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Abstract

The dynamics of tumor progression is driven by multiple factors, which can be exogenous to

the tumor (microenvironment) or intrinsic (genetic, epigenetic or due to intercellular interac-

tions). While tumor heterogeneity has been extensively studied on the level of cell genetic

profiles or cellular composition, tumor morphological diversity has not been given as much

attention. The limited analysis of tumor morphophenotypes may be attributed to the lack of

accurate models, both experimental and computational, capable of capturing changes in

tumor morphology with fine levels of spatial detail. Using a three-dimensional, agent-based,

lattice-free computational model, we generated a library of multicellular tumor organoids,

the experimental analogues of in vivo tumors. By varying three biologically relevant parame-

ters—cell radius, cell division age and cell sensitivity to contact inhibition, we showed that

tumor organoids with similar growth dynamics can express distinct morphologies and pos-

sess diverse cellular compositions. Taking advantage of the high-resolution of computa-

tional modeling, we applied the quantitative measures of compactness and accessible

surface area, concepts that originated from the structural biology of proteins. Based on

these analyses, we demonstrated that tumor organoids with similar sizes may differ in fea-

tures associated with drug effectiveness, such as potential exposure to the drug or the

extent of drug penetration. Both these characteristics might lead to major differences in

tumor organoid’s response to therapy. This indicates that therapeutic protocols should not

be based solely on tumor size, but take into account additional tumor features, such as their

morphology or cellular packing density.

Author summary

Primary tumors and tumor metastases grow as three-dimensional (3D) masses of cells.

Depending on the surrounding stroma, they may acquire various shapes, more or less

irregular. Tumor organoids are the 3D experimental cultures that mimic growth of in

vivo tumors, as well as their response to treatments. However, it is difficult to assess
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experimentally in a reproducible and quantitative way, how tumor morphology influences

treatment efficacy. Here, we used mathematical modeling and computer simulations to

analyze the structure of the simulated organoids and to classify them with regards to two

quantitative features: the tumor accessible surface area (ASA) describing organoid expo-

sure to the drug and the extent of drug penetration through the tumor tissue (organoid

compactness). We showed that organoids of similar sizes and growth dynamics can, in

fact, be characterized by distinct values of compactness and ASA, and thus may respond

differently to the drug treatment. We suggest that these tumor features should be taken

into consideration in addition to tumor size, when the therapeutic interventions are

designed.

Introduction

Organoid cultures are the three-dimensional (3D) in vitro experimental systems in which indi-

vidual cells grow and self-organize into multicellular structures that recapitulate the morphol-

ogy and, to some extent, the functionality of the organ from which they are derived [1, 2]. The

complexity of organoid structure rises from single-layered hollow spherical breast or prostate

acini [3, 4] to the branched breast or salivary ducts [5, 6] to the multilayered colon polyps [7]

or brain lobules [8]. These in vitro cultures are utilized to address a wide range of biological

questions, such as testing the mechanisms of tissue development and homeostatic mainte-

nance and the initiation of malignant transformations and cancer growth dynamics, as well as

anti-cancer treatments [9–11]. The Nature Publication Group recognized the novelty and

importance of the organoid culture system by naming the organoid experiments as the

Method of the Year in 2017. Tumor organoids can be derived either from tumor cell lines or a

patient’s tumor cells. They are used as tumor surrogates, as they resemble the biological and

biophysical features of tumors and metastases better than 2D cell cultures. Also, these in vitro

cultures can be controlled more efficiently than mouse experiments. Various tumor types can

be currently cultured as organoids, including pancreatic [12], liver [13], gastrointestinal [14],

prostate [15], brain [16] or breast [17] tumors. Tumor organoids can acquire diverse morphol-

ogies even if they are derived from the same organ. Kenny et al. showed that tumor organoids

derived from twenty-five different breast cancer cell lines developed into four different multi-

cellular shapes (round, mass, grape-like and stellate) after four days in culture [18]. Harma

et al. obtained similar results for organoids derived from prostate cancer cell lines [19]. This

morphological diversity may arise due to intrinsic differences, including distinct genetic pro-

files [20, 21], or extrinsic factors, such as various oxygenation levels or the extracellular matrix

composition [22, 23].

Tumor organoids have also been a subject to mathematical modeling. Various modeling

frameworks were employed to investigate organoid development, metabolic variability and

interactions with other components of tumor microenvironment. These include cellular

automata models [24–27], particle-force models [28–30], Cellular Potts models [31–33], con-

tinuous models [34] and our own immersed boundary model [35, 36]. Our recent review [37]

provides more details on these models and summarizes latest achievements in the mathemati-

cal modeling of tumor organoids. The model presented here was first developed in [38] and

belongs to the class of particle-force models. The novelty of our studies lies in considering

quantitatively a range of biologically relevant features to simulate a library of heterogeneous

tumor organoids, and in developing new methods to quantify organoids’ properties and their

potential response to drugs.
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There is a growing interest in using tumor organoids for drug screening in order to design

more effective treatment combinations and schedules [39–41]. In a typical drug screening

experiment, the drug is dissolved in a medium that surrounds the growing organoid and drug

effectiveness is evaluated based on the changes in organoid size that are recorded over time.

Usually, the bright field images of tumor organoid cross sections are used to determine two

diameter measurements, the longest distance between opposite sides of the tumor (length, L)

and the distance between tumor sides taken along the perpendicular direction (width, W).

