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Abstract: Reactions of oxirane ring opening provide a powerful tool for regio- and stereoselective
synthesis of polyfunctional and heterocyclic compounds, widely used in organic chemistry and drug
design. Cyclooctane, alongside other medium-sized rings, is of interest as a novel molecular platform
for the construction of target-oriented leads. Additionally, cyclooctane derivatives are well known
to be prone to transannular reactions, which makes them a promising object in the search for novel
approaches to polycyclic structures. In the present work, a series of cyclooctanediones was studied in
Corey-Chaykovsky reactions, and novel spirocyclic bis(oxiranes) containing cyclooctane core, namely,
1,5-dioxadispiro[2.0.2.6]dodecane and 1,8-dioxadispiro[2.3.2.3]dodecane, were synthesized. Ring
opening of the obtained bis(oxiranes) upon treatment with sodium azide was investigated, and it
was found that the reaction path is determined by the reciprocal orientation of oxygen atoms in the
oxirane moieties. Diastereomers of the bis(oxiranes) with cis-orientation underwent independent
ring opening, supplying corresponding diazidodiols, while in the case of stereoisomers with trans-
orientation, domino-like reactions occurred, including intramolecular nucleophilic attack and the
formation of a novel three- or six-membered O-containing ring. Summarily, a straightforward
approach to polyfunctional compounds containing cyclooctane or oxabicyclo[3.3.1]nonane cores,
employing bis(oxiranes), was elaborated.

Keywords: oxiranes; cyclooctanes; nucleophilic ring opening; domino reactions; azides; polyols;
oxabicyclo[3.3.1]nonanes; polyfunctional compounds

1. Introduction

Transformations of strained electron-deficient oxirane rings represent a powerful tool
in drug design and organic synthesis. Oxirane rings occur in a number of medicinal drugs
and bioactive natural compounds (Figure 1) and are widely used for the construction of
novel drug candidates, particularly as an alkylating agent [1–5]. Synthetic approaches
towards such drugs as atazanavir (HYV protease inhibitor), linezolid (antibiotic), diltiazem
(antihypertensive drug), and a number of others include transformations of oxirane moi-
ety [6]. Reactions of oxirane ring opening are widely used as a regio- and stereoselective
approach to polyfunctional and heterocyclic compounds, and novel reactions and synthetic
procedures employing oxiranes are still being developed [7–14]. The presence of two or
more oxirane moieties in a molecule creates the opportunity for a straightforward syn-
thesis of polyfunctional compounds, and for the use of such a molecule as a linker in the
construction of multivalent ligands.

Cyclooctane, alongside other medium rings, is characterized by an optimal balance of
conformational rigidity and flexibility and is of interest as a novel molecular platform for
the design of target-oriented leads [15–18]. On the other hand, the synthetic application
of ring-closure reactions to medium rings is often limited because of the entropy factor
disfavoring ring closure. Therefore, the search for simple preparative approaches to the
functionalization of already existing cyclooctane moiety poses an important problem [19,20].
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Additionally, a number of transannular reactions can proceed due to cyclooctane conforma-
tional transitions, including those starting from oxirane ring-opening processes [21,22].
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Figure 1. Examples of marketed drugs and bioactive compounds containing oxirane or cyclooctane 
rings. 

Cyclooctane, alongside other medium rings, is characterized by an optimal balance 
of conformational rigidity and flexibility and is of interest as a novel molecular platform 
for the design of target-oriented leads [15–18]. On the other hand, the synthetic application 
of ring-closure reactions to medium rings is often limited because of the entropy factor 
disfavoring ring closure. Therefore, the search for simple preparative approaches to the 
functionalization of already existing cyclooctane moiety poses an important problem 
[19,20]. Additionally, a number of transannular reactions can proceed due to cyclooctane 
conformational transitions, including those starting from oxirane ring-opening processes 
[21,22]. 

