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Abstract: Securing personal authentication is an important study in the field of security.
Particularly, fingerprinting and face recognition have been used for personal authentication.
However, these systems suffer from certain issues, such as fingerprinting forgery, or environmental
obstacles. To address forgery or spoofing identification problems, various approaches have
been considered, including electrocardiogram (ECG). For ECG identification, linear discriminant
analysis (LDA), support vector machine (SVM), principal component analysis (PCA), deep recurrent
neural network (DRNN), and recurrent neural network (RNN) have been conventionally used.
Certain studies have shown that the RNN model yields the best performance in ECG identification as
compared with the other models. However, these methods require a lengthy input signal for high
accuracy. Thus, these methods may not be applied to a real-time system. In this study, we propose
using bidirectional long short-term memory (LSTM)-based deep recurrent neural networks (DRNN)
through late-fusion to develop a real-time system for ECG-based biometrics identification and
classification. We suggest a preprocessing procedure for the quick identification and noise reduction,
such as a derivative filter, moving average filter, and normalization. We experimentally evaluated the
proposed method using two public datasets: MIT-BIH Normal Sinus Rhythm (NSRDB) and MIT-BIH
Arrhythmia (MITDB). The proposed LSTM-based DRNN model shows that in NSRDB, the overall
precision was 100%, recall was 100%, accuracy was 100%, and F1-score was 1. For MITDB, the overall
precision was 99.8%, recall was 99.8%, accuracy was 99.8%, and F1-score was 0.99. Our experiments
demonstrate that the proposed model achieves an overall higher classification accuracy and efficiency
compared with the conventional LSTM approach.
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1. Introduction

Recently, several studies involving different basic methods have been conducted in biometric
systems, such as fingerprinting, face recognition, voice recognition, and electrocardiogram (ECG).
However, fingerprinting and face recognition systems designed for secure personal authentication
have many disadvantages, such as fingerprint forgery, or environmental obstacles, such as light,
hair, or glass. Currently, voice recognition systems are commonly used for performing simple
tasks, such as turning the lights off or on, making a phone call, or changing the TV channel.
However, voice recognition systems are not sufficiently sophisticated to be considered as a reliable
solution for an authentication system owing to the risk of spoofing with a recorded voice instead of
the legitimate voice. Hence, to address forgery or spoofing identification issues, different approaches
must be considered, like ECG, as presented in this paper. ECG (ECG is a test that measures the
electrical activity of the heartbeat)-based biometric systems, using support vector machine (SVM),
linear discriminant analysis (LDA), optimum-path forest, neural networks, and other analysis
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methods have been extensively studied and applied to disease diagnosis and personal authentication
systems [1–4]. The aforementioned methods known as conventional ECG identification procedures are
required for feature extraction that yields high accuracy in preprocessing. The recent deep learning
methods do not employ feature extraction. Furthermore, to achieve a high accuracy, the deep learning
methods require a lengthy input signal. The personal authentication system using ECG can be
presented as shown in Figure 1.

sensor

Individual ECG Database ECG Measurement

for training

State : calmness, eating, sleeping, running, and etc.

1

Deep Learning System

• Training and Testing

Authentication Server

ECG Measurement

for Authentication

sensor

Sending ECG
Authentication

Result

Sending ECG

2

3

Figure 1. Conventional personal authentication system using ECG.

Figure 1 shows the conventional personal authentication system using ECG with a deep learning
approach. First, a personal ECG database is required that consists of all types of ECG signals that
depend on the state of an individual: calmness, eating, sleeping, running, walking, etc. Then, a deep
learning system is trained using the personal ECG database; consequently, an authentication server
developed. The ECG signal from the dashed box in Figure 1, which is not used in deep learning, is passed
to the authentication server for personal authentication. The deep learning system authenticates the
user by classifying the input ECG data. This personal authentication system can be used in various
self-certification services, such as automated door locks, bank vaults, and vehicles.