Subsequently, these values are used to report either the average tumor diameter (W+L)/2,

tumor area W�L, or tumor volume (L�W�W)/2 [42]. These measurements reflect well the

changes in the tumor mass if the organoids are of spherical shape. However, since organoid

morphologies are often irregular and deviate from a sphere, this approach can lead to an inac-

curate assessment of the organoid’s area or volume and, consequently, an incorrect measure of

the organoid’s response to treatments. To avoid this discrepancy, a perimeter was proposed to

better approximate the organoid’s volume from the 2D images [43]. These different morpho-

logic measurements (diameter, perimeter, area or volume) were incorporated into the auto-

matic analyses and classifications of tumor morphologies [44, 45]. However, despite the

technical and computational advances engaged in comparing tumor morphological features

and their effects on drug exposure, many aspects related to tumor compactness and circularity

remain elusive. Therefore, novel methods for assessing how tumor morphophenotypic proper-

ties impact drug dose estimation and therapy responses, which depart from evaluations based

on organoid’s diameter, would provide a valuable independent prognostic factor.

In this study, we generated a large number of in silico organoids, all with similar growth

dynamics that fit the same set of tumor diameter measurements. In order to avoid effects of

nutrient diffusivity limits, we restricted our simulations only to the initial phase of organoid

development when the simulated structures are less that 150 microns in radius. Larger orga-

noids may develop internal regions of hypoxia and necrosis that could influence the efficacy of

administered treatments. We showed that the organoids we simulated attained morphologies,

which can be classified into four groups (morphophenotypes) that describe organoids expo-

sure to and penetration by the drug and, consequently, their potential response to the treat-

ment. Since assessments of tumor diameter are often under- or overestimated, our

classification methods are diameter-free but take advantage of organoid compactness and cir-

cularity measurements. The in silico organoids were simulated using the 3D framework, Mul-
tiCell-LF (the Multi-Cellular Lattice Free framework), by varying three biologically-relevant

parameters: cell age at division (Adiv), cell contact inhibition controlled by the number of sur-

rounding neighbor cells (Nneigh) and the maximal cell radius (Rmax). The considered ranges of

these parameters cover the biological features of distinct cell types [20, 46, 47] grown in various

microenvironments [19, 20, 22, 46, 47]. The library of organoid morphologies generated from

the sampled parameter space was categorized into morphophenotypic classes, and the impact

of each parameter on tumor morphology was evaluated. Additionally, we used two metrics

originating from the proteins’ structural biology, i.e., the radius of gyration (RGYR) and the

accessible surface area (ASA), [48–51], as the principal classification criteria. They together

provided comprehensive and diameter-free analysis that may help identify the presence of

patches, buried niches and extended chains, as well as compact or loose tumor masses that

may change how receptive to the treatment the organoid is. The idea behind this approach is

to use mathematical modeling and computer simulations to delineate the basic principles of

global and local features of tumor organoid organization and, to quantify irregularities in orga-

noid morphology. Our long-term goals are to apply this in silico screening approach to the

experimental tumor organoids grown in diverse microenvironmental conditions and to test

hypotheses suggesting improvements in cancer treatment. Here, we present the first step in

Morphophenotypes of tumor organoids
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this direction by applying our classification criteria to the computer-generated organoid

morphologies.

Methods

Computational MultiCell-LF model

Individual cells. The off-lattice, agent-based model is used to define individual cells and

their physical interactions. Each cell Ci is represented in the 3D space by its centroid (cell

nucleus) with coordinates Xi and a current cell radius Ri that changes during cell growth from

0.65Rmax at its birth to the maximal value Rmax when the cell is mature. Each cell lifespan is

traced with an individually regulated cell cycle, the current cell age Ai and the cell division age

Ai,div at which the cell is ready to divide. However, the cell proliferation process can be halted

due to contact inhibition that is defined by the number of the cell’s immediate neighbors Ni. If

Ni exceeds the prescribed number Nneigh, the cell remains quiescent until this condition

changes. Cells interact physically with their neighbors via repulsive-adhesive forces. Repulsive

forces ensure that each cell’s volume is preserved by pushing the neighboring cells apart if they

come too close. Adhesive forces allow for the formation of compact, multicellular organoids

by providing physical links between individual cells. All cell-cell interactions are defined

locally between individual cells, and the overall tumor growth dynamics and morphology are

the emergent properties of the collective actions of many individual cells.

Cell-cell repulsions. Each cell has a volume that is maintained during its lifetime. If the

neighboring cells Ci and Cj come into contact, i.e., if the distance between the cells’ nuclei is

less than the sum of the cells’ current radii Ri + Rj, they push each other away by exerting repul-

sive forces until their volumes are restored. These forces are modeled as linear Hookean

springs. Thus, the repulsive force exerted on cell Ci is defined as

f repi;j ¼
Frep ðRi þ RjÞ � kXi � Xjk

� � Xi � Xj

kXi � Xjk
if kXi � Xjk < Ri þ Rj

0 otherwise;
ð1Þ

8
><

>:

where Frep is the constant spring stiffness and the spring resting length is equal to the sum of

the cells’ current radii Ri + Rj. If the cell Ci is in the neighborhood of several cells Cj1, . . ., CjM,

the total repulsive force Fi
rep acting on Ci is the sum of the repulsive forces coming from each

neighboring cell. Thus, the total repulsive force is given by Firep = f i,j1rep +. . .+fi,jMrep.