This work is therefore aimed at the synthesis of novel bis(oxiranes) A, containing 
cyclooctane core, the investigation of the reactions with azide anion, and the preparation 
of polyfunctional compounds B starting from the bis(oxiranes) (Scheme 1). 
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Scheme 1. Ring opening of bis(oxiranes) A, containing cyclooctane core. 

2. Results and discussion 
2.1. Synthesis of Bis(oxiranes) via Corey-Chaykovsky Reaction of Cyclooctanediones 

In order to obtain previously unknown bis(oxiranes), cyclooctanediones 1–5 were in-
vestigated in a Corey-Chaykovsky reaction using sulfur ylide derived from trimethyl-
sulfonium iodide and potassium tert-butoxide (Scheme 2). 

Figure 1. Examples of marketed drugs and bioactive compounds containing oxirane or cyclooc-
tane rings.

This work is therefore aimed at the synthesis of novel bis(oxiranes) A, containing
cyclooctane core, the investigation of the reactions with azide anion, and the preparation of
polyfunctional compounds B starting from the bis(oxiranes) (Scheme 1).
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2. Results and discussion
2.1. Synthesis of Bis(oxiranes) via Corey-Chaykovsky Reaction of Cyclooctanediones

In order to obtain previously unknown bis(oxiranes), cyclooctanediones 1–5 were
investigated in a Corey-Chaykovsky reaction using sulfur ylide derived from trimethylsul-
fonium iodide and potassium tert-butoxide (Scheme 2).

Bis(oxirane) 6 was obtained from cyclooctane-1,2-dione (1) as a mixture of diastere-
omers in good yield (Scheme 2). In order to study the difference in the reactivity of
stereomers of compound 6, individual diastereomer 6a (meso form) and 6b (as racemate)
were isolated via preparative column chromatography.

The interaction of cyclooctane-1,3-dione (2) and sulfur ylide produced no bis(oxirane),
which is probably due to the tendency of 1,3-diketone to produce enolate under basic
conditions. As such, 1,3-diketone 3, containing a spirocyclopropane moiety between the
carbonyl groups, was employed in a Corey-Chaykovsky reaction, yielding bis(oxirane) 7 as
a mixture of meso form 7a and racemate 7b in ratio 3:1 (Scheme 2). The reaction proceeded
in low yield and a decrease in the reaction time down to 1 h was required in order to
prevent the decomposition of the products. The lability of compounds 7a,b prevented
their isolation via column chromatography, and full description of NMR spectra could be
accomplished only for the isomer 7a prevailing in the reaction mixture.

Cyclooctane-1,4-dione (4), in the presence of potassium tert-butoxide and sulfur ylide,
which may also act as a base, underwent a well-known [23,24] intramolecular condensation,
producing bicyclic ketone 8 instead of the corresponding bis(oxirane) (Scheme 2).

Finally, cyclooctane-1,5-dione (5) was found to smoothly react with sulfur ylide, pro-
ducing bis(oxirane) 9 in good yield (Scheme 2). Individual diastereomers 9a and 9b were
isolated via column chromatography.

The relative configuration of compounds 6a,b was determined using a calculation of
13C NMR chemical shifts. The assignments of configuration for 7a,b and 9a,b were made
on the basis of NMR spectra, taking into account differences in the symmetry of molecules
(see Supplementary Materials for details).



Molecules 2022, 27, 6889 3 of 10Molecules 2022, 27, x FOR PEER REVIEW 3 of 10 
 

 

O

O

3

O

O

O

O

O

O
+

Me3S+I-, t-BuOK
DMSO, 20°C, 1-16 h

no reaction

7a 7b

Me3S+I-, t-BuOK
DMSO, 20°C, 1 h

2

7, 16%

3:1

O

O O

O

6, 55%

O
O

6b, 3%
O

O

6a, 2%

column 
chromatogaphy

+

1

Me3S+I-, t-BuOK
DMSO, 20°C, 16 h

O

O 8, 20%

Me3S+I-, t-BuOK
DMSO, 20°C, 16 h

4
O

O

O

O
9, 63%

O

O
9a, 29%

O

O
9b, 17%

+

5

Me3S+I-, t-BuOK
DMSO, 20°C, 16 h

O

column 
chromatogaphy

 
Scheme 2. Investigation of diketones 1–5 in Corey-Chaykovsky reaction. 
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Scheme 2. Investigation of diketones 1–5 in Corey-Chaykovsky reaction.