In this study, we propose the use of long short-term memory (LSTM)-based deep recurrent
neural networks to build an ECG identification system that classifies the human ECG. The proposed
method is evaluated using performance metrics by employing two public datasets from the Physionet
database [5]. The major contributions of our study are as follows:

• We demonstrate the preprocessing procedures including non-feature extraction, segmentation
with a fixed segmentation time period, segmentation with R-peak detection, and grouping the
ECG signal of the short length. These procedures are considered for authentication time in the
real-time system.

• We introduce and implement bidirectional DRNNs for ECG identification combined with the
late-fusion technique. To the best of our knowledge, the proposed bidirectional DRNN model for
personal authentication has not been described in the literature prior.

Further, this paper is organized as follows. Related findings in the literature are reviewed in
Section 2. The proposed LSTM-based DRNN and its preprocessing for ECG are described in Section 3.
Experimental results and concluding remarks are presented in Sections 4 and 5, respectively.

2. Related Work

Many studies have presented different approaches designed for feature extraction and noise
reduction in ECG biometrics. Particularly, Odinaka et al. explained categorizations based on features
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and classifiers [6]. First, the categorization requires an algorithm for feature extraction based on fiducial,
non-fiducial, and hybrid features. A fiducial-based algorithm extracts temporal, amplitude, angular, or
morphology features from characteristic points on the ECG data. The features extracted include the
analyzed ECG information like difference in distance for each ECG wave (in the P wave, QRS complex,
and T wave of ECG) [7]. Unlike the fiducial-based algorithm, a non-fiducial-based algorithm uses
features, such as wavelet and autocorrelation coefficients [8–10]. Because such an algorithm does
not use any characteristic point for developing a feature set, the detection of R peaks is required for
heartbeat segmentation and alignment in most methods. A few of the remaining methods require the
detection of three major components of heartbeat, such as the onset and peak of the P wave, onset and
end of QRS complex, and peak and end of the T wave. A hybrid feature extraction method uses a
combination of the fiducial and non-fiducial-based approaches. Moreover, the categorization requires a
classifier, such as k-nearest neighbor, LDA, neural networks, generative model, SVM, and match score
classifiers. The ECG can be classified using a fiducial (characteristic point), non-fiducial (similarity),
and hybrid (combination of the fiducial and non-fiducial) feature extraction algorithm.

Many techniques for ECG biometric systems using various ECG databases have been proposed [11].
In [11], the authors have analyzed various studies to compare the averages of classification accuracy,
identification equal error rates (EER), and authentication scenarios using normal and pathological signals
ECG databases. According to their results, the weighted average rate (in an identification scenario) was
94.95% and the overall EER (in an authentication scenario) was 0.92%. Their results in [11] showed that
the choice of features affects the identification accuracy rate, and the number of ECG leads used influences
the performance of recognition.

In many recent studies, deep learning methods have been applied to ECG biometrics [12–20].
In [16], a convolutional neural network (CNN) has been used to classify patient-specific ECG heartbeats.
In [17], a residual convolutional neural network (ResNet) with an attention mechanism is designed for
human authentication with ECG. Unlike CNNs, a recurrent neural network (RNN) has an advantage
when processing 1-D signals, such as an ECG consisting of sequential data. Generally, CNN processes
2-D data, such as an image or more 2 × 2 signal for object identification and classification, and RNN
processes 1-D continuous or sequential data, such as a voice and sensor signal for identification
and classification. For example, RNN has been used to classify the type of an ECG beat in [18].
However, it is difficult to train a conventional RNN using long-term sequences of data because the
network develops vanishing gradients; LSTM and gated recurrent units (GRUs) have been proposed
(The GRU is a modified model from LSTM) to resolve this problem [21,22]. The LSTM-based RNNs
overcame the vanishing gradients and demonstrated a good performance. The LSTM-based RNNs
have been widely used in applications, such as speech recognition, handwriting recognition, and ECG
biometrics [23,24]. Additionally, the deep learning system can utilize the dropout technique for
reducing overfitting [25]. Overfitting is observed if a deep learning model performs well while using
its training dataset and it performs poorly while using its testing dataset. In [26], LSTM proved to be
more suitable than GRUs for identification and classification in ECG biometrics. Thus, the LSTM-based
RNNs were applied to identify and authenticate problems using ECG data [26–28]; deep learning
techniques have shown more powerful performance compared with other non-deep learning methods.