Cell-cell adhesions. If two cells Ci and Cj in the organoid are pushed apart further than

the maximal cell diameter 2Rmax, the adherent forces are activated to ensure organoid com-

pactness. However, only cells located within the distance smaller than 2.25Rmax are taken into

consideration to avoid activation of adhesive forces between cells that are located too far away.

In this case, the Hookean force exerted on cell Ci is given by:

f adhi;j ¼
Fadh 2Rmax � kXi � Xjk

� � Xi � Xj

kXi � Xjk
if 2Rmax < kXi � Xjk < 2:25Rmax

0 otherwise;
ð2Þ

8
><

>:

where Fadh is the constant spring stiffness and 2Rmax is the spring resting length. As before, if

M neighboring cells exerts adhesive forces, the total adhesive force Fi
adh acting on Ci is the

sum of the adhesive forces coming from each cell in the Ci neighborhood, i.e., Fiadh = f i,j1adh

+. . .+fi,jMadh.

Cell passive relocation. The total force Fi exerted on the cell Ci is a sum of all forces

(adhesive and repulsive) between that cell and its neighbors. As a result, Ci is passively moved

Morphophenotypes of tumor organoids
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away from its current location. Cell motion is governed by the overdamped spring in which

each cell returns to equilibrium without oscillations. The damping force is related linearly to

cell velocity with a damping coefficient η:

Fi ¼ Z
dXi

dt
;where Fi ¼ Fadh

i þ Frep
i ; ð3Þ

and, after discretization with a time step Δt, the cell’s new position is given by:

Xiðt þ DtÞ ¼ XiðtÞ þ DtFi=Z: ð4Þ

Cell cycle. Each cells’ progression through the cell cycle is traced separately. The cell-spe-

cific division time Ai,div is split into four phases that correspond in length to the phases of the

mammalian cell cycle [52, 53]. Cell growth takes place predominantly in the interval gap 1

phase (G1) that lasts for 45% of the cell’s lifespan; the synthesis phase (S) corresponds to the

time needed for DNA replication and takes 35% of the cell’s lifespan; during the gap 2 phase

(G2), the cell can still grow until it reaches the predefined size (duration of 15% of the cell life-

span); finally, the cell divides and produces two daughter cells during the mitosis (M) phase

(5% of the cell’s lifespan). Cells may become arrested in their cell cycle due to contact inhibi-

tion by neighboring cells. In such cases, they remain metabolically active but do not proliferate

[54]. The time of cell arrest does not count toward the length of individual cell cycle phases,

and when the halting condition changes, the cell resumes its cell cycle. A different color repre-

sents each cell cycle phase in the figures (G1: light yellow, S: dark yellow, G2: orange; M:

brown; arrested cells: red).

Cell division. Each cell Ci is permitted to divide if its current age Ai reaches the cell divi-

sion age Ai,div, and the cell is not a subject to contact inhibition. Upon the division of the cell

Ci, the two daughter cells Ci1 and Ci2 are created instantaneously. The daughter cells are placed

symmetrically around the nucleus of the mother cell within a distance of 0.5Rmax:

Xi1 ¼ Xi þ 0:5Rmaxðsinycosφ; siny sinφ; cosyÞ;

Xi2 ¼ Xi � 0:5Rmaxðsinycosφ; siny sinφ; cosyÞ;
ð5Þ

where the azimuthal angle θ is chosen randomly within the interval [0, π], the equatorial angle

ϕ is chosen randomly from [0,2π), and Rmax is the maximal cell radius. The current age of each

daughter cell is initialized to zero. The division age for each daughter cell (Ai1,div and Ai2,div) is

equal to the base value of Adiv with a small noise term to avoid synchronized division of a large

cell subpopulation. The current radius of each cell is set up to 0.65Rmax. Since both daughter

cells are placed at a distance smaller than their current diameters, the repulsive forces between

them are activated. Both daughter cells may also experience multiple repulsive and adhesive

forces from other neighboring cells, which will be applied to push the cell until the whole

tumor cell cluster reaches an equilibrium configuration.

Cell contact inhibition. In off-lattice agent-based models, each cell may have a different

number of immediate neighbors. The contact inhibition criterion is evaluated by inspecting

how many cells are located within a prescribed distance from the host cell. The cell is subjected

to contact inhibition if the number of neighboring cells Ni located within two cell diameters

exceeds the predefined number of neighbors Nneigh.

Initial conditions. Each simulation starts from a single cell with a defined cell size, cell

division age and sensitivity to contact inhibition. The cell progresses through its cell cycle and

gives rise to two daughter cells that inherit all properties of the mother cell except for the divi-

sion age, which is perturbed by a small random noise term to avoid the synchronization of the

Morphophenotypes of tumor organoids
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whole cluster of cells. As this process continues, each cell that is not contact-inhibited will

divide upon reaching its division age. All simulated results are reported after 14 days of the

simulated time.

Organoid morphological features

Calculations of the diameter of a simulated organoid. The diameter (D) of a simulated

organoid is an average of three diameter measurements from 2D projections onto the xy, yz,

or xz planes.