2.2. Ring Opening of Bis(oxiranes) with Sodium Azide

In order to compare the reactivity of bis(oxiranes) with different reciprocal positions
of three-membered rings, compounds 6a,b and 9a,b were investigated by the treatment
with a well-known nucleophile: sodium azide. It should be mentioned that organic azides
are of the utmost interest as versatile intermediates in organic synthesis and can be found
in a variety of pharmaceuticals and biologically active compounds, such as Zidovudine,
Azidamfenicol, Azidocillin, and others [25–28].

The conditions of the ring opening of oxiranes containing spriroannelated cyclooctane
moiety were probed for model oxaspirodecane 10. It was found that the reaction of
compound 10, with a four-fold excess of sodium azide in water under reflux, produces
azidoalcohol 11 as a sole product (Scheme 3).
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Scheme 3. Ring opening of oxirane 10 with sodium azide.

Under the same conditions, compound 6a interacted with sodium azide, producing
predominantly product 12, resulting from the opening of one of two oxirane rings, which
was obtained as a poorly separable mixture with diazidodiol 13 (see Section 3.3 and
Supplementary Materials). To obtain diazidodiol 13 as the sole product, an additional
optimization of reaction conditions was conducted (see Supplementary Materials). Varying
solvents, reaction times and reagents ratios demonstrated that for the full conversion of
compound 6a into diazidodiol 13, 16-fold excess of nucleophilic agent and reflux in water
for 30 h are required (Scheme 4).
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Scheme 4. Ring opening of bis(oxiranes) 6a,b with sodium azide.

Bis(oxirane) 6b, on the contrary, smoothly reacted with sodium azide, producing
oxirane 14 as a sole product and no products of independent ring opening similar to
compounds 12 or 13 were observed (Scheme 4). Thus, in the reaction of 6b with nucleophile,
a fairly rare reaction pathway, described for bis(oxiranes) containing neighboring oxirane
moieties [29,30], was observed. In this case, anion I, formed after the opening of first
oxirane ring, underwent intramolecular nucleophilic attack of the oxygen atom to form a
new oxirane moiety. Such reaction is highly improbable for diastereomer 6a because in the
case of oxirane 12 (or corresponding anion), a nucleophilic attack of oxygen must proceed
“from the front”.

The presence of a hydroxyl group in compound 14 was additionally confirmed via
the methylation reaction. Treatment of oxirane 14 with an excess of methyl iodide in the
presence of NaH produced methyl ether 15 as the sole product (Scheme 4).

The interaction of two diastereomers of bis(oxirane) 9 with sodium azide also pro-
ceeded via two different pathways. It was found that the ring opening of both oxirane
moieties in compound 9a occurs upon treatment with eight-fold excess of nucleophile
under reflux for 3 h, producing diazidodiol 17 as the only product in high yield (Scheme 5).
When the reaction time was shorter, a mixture of compounds 16 and 17 was obtained, with
diazidodiol 17 prevailing (see Section 3.3 and Supplementary Materials).
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Scheme 5. Ring opening of bis(oxiranes) 9a,b with sodium azide.

The reaction of bis(oxirane) 9b, containing trans-oriented oxygen atoms, with sodium
azide required shorter time (2 h) and lower excess of nucleophile (4 eq), and again proceeded
in an unexpected way, producing oxabicyclononane 18 in good yield (Scheme 5). The
formation of oxabicyclononane 18 presumably resulted from the ring opening of an oxirane
moiety, producing anion II, and subsequent intramolecular nucleophilic attack of oxygen
on the second oxirane ring. It should be noted that no examples of the formation of
tetrahydropyran moiety via domino ring opening of bis(oxiranes) has been found in earlier
research. This reaction opens the way to hardly accessible oxabicyclononane derivatives,
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which, like bicyclononanes [31,32] and azabicyclononanes [33], represent promising 3D
scaffolds for drug design.