2.1. Recurrent Neural Networks

An RNN is a single or multiple layer neural network architecture, comprising of cyclic connections,
commonly used for learning the temporal-sequential data, like string, video, and voice. This network is
characterized by memorizing the instance of a previous information, which is then applied to the current
input data. RNN has an advantage in handling sequential data. As shown in Figure 2, an RNN node
consists of the current input xt, output yt, previous hidden state ht−1, and current hidden state ht. Thus,

ht = δhidden(Whiddenht−1 + Winputxt + bhidden) (1)



Sensors 2020, 20, 3069 4 of 17

yt = δoutput(Woutputht + boutput), (2)

where δhidden and δoutput are the activation functions of the hidden layer and output layer,
respectively. Winput,Woutput, and Whidden are the weights for the input-to-hidden recurrent
connection, hidden-to-output recurrent connection, and hidden-to-hidden recurrent connection,
respectively. boutput and bhidden are the respective bias terms for the output state and hidden state.
Here, the activation function has an element-wise non-linearity feature, selected from various existing
functions like the sigmoid, hyperbolic tangent, or rectified linear unit.

Figure 2. Schematic of an RNN node [29].

2.2. Long Short-Term Memory (LSTM)

In conventional RNN, it can be difficult to train the long range sequential data because of
vanishing or exploding gradient problems that interrupt the network’s ability to backpropagate
gradients (long-term dependency problem) [30]. To solve the long-term dependency problem in the
learning data, LSTM-based RNNs replace the conventional node with LSTM, which contains memory
blocks with memory cells called “gates” in the recurrent hidden layer, as shown in Figure 3. The gates
on the memory cells control the new information states updating and forgetting the previous hidden
states, and determining the output. The functions of each cell component are as follows:

• Input gate (it) controls the input activation of new information into the memory cell.
• Output gate (ot) controls the output flow.
• Forget gate ( ft) controls when to forget the internal state information.
• Input modulation gate (gt) controls the main input to the memory cell.
• Internal state (ct) controls the internal recurrence of cell.
• Hidden state (ht) controls the information from the previous data sample within the

context window:

it = δ(Uixt + Wiht−1 + bi) (3)

ot = δ(Uoxt + Woht−1 + bo) (4)

ft = δ(U f xt + W f xt−1 + b f ) (5)

gt = δ(Ugxt + Wght−1 + b f ) (6)

ct = ftct−1 + gtit (7)

ht = tanh(ct)ot, (8)
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where the U and W terms are weight matrices and b terms are bias vectors. When the LSTM-RNN
trains a dataset for learning, it focuses on learning the parameters b, U, and W of the cell gates,
as shown in (3)–(6).

tanh

delay

Figure 3. Schematic of an LSTM memory cell structure with an inner recurrence ct and an outer
recurrence ht. it, ot, ft, and gt.

2.3. Performance Metrics

We use four evaluation metrics measuring multi-class classification to verify the performance of
the deep learning models [31].

1. Precision: it calculates the number of the true person identifications (person A, B, ... G) out of
the positive classified classes. The overall precision (OP) is the average of the precision of each
individual class (POC: the precision of each individual class):

Per− POCc =
tpc

tpc + f pc
(9)

OP =
1
C
(

C

∑
c=1

(
tpc

tpc + f pc
)), (10)

where tpc is the true positive rate of a person classification (c =1, 2,..., c), f pc is the false positive
rate, and C is the number of classes in the dataset.