Correlation between simulated and test data. The test data represents values of orga-

noid’ diameters at five time points (days 0, 3, 7, 10 and 14). We followed the trend from [20]

that reported sizes of two malignant cell lines with different metastatic capabilities grown in

3D cultures. The morphologies of these organoids were reported in [55] and used as a bench-

mark for our simulations. The average values were used to determine an optimal fitting curve

and the simulated and test data were compared using the correlation criterion of R2 >0.9,

where R2 is the statistical coefficient of determination. Only the simulations that satisfied this

criterion were used for further morphological analysis.

Radius of gyration. The radius of gyration (RGYR) refers to the distribution of an object’s

components around its center of mass. This term is commonly used in structural biology to

determine the compaction of a molecule. The larger the RGYR value the lower the compaction.

For example, the RGYR value for α helix proteins, which have the least compact secondary

structure, is the largest, with β and α +β proteins following [51]. Here, RGYR is employed to

determine the compactness of each organoid:

RGYR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
kXi � XCk

2
=Ncells

q

; ð6Þ

where Xi is the center of the ith cell, XC is the center of mass of the organoid, and Ncells is a

number of cells forming the organoid.

Organoid accessible surface area. Since the organoid is a conglomerate of individual

cells, its surface is composed of several convex spherical caps that adhere to one another.

Each of these sub-surfaces is accessible to the drug and contributes to the overall drug

absorption. Thus, the amount of drug that is taken in by the whole organoid (either via

membrane diffusion or receptor binding) depends on the surface area accessible to the

drug. We borrowed the concept of the accessible surface area (ASA) from molecular biol-

ogy, where it is used to denote a surface area of an irregular 3D biomolecule that may be

in direct contact with an external solvent. Here, we use this concept as a measure of the

exposure of the tumor organoid surface to the external medium. Since the overall orga-

noid surface is not smooth, it can only be calculated numerically. We followed implemen-

tation from the Visual Molecular Dynamics software (VMD) [49]. In this algorithm, 500

points are randomly distributed around each cell at a distance larger than the cell radius

to represent a 1/500th portion of the surface area of that cell. If the points belonging to one

cell fall within the volume of another cell, they are removed from calculations to account

for contact between neighboring cells. In this way all points located inside the organoid

are removed, since the intercellular spaces do not contribute to the external surface area

of the organoid. The surface areas of each spherical cap corresponding to the points that

were not removed are added up to count for the final ASA value.

Morphophenotypes of tumor organoids
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Results

Exploration of the MultiCell-LF parameter space

Our first goal was to examine the diversity of the simulated organoids under the constraint

that their diameter measurements fit the test data. We explored three cellular features, which

could affect the generated organoid morphology: the radius of a tumor cell Rmax; the cell dou-

bling time defined as the age at which the cell is ready to divide Adiv; and the cell’s sensitivity to

contact inhibition, defined as the number of cell neighbors Nneigh that will halt the cell prolifer-

ation process. Three sets of simulations were performed for each parameter selection, and only

those cases were further analyzed for which all three simulations fitted the test data. In each

case, we only used the diameter information of the simulated organoids for comparison to the

test data. Only those simulations that fulfilled both criteria: (i) were within the average +/- std

diameter values of the test set, and (ii) the correlation between the diameters of the simulated

organoids and the test data satisfied R2>0.9, were accepted for further analysis. Four represen-

tative examples characterized by different Rmax, Adiv and Nneigh values are shown in Fig 1A–

1D.

In our analysis, we considered a wide range of model parameters. Rmax was varied between

5 μm and 10 μm, and these values are consistent with cell sizes reported in the literature [56,

57]. Adiv was varied between 6 and 32 hours that has also been observed in experiments for dif-

ferent tumor cell lines [57, 58]. Nneigh was varied between 3 and 22 cells to mimic cell sensitivity

Fig 1. Representative simulated data. A-D. Four simulated organoids reproducing the test data with correlation R2>0.9. Red

lines show simulated organoid diameters. Black dots represent averaged diameters of the test data at days 0, 3, 7, 10 and 14,

vertical lines show standard deviations. Insets show final organoid morphologies and their projections on the xy plane. Simulated

cases: A. Rmax = 5 μm, Adiv = 11 hours, Nneigh = 15 cells, R2 = 0.987; B. Rmax = 7 μm, Adiv = 13 hours, Nneigh = 9 cells, R2 = 0.989; C.

Rmax = 10 μm, Adiv = 20 hours, Nneigh = 11 cells, R2 = 0.986; D. Rmax = 8 μm, Adiv = 13 hours, Nneigh = 6 cells, R2 = 0.983. Cell

colors represent the cell cycle phases: G1: light yellow, S: dark yellow, G2: orange; M: brown; the cells arrested during the cell

cycle: red.

https://doi.org/10.1371/journal.pcbi.1007214.g001
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to contact inhibition that is directly related to the density of neighboring cells. The resulting

heatmaps of the sampled parameter space organized by increasing cell radius are shown in the

panels of Fig 2. The generated parameter space covered an area of heterogeneous phenotypic

and genotypic features. For example, different cell sizes (values of Rmax) may correspond to

cells of a different origin or from distinct cell lines. A cell’s sensitivity to contact inhibition

(controlled by Nneigh) may be representative of tumor cell invasive properties from epithelial-

like to mesenchymal cells. The cell doubling time (defined by Adiv) may be associated with a

specific tumor type or tumor cell line, and may correspond to a cell’s aggressiveness level or

the microenvironmental condition (acidity, oxygenation, nutrient contents) in which the cells

are growing.

