated, FM are a measure of a systems
convergence of divergence from a nominal period (average gait
cycle; Bruijn et al., 2013). If FM quantify the neuromuscular
system’s capacity to modulate the continuous rise in deviations,
as suggested by Granata and Lockhart (2008), it may be unable
to detect large instantaneous stability threats, such as trips
or slips (Granata and Lockhart, 2008). Overall, experimental
perturbation research on FM are limited and further research is
necessary to determine its suitability in quantifying perturbations
effects.

Perturbed Walking Summary
Slips, trips, and uneven terrain pose a substantial threat
to walking stability and account for more than a quarter
of all falls in elderly adults. In response to perturbations,
current evidence demonstrates that the neuromuscular
system employs several proactive and reactive strategies to
return the individual to a state of stability (Yang et al., 2014,
2016). However, the effectiveness of these strategies may
deteriorate over the course of aging and in the presence of PD
(McCrum et al., 2016). Therefore, determining appropriate
methods that can quantify an individual’s stability when
encountering a perturbation are necessary to provide
information into the capability of impaired neuromuscular
functioning (aging and PD) in returning to a state of
stability.

Previous research indicates that the neuromuscular system
employs biomechanical recovery strategies that are specific to
the encountered perturbation (Marigold and Misiaszek, 2009).
As such, the types of perturbations, along with their associated
recovery strategies, likely elicit different effects on dynamic
stability measures and are likely non-comparable. Additionally,
based on their theoretically framework, each quantification
method may measure a distinct aspect of neuromuscular
recovery. For instance, Floquet Multipliers and the Lyapunov
Exponent measure convergence/divergence of a system’s
trajectory after infinitesimal perturbations and, therefore,
may reflect smaller and more fine-tuned neuromuscular
strategies to attenuate these miniscule deviations to a system‘s
trajectory (Bruijn et al., 2013). Contrastingly, the xCOM may
reflect larger strategies that preserve global stability through
the aforementioned feedforward and feedback mechanisms
(Yang et al., 2014).

Overall, it is clear that the perturbation type, quantification
method utilized, and an individual‘s stability state prior
to perturbation onset are critical factors when assessing
perturbations‘ threat to walking balance. Interestingly, during the
course of this literature review, a limited amount of research
met our inclusion criteria when examining perturbations on
PD individuals. Furthermore, no studies included examined
differences in recovering dynamic stability in fallers compared
to non-fallers. Previous research suggests that aging does not
affect all individuals uniformly and fallers have altered motor
control output that is similar to that of clinical populations
(Hausdorff et al., 1997). Therefore, future research should

consider examining recovery strategies in both fallers and PD
individuals as their perturbation responses are plausibly altered
compared to age matched controls. This is particularly important
as both groups are continuously reported to have a high fall-risk
(Bloem et al., 2004; Canning et al., 2014). Additionally, based
on the included articles, it appears that methods stemming from
Dynamical Systems Theory (Lyapunov Exponent and Floquet
Multipliers) are limited in assessing the effects of perturbations.
However, Bruijn et al. suggested that the stability state of the
system (the individual) prior to a perturbation may affect the
perturbation’s destabilizing effects (Bruijn et al., 2010a). As such,
future research should consider examining how much dynamical
stability a system must exhibit to minimize destabilizing forces
and whether this is altered in fallers and PD individuals.
Furthermore, it is unclear how long it takes an individual (young,
elderly, and PD) to return to a stability state post-perturbation.
Thus, current clinicians should consider implementing the
xCOM to quantify individuals’ responses to perturbations. In
doing so clinicians could not only determine potentially impaired
feedback responses but also develop programs that facilitate
the training of feedforward mechanism to reduce falls from
perturbations.

LIMITATIONS

Several limitations should be considered when interpreting
the results of this review. For instance, we did not examine
differences between overground and treadmill walking, which is
demonstrated to affect several dynamic balance measurements.
Additionally, we did not examine dual-tasking or feedback
paradigms which provide valuable information into gait’s
cognitive and motor control processes. Furthermore, we did
not examine differences between freezer and non-freezers or
between ON and OFF medications both of which have been
demonstrated to affect dynamic balance in this demographic.
Additionally, findings from perturbed evidence in this literature
should be considered with some limitations. First, relatively few
articles that examined perturbation effects on Floquet Multipliers
and the Lyapunov Exponent were found, due to the relatively
new application of these methods to perturbation paradigms.
As such, both methods warrant further investigation in the field
for more in-depth conclusions. Secondly, we only examined
mechanical perturbation literature and did not include sensory
perturbations in our synthesis. Furthermore, limited research was
present that examinedmechanical perturbations’ effects on fallers
and PD individuals. As such, additional research is required to
examine perturbation response strategies in both demographics.
Additionally, as most of the articles had a low score on the Downs
and Black checklist, this may have introduced unintended bias
into our assessment when interpreting the results.

CONCLUSION

After examination of the evidence, it appears that each
quantification method provides unique information into
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dynamic stability control, or lack thereof, in young, elderly
and PD adults. Therefore, several considerations should be
given when selecting a quantification method as they each
appear to reflect a unique aspect of neuromuscular control,
which when impaired may contribute to falling in elderly
and PD individuals. Considerations, such as the walking
condition, perturbation type and magnitude, as well as if the
upper or lower extremity should be quantified. Based on the
evidence, future clinicians and researchers should consider the
method of quantification carefully as to reflect the aspect of
neuromuscular control that they wish to examine. Additionally,
clinicians should consider using the Coefficient of Variation
and the Extrapolated Center of Mass when, respectively,
examining unperturbed and perturbed walking conditions in
their clients. The articles examined indicate that the Coefficient
of Variation is the most supported method in predicting future
falls during unperturbed walking. While the Extrapolated
Center of Mass provides a robust indication to the effectiveness
of perturbation response strategies. As such, both methods
can provide not only a robust quantitative assessment for fall
risk but also insight into impairments to gait’s motor control
mechanisms.
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