2. Recall (Sensitivity): it calculates the number of persons correctly classified out of the total samples
in a class. The overall recall (OR) is the average recalls for each class (RFC: recalls for each class):

Per− RFCc =
tpc

tpc + f nc
(11)

OR =
1
C
(

C

∑
c=1

(
tpc

tpc + f nc
)), (12)

where f nc is the false negative rate of a class c.
3. Accuracy: it calculates the proportion of correctly predicted labels (the label is the unique name

of an object) as overall predictions; an overall accuracy (OA)

OA =
TP + TN

TP + TN + FP + FN
, (13)
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where, TP = ∑C
c tpc is the overall true positive rate for a classifier on all classes, TN = ∑C

c tnc is
the overall true negative rate, FP = ∑C

c f pc is the overall false positive rate, and FN = ∑C
c f nc is

the overall false negative rate.
4. F1-score: it is the weighted average of precision and recall.

F1− score =
C

∑
c=1

2(
nc

N
)

precisionc × recallc
precisionc + recallc

, (14)

where nc is the number of samples in a class c and N = ∑C
c=1 nc is the total number of individual

examples in a set of C classes.

3. Proposed Deep RNN Method and Preprocessing Procedures

3.1. Proposed Deep RNN Method

A schematic of the proposed DRNN ECG identification system is presented in Figure 4. It performs
a direct mapping from personal ECG inputs to personal label classification. A specific time window is
used to classify the personal labels. The input is divided into a discrete sequence of equally spaced
samples (x1, x2, ..., xt), where each data point xt is a vector of the personal ECG signal. The samples are
passed to an LSTM-based RNN model after being segmented by the window of size T, consisting of n
segmented ECG signal components with a period of P. In the conventional and LSTM-based RNNs,
the classification accuracy is low if less than nine of ECG groups are used for training and testing [26].
In this study, we used three, six, and nine ECG groups (n = 3, 6, 9). In the outputs, we receive a score
by denoting the personal label prediction at each time step (yL

1 , yL
2 , ..., yL

k ), where yL
k ∈ Rc is a vector of

classification scores representing the given input group, L is for layer, and c is the number of person
classes. The score is calculated at each time-step for the personal label at time t. The multi-prediction
for the entire window T is obtained by merging all the scores into one prediction. For classification,
we used a late-fusion, called “sum rule,” which is theoretically discussed in [32,33]. To convert the
prediction scores to probabilities, we applied a softmax layer on Y of the prediction score.

Y =
1
T

T

∑
t=1

yL
t (15)

In this study, we use bidirectional LSTM-based DRNN for further performance enhancement,
as shown in Figure 5. It includes two parallel LSTM tracks: forward and backward loops for exploiting
the context from the past and future of a specific time step to predict its label [28,34]. At each layer,
there is a forward track (LSTM f l) and backward track (LSTMbl). The two tracks read the ECG input
from left to right and from right to left, respectively:

y f l
t , h f l

t , c f l
t = LSTM f l(c f l

t−1, h f l
t−1, xt; W f l) (16)

ybl
t , hbl

t , cbl
t = LSTMbl(cbl

t−1, hbl
t−1, xt; Wbl), (17)

where y f l
t and ybl

t are the output of the prediction, h f l
t and hbl

t are the output of the hidden layer, and c f l
t

and cbl
t are the current output in the forward and backward layers, respectively (l = 1, 2, ..., L). The top

layer L is the output of the sequence score from the forward LSTM and backward LSTM at each time
step. The combined scores Y ∈ Rc represent a person label prediction score. In this case, the late-fusion
is merged as follows:

Y =
1
T

T

∑
t=1

(y f L
t + ybL

t ). (18)
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Figure 4. Proposed ECG identification architecture using LSTM-based RNN Model. The inputs are
raw signals preprocessed from datasets, segmented into ECG components with a window size of T,
and trained at the LSTM-based RNN model.

Figure 5. Bidirectional LSTM-based DRNN model consisting of an input layer, multiple hidden layers,
and an output layer with forward LSTM f 1 and backward LSTMb1 tracks [28].
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To evaluate the performance of the proposed model, we perform the ECG identification
experiments with six RNN structures shown in Table 1. Through the experiments, we selected
Arch 6 because it results in the best identification performance.

Table 1. LSTM and proposed bidirectional LSTM architectures (BiLstm).