Model morphochart space

The heatmaps in Fig 2 provided an evaluation of how well the diameter measured during in sil-

ico organoid growth correlated with the test data. In addition to diameter measurement, our

model also generated the organoid morphocharts, which are collections of the final organoid

Fig 2. Heatmap analysis of the correlation between simulated and test data. Heatmaps of the sampled parameter space for six different values of cell radius

Rmax (5 to 10 μm), cell division times Adiv (between 6 and 32 hours), and the number of cell neighbors Nneigh (between 3 and 22 cells). Shown are only the cases

with R2 >0.9.

https://doi.org/10.1371/journal.pcbi.1007214.g002
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morphologies. The representative morphochart for organoids with a fixed cell radius of Rmax =

7 μm shown in Fig 3 revealed that, within constrains of our correlation criterion, a broad spec-

trum of organoid morphologies arose when the three cellular parameters selected for our

study were varied.

Close inspection of this radius-specific morphochart shows that the organoids tend to attain

irregular shapes for low values of Nneigh (strict contact inhibition). This effect is more profound

for rapidly dividing cells (small value of Adiv). When the values of Nneigh increase (reduced con-

tact inhibition) the organoids’ shapes become more regular and reach morphology close to

an ideal sphere for the highest values of Nneigh. The Nneigh also has a robust effect on the final

organoid size. The organoids grow smaller (within the average +/- std values) when Nneigh is

reduced compared with those having high Nneigh. This relationship between Nneigh and tumor

shape is preserved in all morphocharts (S1–S6 Figs). Additionally, the organoid’s size and

shape depend on Adiv, and, for each row with fixed Nneigh, the size of the simulated organoids

decreases with an increasing Adiv. Contrasting the contact inhibition parameter, the range of

Adiv for which the simulated organoids fit the experimental data (as observed in the heatmaps

in Fig 2) shows a strong dependency on the cell radius. For example, for Rmax = 5 μm, the

parameter Adiv can be varied between 6 and 17 hours, while Adiv spans from 17 to 32 hours for

Rmax = 10 μm (the range of Adiv values for each cell radius is shown in Fig 4A). This confirms

that larger cells must be characterized by a slower division rate to fit the experimental organoid

dynamics of growth.

Interestingly, not only is the range of Adiv different for cells of different sizes, but the total

number of simulated organoids that fulfill the correlation criteria also increases with a larger

cell size; i.e., the parameter space consists, on average, of about 50 organoids for Rmax = 5 μm

and 100 for Rmax = 10 μm (Fig 4B). Since the organoids simulated for each value of Rmax are fit-

ted and correlated to the same growth dynamics data, it seems that cells characterized by small

radii are less likely to adapt to changes in their vicinity and only a narrow valley in model

parameter space fits the behavior of in vitro organoids. These parameter combinations are

limited by small cell size, which demands faster division times Adiv. At the same time, the

simultaneous fluctuations of Adiv and Nneigh provide higher flexibility, allowing the simulated

organoids with larger cells to fulfill the correlation criteria.

Organoid structural quantification

Since the generated organoids attain different morphologies, we examined whether they pos-

sess any common structural characteristics. We analyzed the compactness and accessible sur-

face area across all in silico organoids. These two metrics were chosen to assess how effectively

the externally supplied chemotherapeutic agent would reach all the organoid cells. Therefore,

we tested what portion of the given organoid was directly exposed to the externally supplied

drug (organoid accessible surface area), and how easy it would be for the drug to penetrate the

organoid (organoid compactness).

To assess organoid compactness, we calculated the organoid’s radius of gyration (RGYR),

which quantifies the distribution of all cells around the organoid’s center of mass. The larger

the RGYR value, the less compact the organoid. The color-coded values of RGYR plotted as a

function of cell division age (Adiv) and the number of cell neighbors (Nneigh) for all organoids

with a cell radius of Rmax = 5, 7, and 10 μm are shown in Fig 5A–5C, respectively. In all three

cases, the organoid compactness decreased when the cells could divide more often (low Adiv)

or when they were less sensitive to contact inhibition (larger Nneigh) to halt their cell cycle pro-

gression (red dots). For the same final morphologies, the accessible surface area (ASA) was cal-

culated, and three color-coded heatmaps for the corresponding cellular radii are shown in
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Fig 3. 3D Organoid morphochart. A collection of final morphologies (a morphochart) of simulated organoids with a fixed cell radius of Rmax =

7 μm, cell division Adiv varied between 11 and 22 hours, and cell neighbor number Nneigh varied between 6 and 23 cells. Only results with R2

>0.9 are shown. The inset shows a corresponding heat map from Fig 2. Cells are colored according to their phase of the cell cycle, as described

in Fig 1.

https://doi.org/10.1371/journal.pcbi.1007214.g003
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Fig 5D–5F. While each heatmap separately contains a similar pattern of higher ASA values for

organoids with faster growing cells and larger Nneigh, there is a visible shift in the ASA values

for increasing Rmax, which contrasts with RGYR. This observation indicates that ASA is depen-

dent on the cell size. Organoids with cells with a smaller Rmax have increased surface area,

while larger cells tend to “smooth out” ASA. The actual diameter values (D) of each generated

organoid are shown in Fig 5G–5I. Since there is variability in the sizes of experimental orga-

noids, the generated in silico organoids were accepted if their growth dynamics did not exceed

the average +/- std values of the test organoid set. Fig 5G–5I and Fig 5A–5C show good corre-

lation between the patterns of the in silico organoid diameter and RGYR values, which implies

that organoid’s compactness depends on its size, with less-compact organoids (high RGYR)

having a larger diameter.