Thus, it was demonstrated that diastereomers of bis(oxiranes) with cyclooctane cores
possess different reactivity towards azide anion. Compounds 6a and 9a, containing cis-
oriented oxygen atoms, are less reactive and undergo independent ring opening of oxirane
moieties, whereas compounds 6b and 9b, containing oxygen atoms in trans-position,
undergo relatively fast domino-type ring opening of oxirane rings and generate products
of intramolecular nucleophilic attack 14,18.

3. Materials and Methods
3.1. General Remarks

1H and 13C NMR spectra were recorded on a 400 MHz spectrometer Agilent 400-MR
(400.0 and 100.6 MHz for 1H and 13C, respectively) at r.t. in CDCl3, while chemical shifts δ
were measured with reference to the solvent (CDCl3, δH = 7.26 ppm, δC = 77.16 ppm). When
necessary, assignments of signals in NMR spectra were made using 2D techniques (see
Supplementary Materials). Accurate mass measurements (HRMS) were obtained on Bruker
micrOTOF II with electrospray ionization (ESI). Analytical thin-layer chromatography was
carried out with silica gel plates supported on aluminum (Macherey-Nagel, ALUGRAM®

Xtra SIL G/UV254), with inspection using a UV lamp (254 nm). Column chromatography
was performed on silica gel (Macherey-Nagel, Silica 60, 0.015–0.04 mm). Cyclooctanediones
1 [34], 2 [35], 3 [36], 4 and 5 [37] (A mixture of 1,4-diketone (4) and 1,5-diketone (5) in ratio
~1:1 was obtained when the procedure described in ref. [37] was reproduced, though in
the article 1,5-diketone (5) is described to be the only product; diketones 4 and 5 were
separated via column chromatography), trimethylsulfonium iodide [38], and oxirane 10 [39]
were obtained via the described methods. All other starting materials were commercially
available. All reagents except commercial products of satisfactory quality were purified
according to the literature procedures prior to use.

3.2. Synthesis of Bis(oxiranes) (General Method)

To the solution of trimethylsulfonium iodide (6.6 g, 32.4 mmol) in 60 mL of dry DMSO,
the solution of corresponding cyclooctanedione (1.4 g, 10 mmol) in 5 mL of dry DMSO
was added dropwise at stirring under argon. Then the solution of potassium tert-butoxide
(3.36 g, 30 mmol) in 40 mL of dry DMSO was added dropwise. The reaction mixture was
stirred for 16 h at r.t., then it was poured into icy water (60 mL) and extracted with pentane
(3 × 20 mL). Combined organic layers were quickly dried over MgSO4; the solvent was
evaporated under reduced pressure. The products were isolated via preparative column
chromatography (SiO2).

(3R,4S)-1,5-Dioxadispiro[2.0.2.6]dodecane (6a).
Yield 2% (34 mg), yellowish liquid, Rf = 0.38 (CH2Cl2:light petrol 3:1).
1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 1.51–1.85 (m, 10H, 6CH2), 1.85–1.96 (m, 2H,

2CH2), 2.63 (d, 2J = 5.3, 2H, 2CH2O), 2.85 (dd, 2J = 5.3, 3J = 0.9, 2H, 2CH2O); 13C NMR
(101 MHz, CDCl3, 25 ◦C): δ = 22.8 (2CH2

β), 25.9 (2CH2
γ), 33.8 (2CH2

α), 53.1 (2CH2O), 60.3
(2Cspiro).