Architectures Layers Type

Arch 1 Lstm-softmax
Arch 2 Lstm-Lstm-softmax
Arch 3 Lstm-Lstm-Lstm-softmax
Arch 4 BiLstm-late-fusion-softmax
Arch 5 BiLstm-BiLstm-late-fusion softmax
Arch 6 BiLstm-BiLstm-BiLstm-late-fusion-softmax

3.2. Proposed Preprocessing Procedure

The ECG database used in this study is obtained from the publicly available MIT-BIH Normal
Sinus Rhythm (NSRDB) and MIT-BIH Arrhythmia datasets (MITDB), which are part of the Physionet
database [35–37]. For the analysis, we performed the preprocessing and segmentation of each
dataset. Given an ECG recording, the proposed preprocessing procedure is applied in the first
step. This procedure consists of applying the derivative filter, moving average filter, and normalization
for amplitude using (19) in the given order, as shown in Figure 6.

y[n] = 2(x[n]− xmedian)/(xmax − xmin), (19)

where x[n] is the n-th value, xmedian is the median value, xmax is the maximum value, and xmin is the
minimum value of the input signal. The next step is to segment the ECG recordings into ECG signal
components with a period of P. The conventional segmentation technique uses an R peak as a marker
from the segmented individual heartbeat waveforms: P wave, QRS complex, and T wave. For the
NSRDB, 288 samples were trimmed and grouped, while for the MITDB, 444 samples were trimmed
and grouped.
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Figure 6. Cont.
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Figure 6. ECG signal preprocessing before the segmentation for input data: (a) ECG raw signal;
(b) signal obtained after derivative filter; (c) signal obtained after moving average filter; (d) signal
obtained after normalization.

3.3. Identification Procedure

In the identification procedure, each ECG dataset is divided into a training and testing set. Each
training or testing sequence is of one × N size, where N is the number of samples in the ECG signal.
After one-hot sequences encoding, the weight parameters of the bidirectional LSTM are determined
using the training set [38]. Then, the softmax function is used to obtain a class probability (a set of
the subject probability distribution). After the RNN training, the test sequence is fed to evaluate the
RNN model. A classification decision for each test sequence is obtained by selecting the class with the
highest probability in all classes.

3.4. Dataset and Implementation

The NSRDB contains 18 two-channel recordings obtained from 18 subjects (5 males aged 26–45 and
13 females aged 20–50). Similarly, MITDB contains 48 two-channel recordings obtained from 47 subjects
(25 males and 22 females). One recording for each subject was used in our proposed deep learning system.
The recordings of the NSRDB were digitized using 12 bits per sample. Moreover, the recordings of the
MITDB were digitized using an 11-bit resolution over a 10 mV range.

In our proposed method, the NSRDB and MITDB were applied in the segmentation process using
the sampling frequency of the dataset. Here, the NSRDB and MITDB can be segmented using a fixed
segmentation time-period or conventional R-peak detection owing to irregular ECG waveform [39].
To apply the real-time system, we considered the smallest input data size with respect to the minimum
R-R interval. According to the clinical definition, the minimum R-R interval of 200 ms cannot exceed
300 bpm [40–42]. Thus, the selected NSRDB input size equals the time required for 288 samples
(2.25 s) and the MITDB input size corresponds to the time required for 444 samples (1.23 s). Because
we used the non-feature extraction method in the first experiment, the segmented data in NSRDB
randomly included two to four heartbeats, and the segmented data in MITDB randomly included zero
to two heartbeats as shown in Figure 7a. In the second and third experiments, we used ECG signals
segmented with R-peak detection, as shown in Figure 7b.
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Figure 7. ECG signal segmentation after the normalization: (a) a method using a fixed segmentation
time period; (b) a method using R-peak detection.