ASA implies that organoids with similar diameters may require different

drug doses

While there is a positive correlation between the values of D and ASA for the whole organoid

library shown in Fig 5, the patterns do not overlap as closely as between D and RGYR. Instead,

there are organoids within the same diameter range (indicated by the same color in Fig 5G–5I)

but with distinct ASA values (analogous data points have different colors in Fig 5D–5F). For

example, organoids represented by red dots in Fig 5H (i.e., with Rmax = 7 μm, Nneigh = 21 cells,

Adiv = 18 hours and Adiv = 16 hours) have the highest values of D, while their ASA values (anal-

ogous points in Fig 5E) span a wider range of values: from 30x104 μm2 to above 60x104 μm2,

encompassing a difference of four color bins. Consequently, we observe that significantly dif-

ferent ASA values might be found for organoids with comparable sizes and the same cell

radius.

This observation directs attention to organoids with comparable diameters but with evident

differences in morphology. For example, the organoids represented by blue dots in Fig 5H

(i.e., Adiv = 17 hours, Nneigh = 16 cells; Adiv = 13 hours, Nneigh = 9 cells; Adiv = 11 hours, Nneigh

= 6 cells; all with Rmax = 7 μm) have diameters between 230–260 μm but have significantly dif-

ferent ASA values (31.07x104 μm2, 41.35x104 μm2 and 12.79x104 μm2, respectively) and diverse

numbers of cells within each organoid (1659, 935, and 204, respectively). These organoids also

belong to two different morphophenotypic classes (next section), therefore, the differences in

ASA calculated for morphologically diverse organoids with similar sizes might provide insights

Fig 4. Quantitative analyses of organoids’ heatmaps. A. An average cell division age Adiv as a function of Rmax. B. An average number

of simulated organoids that fulfill the correlation criterion as a function of Rmax. The error bars represent std from three independent

simulations for a given set of parameters.

https://doi.org/10.1371/journal.pcbi.1007214.g004
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into the importance of correctly estimating the morphological features of the tumor to make

proper predictions. Here, under- or overestimation of tumor diameters from 2D images could

lead to a highly inaccurate assessment of organoid exposure-related features.

Radius of gyration and accessible surface area determine distinct organoid

morphophenotypes

Joint analysis of the structural and morphological properties of the generated organoids cate-

gorized them into four distinct morphophenotypic classes (Fig 6 and Table 1). Class 1 is

Fig 5. Organoids’ structural properties. Color-coded classification of: A-C. Radius of gyration: RGYR. D-F. Accessible surface area: ASA. G-I. Organoid

diameter: D, for organoids with cells of radii Rmax = 5, 7 and 10 μm, respectively.

https://doi.org/10.1371/journal.pcbi.1007214.g005
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characterized by high values of both RGYR and ASA; consequently, the organoids have a large

accessible surface area but are not tightly packed. The representative morphology is of a regu-

lar spherical shape (Fig 6A). Class 2 also attains quite regular shapes and large values of ASA,

but smaller values of RGYR, resulting in a more compact organoid structure (Fig 6B). In Class

3, the organoid morphologies are elongated (Fig 6C) and are accompanied by smaller ASA and

relatively small RGYR values. Finally, in Class 4, the organoids are characterized by more frag-

mented, branched shapes (Fig 6D) with small RGYR and ASA values. This classification was

achieved using the classical k-medians clustering algorithm, and the consensus cluster cen-

troids for each class are listed in Table 1.

Fig 6. Organoid morphophenotype classification. All simulated organoids divided into four morphophenotypic classes based on their radius of gyration RGYR
(μm) and accessible surface area ASA (x104 μm2) using the k-median algorithm: Class 1: Spherical; Class 2: Compact; Class 3: Elongated; and Class 4: Branched.

The representative organoid morphologies and their xy-plane projections (black shapes) mimicking bright field microscopy images shown: A Class 1: Adiv = 17

hours, Nneigh = 22 cells, RGYR = 127.44 μm, ASA = 62.44x104 μm2; B Class 2: Adiv = 18 hours, Nneigh = 19 cells, RGYR = 93.32 μm, ASA = 32.62x104 μm2; C Class 3:

Adiv = 15 hours, Nneigh = 9 cells, RGYR = 77.57 μm, ASA = 30.97x104 μm2; D Class 4: Adiv = 13 hours, Nneigh = 7 cells, RGYR = 73.73 μm, ASA = 18.13x104 μm2; all

four organoids have cell radius Rmax = 7 μm.