HRMS (ESI+, 70 eV, m/z): calculated for C10H16O2 [M+H]+: 169.1223; found: 169.1229.
(3R,4R)/(3S,4S)-1,5-Dioxadispiro[2.0.2.6]dodecane (6b).
Yield 3% (50 mg), yellowish liquid, Rf = 0.18 (CH2Cl2: light petrol 3:1).
1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 1.43–1.67 (m, 4H, 4CH2), 1.69–1.84 (m, 6H,

6CH2), 1.90–2.01 (m, 2H, 2CH2), 2.59 (d, 2J = 5.7, 2H, 2CH2O), 2.87 (d, 2J = 5.7, 2H, 2CH2O);
13C NMR (101 MHz, CDCl3, 25 ◦C): δ = 25.1 (2CH2

β), 25.4 (2CH2
γ), 32.3 (2CH2

α), 52.3
(2CH2O), 58.7 (2 Cspiro).

HRMS (ESI+, 70 eV, m/z): calculated for C10H16O2 [M+H]+: 169.1223; found: 169.1229.
1,8-Dioxadispiro[2.0.2.0.2.5]tetradecane (7).
Yield 16% (310 mg), obtained as a mixture of diastereomers 7a:7b 3:1, colorless liquid,

Rf = 0.27 (CH2Cl2)
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7a: 1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 0.39–0.45 (m, 2H, CH2, cy-Pr), 0.65–0.71
(m, 2H, CH2, cy-Pr), 1.38–1.46 (m, 2H, C10H2, C14H2), 1.52–1.71 (m, 2H, C11H2, C13H2 +
2H, C12H2), 1.89–1.96 (m, 2H, C11H2, C13H2), 1.99–2.07 (m, 2H, C10H2, C14H2), 2.61 (s, 4H,
2CH2O); 13C NMR (101 MHz, CDCl3, 25 ◦C): δ = 6.5 (CH2, cy-Pr), 8.8 (CH2, cy-Pr), 22.4
(C11H2, C13H2), 26.6 (C4), 26.7 (C12H2), 34.1 (C10H2, C14H2), 54.2 (2CH2O), 59.0 (C3,C7).

7b: 1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 0.40–0.47 (m, 4H, CH2, cy-Pr), 1.47–1.56
(m, 2H, C10H2, C14H2), 1.60–1.66 (m, 2H, C12H2), 1.71–1.80 (m, 4H, C11H2, C13H2), 2.0–2.06
(m, 2H, C10H2, C14H2); 13C NMR (101 MHz, CDCl3, 25 ◦C): δ = 7.3 (2C, CH2, cy-Pr), 24.5
(C11H2, C13H2), 25.5 (C12H2), 25.9 (C4), 34.7 (C10H2, C14H2), 54.6 (2CH2O), 58.99 (C3,C7).

HRMS (ESI+, 70 eV, m/z): calculated for C12H18O2 [M+H]+: 195.1380; found: 195.1384.
3,4,5,6-Tetrahydropentalen-1(2H)-one (8) [23].
Yield 20% (244 mg), colorless oil, Rf = 0.19 (light petrol:EtOAc 10:3).
1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 2.25–2.38 (m, 4H, 2CH2), 2.43–2.56 (m, 4H,

2CH2), 2.66–2.76 (m, 2H, CH2); 13C NMR (101 MHz, CDCl3, 25 ◦C): δ = 24.5 (CH2), 25.7
(CH2), 27.9 (CH2), 32.1 (CH2), 41.2 (CH2), 149.0 (C), 187.4 (C), 204.0 (C=O).

(3s,7s)-1,8-Dioxadispiro[2.3.2.3]dodecane (9a).
Yield 29% (487 mg), yellowish liquid, Rf = 0.36 (light petrol:EtOAc 3:1).
1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 1.47 (ddd, 4H, 2J = 14.4, 3J = 9.0, 3J = 3.6,

4CH2
α), 1.55–1.66 (m, 2H, 2CH2

β), 1.79–1.92 (m, 2H, 2CH2
β), 2.01 (ddd, 4H, 2J = 14.4,

3J = 8.8, 3J = 3.4, 4CH2
α), 2.63 (s, 4H, 2CH2O); 13C NMR (101 MHz, CDCl3, 25 ◦C): δ = 22.4