For ECG preprocessing, particularly, to manage the generations of training and testing data,
we used Matlab. The implementation, training, and testing of RNN models were performed using
TensorFlow [43]. The ECG identification system uses the configuration and framework listed in
Table 2. The tests were performed on our proposed model after the completion of every training
epoch. We divided the processed raw data into two sets: 80% and 20% for the training and testing,
respectively. The cost function used is the cross-entropy error during training, and the optimization
method used is the Adam algorithm with a learning rate of 0.001 [44]. Experiment 1 was performed
with a batch size of 1000, and experiments 2 and 3 were performed with a batch size of 100. The model
parameters of conventional and proposed LSTM are listed in Table 3. These parameters were selected
through iterative experiments using these parameters. The different conditions of the evaluation were
the number of layers, number of hidden units, and input sequence length. In terms of the learning
time, 4, 8, and 16 h were required for 1, 2, and 3 hidden layers, respectively.

Table 2. Server system configuration and framework.

Category Tools

CPU Intel i7-6700k @ 4.00 GHz
GPU NVIDIA GeForce GTX 1070 @ 8GB
RAM DDR4 @ 24GB

Operating System Windows 10 Enterprise
Language Python 3.5

Library Google Tensorflow 1.6/CUDA Toolkit 9.0/NVIDIA cuDNN v7.0

Table 3. Model parameters of conventional and proposed LSTM.

Parameters Value

Loss Function Cross-entropy
Optimizer Adam
Dropout 1

Learning Rate 0.001
Number of hidden units 128 and 250

Mini-batch size 1000 and 100
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4. Experimental Results and Discussion

We found various conventional classification methods being used on NSRDB and MITDB datasets.
For the NSRDB dataset, the reported classification accuracy ranged from 99.4% to 100% [45,46],
while for the MITDB dataset, the reported accuracy ranged from 93.1% to 100% [15,19,26,46–50].
The RNN-based method outperforms the aforementioned methods on both datasets. For the NSRDB
and MITDB datasets, the classification experiments were performed using one recording per subject;
in the NSRDB experiment, ECG signal was segmented with a fixed segmentation time period, including
2–4 training and testing beats per subject were used. Similarly, in the MITDB experiment, the unfixed
group ECG including 0–2 training and testing beats per subject were used. Moreover, ECG signals
segmented with R-peak detection, including three, six, and nine training and testing beats per subject
were used. Because the sampling rate of the NSRDB and MITDB were different, the training and
testing beats per subject were set independently for a dataset.

Figures 8–10 show the classification accuracy for the selected architectures and parameter
conditions. In Figures 8a and 9a, the number of hidden units of hidden layer is 128, and an ECG
signal segmented with a fixed segmentation time period was used. The results of Figures 8a and 9a
confirm that the classification accuracy varied between 29.7–100% and 1.87–98.53%, respectively.
Furthermore, in the case of Figures 8b and 9b, the number of hidden units of hidden layer is 250.
The results of Figures 8b and 9b confirm that the classification accuracy varied between 5.5–100% and
2.21–99.73%, respectively. In Figure 10, the number of hidden units of the hidden layer is 250, and the
ECG signal segmented with a fixed segmentation time period was used. Figure 10 confirms that the
classification accuracy varied from 5.5–100% to 63.8–99.8%, respectively. Hence, the results presented
are for different input sequence length, zero dropout, and number of hidden units. Thus, the proposed
LSTM networks performed better than the conventional RNNs for the same experimental conditions.
Furthermore, we can observe that a randomized decrease in the length of the input sequence—like the
unfixed group ECG—improves the performance of the proposed LSTM networks and hyperparameter
settings. In our experiments, the classification accuracy increased with a decrease in the number of
hidden units and an increase in the number of hidden layers.

In [26], an increase in the number of the hidden layers and units increased the classification
accuracy. However, in our experiments, the randomized short input sequence size—like the unfixed
group ECG—resulted in an increase in the number of hidden layers and units and a decrease in the
classification accuracy. Furthermore, as shown in Figure 10, the classification accuracy and number of
hidden layers increased when the input sequence group size was long.
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Figure 8. Classification accuracy for NSRDB using two selected parameters: the number of hidden unit
of (a) is 128 and number of hidden unit of (b) is 250. The input sequence length is 2–4 for the number
of heartbeats (Experiment 1).
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Figure 9. Classification accuracy for MITDB using two selected parameters: the number of hidden
units of (a) is 128 and number of hidden units of (b) is 250. The input sequence length is 0–2 for the
number of heartbeats (Experiment 2).
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Figure 10. Classification accuracy for MITDB using selected parameters of 250 hidden units. The input
sequence length (ISL) is 3, 6, and 9 for the number of heartbeats (Experiment 3).