https://doi.org/10.1371/journal.pcbi.1007214.g006
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These in silico morphophenotypes are similar to the organoid morphologies observed in

vitro. Experiments with the organoids derived from 25 different breast tumor cell lines [18]

and from 29 different prostate tumor cell lines [19] identified several characteristic organoid

shapes, including “Round” spheroids with well differentiated, tightly packed cells similar to

our Class 2 “Compact” structures; a “Mass” phenotype characterized by a lower level of cell-

cell contacts and cell polarization, resulting in large masses of more loosely packed cells similar

to our Class 1 “Spherical” structures; a “Stellate” phenotype characterized by multiple projec-

tions and an elongated shape similar to our Class 3 “Elongated” phenotype; and a “Grape-like”

phenotype lacking robust cell-cell adhesions and showing a more branched structure similar

to our Class 4 “Branched” structures. While there is no complete agreement whether organoid

shapes and the level of genetic transformations in the individual cells are correlated, the more

aggressive and invasive cell lines tend to have more branched and elongated morphologies and

less pronounced cell-cell adhesions, which is also observable in our simulations.

Discussion

The aberrant morphologies of multicellular in vitro cultures are the first visual indication of

cells’ abnormality and potential tumorigenic capabilities. The morphologies of tumor orga-

noids can be quite diverse [18–20, 55] that poses a question whether a given chemotherapeutic

treatment will have the same effect on such heterogeneous tumors. Typically, tumor cell

response to the drugs is defined by the IC50 value (the concentration of an inhibitor where the

response is reduced by half) and examined using the 2D monolayer cultures when all cells are

well exposed to the therapeutic compounds. However, tumors grow as 3D multicellular con-

glomerates and thus the differences in individual cell exposure to the drug and the extent of

drug penetration though the whole tumor tissue play a paramount role in treatment efficacy.

Even the most potent drug will be ineffective if it cannot reach all tumor cells in efficient quan-

tities. This aspect cannot be examined in the 2D cell cultures, thus there is a growing interest

in using tumor organoids for testing anti-cancer treatments. However, current experimental

protocols do not take into consideration morphological and structural diversities between

tumor organoids. Here, our goal was to draw attention to these overlooked aspects of anti-can-

cer treatment testing. We used a theoretical approach to evaluate the impact of cells’ intrinsic

properties and cell-cell interactions on the emergent tumor shape. To the best of our knowl-

edge, this is the first comprehensive computational study that systematically and quantitatively

explores morphological diversity of 3D tumor organoids.

The minimalistic set of cell properties considered here included cell size, division time and

sensitivity to contact inhibition, all of which can vary from one cell line to another, and

between different tumor types. The exploration of these three model parameters gave rise to a

library of organoids with diverse morphologies. However, for all these organoids, their average

diameters measured during each simulation matched the pre-defined test data (diameters are

the most typical metrics used in laboratory experiments to assess tumor size). While we used a

specific set of test data for model calibration, this approach can be generalized and applied to

Table 1. Cumulative classification of organoid morphophenotypes.

Class 1 2 3 4

Cluster Centroid (median):
RGYR (μm) 107.33 92.86 82.36 73.70

ASA (x104 μm2) 50.50 36.42 27.76 21.38

Morphology Spherical Compact Elongated Branched

https://doi.org/10.1371/journal.pcbi.1007214.t001
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different dynamics of organoid development. The method presented here accepts organoids

which diameters fit the test data and disregards simulations in which the growth dynamics

deviates from the test data. In this way, we can simulate multicellular systems with diverse

growth dynamics.

By using an analogy to the structural biology of biomolecules, we provided the morphologi-

cal classification of multicellular organoids using the radius of gyration (RGYR) and accessible

surface area (ASA). As a common tool for measuring system’s compactness, RGYR applied to

organoids informs how dense the tumor mass is and how tightly packed the cells are. The orga-

noid compactness provides a measure of system globularity, such as packing density and inter-

cellular space cavities. Taking this approach, we showed that RGYR helps to identify the classes

of organoids characterized by different internal cellularity and external branching that may

correspond to cell aggressiveness in vivo. The use of the RGYR values as a sole classification

criterion has raised some concerns because organoids within the same range of RGYR attained

significantly different morphologies. To overcome this discrepancy, we proposed to also use a

concept of the ASA, which determines what fraction of the system is exposed to the external

microenvironment.

Currently used methods for assessing changes in tumor organoids’ growth rely on measur-

ing their diameters from microscopy images. These measurements, however, may not be accu-

rate, especially if the multicellular structures have irregular shapes. By creating a broad library

of organoids morphologies (the MultiCell-LF morphochart shown in Fig 3), we proposed to

use mathematical modeling for reconstruction of experimental organoid structures and to

determine their ASA and RGYR in a cost- and time-efficient way. The presented computa-

tional methods can be combined with measurements obtained from experimental data, i.e.,

the size of tumor cells can be measured directly, the cell proliferation rates can be determined

using cell doubling assays and the organoid’s overall size can be calculated using bright field

microscopy images. These values can be mapped on the MultiCell-LF morphochart parameter

space (Fig 5), which allows for reconstruction of the organoid’s structure in silico and provides

the RGYR and ASA values. This procedure is similar to the acinar morphochart technique we

developed previously for determining the functional changes in mutated breast tumor cell

lines compared with the parental non-tumorigenic cell line using their 3D morphologies [35,

59–61]. We hypothesized here that currently used treatment protocols for drug dose selection,

scheduling and duration could benefit from additional information provided by the RGYR
and ASA values, however further experiments are needed to confirm this postulate.