The performance results confirm that the ECG identification satisfies the LSTM and bidirectional
LSTM in the NSRDB. Particularly, in our proposed model, the learning corresponded well and showed
better classification results than that of the conventional LSTM model in MITDB. Tables 4 and 5 list
the performance summary for the NSRDB dataset; Tables 6–8 list the performance summary for the
MITDB dataset. Table 9 shows that the proposed model outperforms other state-of-the-art methods
by obtaining 99.8% classification accuracy. Although it may seem that the proposed model does
not perform better than the model proposed in [26], the proposed model of [26] uses longer input
sequences. However, similar to our model, when a short input sequence is used, the performance
decreases to 98.2%, whilst our proposed model achieves 99.73%. Therefore, the proposed methodology
yields enhanced performance, particularly with short sequences.

The primary reasons for the good performance of the proposed models for ECG classification are
as follows: (1) sufficient number of deep layers enabled the model to extract personal features (2) the
bidirectional model controlled the sequential and time dependencies within the personal ECG signals
(3) the late-fusion technique can simplify the prediction score prior to the softmax layer step.
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Table 4. Performance summary of the proposed bidirectional LSTM in NSRDB analysis 1 of Figure 8a.

Type of Input Sequence Length Number of Overall Overall Overall F1 ScoreCell/Unit (in Number of Beats) Hidden Layer Accuracy Precision Recall

LSTM 2–4 1 29.7% 24.13% 29.68% 0.2662
LSTM 2–4 2 98.6% 98.73% 98.67% 0.9870
LSTM 2–4 3 100% 100% 100% 1.0000

Proposed LSTM 2–4 1 99.93% 99.92% 99.96% 0.9994
Proposed LSTM 2–4 2 99.93% 99.92% 99.96% 0.9994
Proposed LSTM 2–4 3 99.93% 99.94% 99.93% 0.9993

Table 5. Performance summary of the proposed bidirectional LSTM in NSRDB analysis 2 of Figure 8b.

Type of Input Sequence Length Number of Overall Overall Overall F1 ScoreCell/Unit (in Number of Beats) Hidden Layer Accuracy Precision Recall

LSTM 2–4 1 99.96% 99.96% 99.96% 0.9996
LSTM 2–4 2 100% 100% 100% 1.0000
LSTM 2–4 3 5.5% 0.31% 0.58% 0.0058

Proposed LSTM 2–4 1 100% 100% 100% 1.0000
Proposed LSTM 2–4 2 100% 100% 100% 1.0000
Proposed LSTM 2–4 3 100% 100% 100% 1.0000

Table 6. Performance summary of the proposed bidirectional LSTM in MITDB analysis 1 of Figure 9a.

Type of Input Sequence Length Number of Overall Overall Overall F1 ScoreCell/Unit (in Number of Beats) Hidden Layer Accuracy Precision Recall

LSTM 0–2 1 6.28% 7.4% 6.21% 0.0676
LSTM 0–2 2 38.80% 35.66% 38.83% 0.3717
LSTM 0–2 3 1.87% 0.06% 0.18% 0.0013

Proposed LSTM 0–2 1 81.70% 82.83% 81.68% 0.9780
Proposed LSTM 0–2 2 97.78% 97.77% 97.77% 0.9780
Proposed LSTM 0–2 3 98.53% 98.53% 98.53% 0.9855

Table 7. Performance summary of the proposed bidirectional LSTM in MITDB analysis 2 of Figure 9b.