Tumor tissue irregular architecture is considered as one of the barriers in effective drug

penetration though the in vivo tumors [62, 63]. However, similar inefficient penetration has

also been observed in tumor organoids and visualized using chemotherapeutic compounds

tagged to fluorescent probes [64–66]. We postulate here that ASA and RGYR may provide pro-

spective metrics for assessing the potential of tumor organoids to be exposed and penetrated

by the drug. Some recent studies have discussed the relationship between morphologies of in

vivo and ex vivo tumors and their response to drugs [67, 68] showing that there is an interest

in developing new measures to assess drug efficacy in tumors and tumor organoids based on

their morphology. The organoids considered here (up to 150 μm in radius) are of the size that

is below the diffusivity limits of oxygen or nutrients (200–250 μm). However, in larger orga-

noids the gradients of nutrients from spheroid periphery towards its core can develop, that

results in the emergence of hypoxic or necrotic regions. As a result, not all cells would have

equal access to nutrients and oxygen which may affect their growth, as well as their response to

therapeutics.

In this study, we limited the number of intracellular and extracellular heterogeneities, how-

ever in the future we are planning to examine how the tumor organoids’ morphology changes
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when cells have individually-regulated cell cycle, cell-cell interactions and variable sensitivity

to contact inhibition. We will also incorporate additional cellular processes, such as cell motil-

ity, cell death or secretion of autocrine signals, and evaluate their influence of the emergent

organoid’s morphology.

While in the current study we treated the external medium and the interstitial space

between the cells as a homogeneous continuum, experimental media and in vivo stroma can

contain proteins and fibers of the extracellular matrix that will further impede drug transport.

We plan to investigate these factors in the future. Additionally, the morphologies of the tumor

organoids can undergo dynamic changes in response to treatments. Not only can they shrink,

but they may also become more irregular, if, for example, cell cycle-specific drugs are adminis-

tered and target only certain cells within the spheroid. Thus, the numerical estimation of drug

doses based on the morphological features of tumor organoids (including ASA and RGYR)

could provide a more accurate metric for predicting a tumor’s response to chemotherapy, and

for adjusting drug schedules leading to more adaptive and personalized treatment.

Supporting information

S1 Fig. The 3D morphochart of simulated organoids for cells of size 5 microns. The collec-

tion of final morphologies simulated for a fixed cell radius Rmax = 5 μm, cell division Adiv var-

ied between 6 and 17 hours, and cell neighbor number Nneigh between 5 and 22 cells. Three

independent simulations were performed for each set of parameters. Only if all three orga-

noids fitted the test data with R2 >0.9, the one representative oranoid’s morphology is shown.

Otherwise, there is an empty space for these parameter combinations.

(TIF)

S2 Fig. The 3D morphochart of simulated organoids for cells of size 6 microns. The collec-

tion of final morphologies simulated for a fixed cell radius Rmax = 6 μm, cell division Adiv var-

ied between 9 and 20 hours, and cell neighbor number Nneigh between 5 and 22 cells. Three

independent simulations were performed for each set of parameters. Only if all three orga-

noids fitted the test data with R2 >0.9, the one representative oranoid’s morphology is shown.

Otherwise, there is an empty space for these parameter combinations.

(TIF)

S3 Fig. The 3D morphochart of simulated organoids for cells of size 7 microns. The collec-

tion of final morphologies simulated for a fixed cell radius Rmax = 7 μm, cell division Adiv var-

ied between 11 and 22 hours, and cell neighbor number Nneigh between 5 and 22 cells. Three

independent simulations were performed for each set of parameters. Only if all three orga-

noids fitted the test data with R2 >0.9, the one representative oranoid’s morphology is shown.

Otherwise, there is an empty space for these parameter combinations.

(TIF)

S4 Fig. The 3D morphochart of simulated organoids for cells of size 8 microns. The collec-

tion of final morphologies simulated for a fixed cell radius Rmax = 8 μm, cell division Adiv var-

ied between 11 and 25 hours, and cell neighbor number Nneigh between 5 and 22 cells. Three

independent simulations were performed for each set of parameters. Only if all three orga-

noids fitted the test data with R2 >0.9, the one representative oranoid’s morphology is shown.

Otherwise, there is an empty space for these parameter combinations.

(TIF)

S5 Fig. The 3D morphochart of simulated organoids for cells of size 9 microns. The collec-

tion of final morphologies simulated for a fixed cell radius Rmax = 9 μm, cell division Adiv
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varied between 16 and 30 hours, and cell neighbor number Nneigh between 6 and 22 cells.

Three independent simulations were performed for each set of parameters. Only if all three

organoids fitted the test data with R2 >0.9, the one representative oranoid’s morphology is

shown. Otherwise, there is an empty space for these parameter combinations.

(TIF)

S6 Fig. The 3D morphochart of simulated organoids for cells of size 10 microns. The collec-

tion of final morphologies simulated for a fixed cell radius Rmax = 10 μm, cell division Adiv var-

ied between 17 and 31 hours, and cell neighbor number Nneigh between 5 and 22 cells. Three

independent simulations were performed for each set of parameters. Only if all three orga-

noids fitted the test data with R2 >0.9, the one representative oranoid’s morphology is shown.

Otherwise, there is an empty space for these parameter combinations.

(TIF)
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