Type of Input Sequence Length Number of Overall Overall Overall F1 ScoreCell/Unit (in Number of Beats) Hidden Layer Accuracy Precision Recall

LSTM 0–2 1 99.70% 97.92% 97.90% 0.9791
LSTM 0–2 2 99.00% 99.01% 99.00% 0.9900
LSTM 0–2 3 2.21% 0.04% 2.13% 0.0008

Proposed LSTM 0–2 1 98.04% 98.07% 98.04% 0.9806
Proposed LSTM 0–2 2 99.26% 99.28% 99.26% 0.9927
Proposed LSTM 0–2 3 99.73% 99.73% 99.73% 0.9973

Table 8. Performance summary of the proposed bidirectional LSTM in MITDB analysis 3 of Figure 10.

Type of Input Sequence Length Number of Overall Overall Overall F1 ScoreCell/Unit (in Number of Beats) Hidden Layer Accuracy Precision Recall

LSTM 3 1 98.65% 98.76% 98.85% 0.9981
LSTM 3 2 98.17% 98.42% 98.56% 0.9849
LSTM 3 3 98.55% 98.66% 98.86% 0.9876
LSTM 6 1 97.00% 97.37% 97.49% 0.9743
LSTM 6 2 96.85% 97.21% 97.61% 0.9741
LSTM 6 3 97.92% 98.16% 98.44% 0.9830
LSTM 9 1 97.50% 97.70% 98.07% 0.9788
LSTM 9 2 96.50% 96.69% 97.11% 0.9690
LSTM 9 3 96.49% 96.80% 97.22% 0.9701

Proposed LSTM 3 1 97.79% 98.10% 98.22% 0.9816
Proposed LSTM 3 2 99.37% 99.47% 99.52% 0.9949
Proposed LSTM 3 3 99.20% 99.30% 99.42% 0.9936
Proposed LSTM 6 1 98.71% 98.95% 99.06% 0.9901
Proposed LSTM 6 2 99.57% 99.68% 99.59% 0.9963
Proposed LSTM 6 3 99.71% 99.78% 99.72% 0.9975
Proposed LSTM 9 1 63.80% 67.31% 63.49% 0.6534
Proposed LSTM 9 2 99.10% 99.12% 99.31% 0.9921
Proposed LSTM 9 3 99.80% 99.82% 99.83% 0.9982
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Table 9. Performance comparison with state-of-the-art models.

Methods Dataset Input Sequence Length
(Number of Beats) Overall Accuracy (%)

Proposed model MITDB 3 99.73
9 99.80

H. M. Lynn et al. [15] MITDB 3 97.60
9 98.40

R. Salloum et al. [26] MITDB 3 98.20
9 100

Q. Zhang et al. [19] MITDB 1 91.10
X. Zhang [49] MITDB 8 97.80

12 98.9
Ö. Yildirim [50] MITDB 5 99.39

5. Conclusions

We proposed a novel LSTM-based DRNN architecture for ECG classification and performed
experimental evaluation of our model on two datasets. The results confirm that the proposed model
outperforms other conventional methods and demonstrates a higher efficiency. This improvement
can be attributed to the ability of the model to extract more features of ECG using the deep
layers of DRNN. The model can further control the temporal dependencies within the ECG signals.
Furthermore, we evaluated the effect of the input sequence length and found the relationship between
the hidden unit and hidden layer. The segmentation and grouping of ECG using the preprocessing
procedure can effectively impact a real-time system in the classification and authentication processes.
The proposed model performs better with shorter sequences compared with the state-of-the-art
methods. This characteristic is useful in real-time personal ECG identification systems that require
quick results. This study confirms that the proposed bidirectional LSTM-based DRNN is promising for
the applications of ECG based real-time biometric identification. We lacked the scale of samples in our
experiments, and the results were affected by the hardware environments. In the future, a large-scale
experimentation study will be conducted with ordinary human ECG signals: calmness, eating, sleeping,
running, walking, etc. Further, our proposed bidirectional LSTM-based DRNN will be extensively
evaluated with other ECG signals obtained from individuals of different age groups. The future
extensive research studies will aim to prove the robustness and efficiency of our proposed model.
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