(2CH2
β), 34.8 (4CH2

α), 54.9 (2CH2O), 59.6 (2 Cspiro).
HRMS (ESI+, 70 eV, m/z): calculated for C10H16O2 [M+Na]+: 191.1043; found: 191.1042.
(3r,7r)-1,8-Dioxadispiro[2.3.2.3]dodecane (9b).
Yield 17% (286 mg), yellowish liquid, Rf = 0.49 (light petrol:EtOAc 3:1).
1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 1.62–1.85 (m, 12H, 6CH2), 2.67 (s, 4H, 2CH2O);

13C NMR (101 MHz, CDCl3, 25 ◦C): δ = 21.7 (2CH2
β), 34.6 (4CH2

α), 55.6 (2CH2O), 59.1
(2 Cspiro).

HRMS (ESI+, 70 eV, m/z): calculated for C10H16O2 [M+H]+: 169.1223; found: 169.1228.

3.3. Ring Opening of Oxiranes upon Treatment with Sodium Azide (General Method)

To the solution of sodium azide (2–32 mmol) in water (2 mL), the corresponding
oxirane (1 mmol) was added. The reaction mixture was stirred under reflux for 2–30 h,
cooled down to r.t. and extracted with ethyl acetate (3 × 3 mL). The organic layers were
combined; the solvent was evaporated under reduced pressure. The products were isolated
via preparative column chromatography (SiO2).

1-(Azidomethyl)cyclooctanol (11).
Obtained from oxirane 10 and sodium azide (0.26 g, 4 mmol). Reaction time 5 h. Yield

52% (95 mg), colorless oil, Rf = 0.32 (light petrol:EtOAc 10:1).
1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 1.35–1.72 (m, 12H, 7CH2), 1.72–1.83 (m, 2H,

2CH2), 3.26 (s, 2H, CH2N3); 13C NMR (101 MHz, CDCl3, 25 ◦C): δ = 22.1 (2CH2), 24.9 (CH2),
28.2 (2CH2), 33.9 (2CH2), 60.8 (CH2N3), 75.3 (C).

HRMS (ESI+, 70 eV, m/z): calculated for C9H17N3O [M+Na]+: 206.1264; found:
206.1253.

(3R,4S)/(3S,4R)-4-(Azidomethyl)-1-oxaspiro[2.7]decan-4-ol (12).
Obtained from bis(oxirane) 6a and sodium azide (0.52 g, 8 mmol). Reaction time 3 h.

Yield 16% (33 mg), colorless oil, Rf = 0.55 (light petrol:EtOAc 6:1).
1H NMR (400 MHz, CDCl3, 25 ◦C): 1.34–1.95 (m, 12H, 6CH2), 2.47 (s, 1H, OH), 2.61 (d,

1H, 2J = 4.9, CH2O), 3.08 (d, 1H, 2J = 4.9, CH2O), 3.25 (s, 2H, CH2N3); 13C NMR (101 MHz,
CDCl3, 25 ◦C): 21.3 (CH2), 24.9 (CH2), 25.0 (CH2), 25.7 (CH2), 30.3 (CH2), 31.6 (CH2), 53.5
(CH2O, 1JCH = 173), 58.1 (CH2N3, 1JCH = 141), 61.0 (C), 73.9 (C).

HRMS (ESI+, 70 eV, m/z): calculated for C10H17N3O2 [M+Na]+: 234.1213; found:
234.1220.

(1R,2S)/(1S,2R)-1,2-Bis(azidomethyl)cyclooctane-1,2-diol (13).
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Obtained from bis(oxirane) 6a and sodium azide (1.04 g, 16 mmol). Reaction time 30 h.
Yield 54% (136 mg), yellow oil, Rf = 0.76 (light petrol:EtOAc 4:1).

1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 1.41–1.54 (m, 4H, 2CH2), 1.55–1.70 (m, 4H,
2CH2), 1.74–1.90 (m, 2H, 2CH2), 1.94–2.04 (m, 2H, 2CH2), 2.87 (s, 2H, 2 OH), 3.29 (d, 2H,
2J = 12.4, 2CH2N3), 3.51 (d, 2H, 2J = 12.4, 2CH2N3); 13C NMR (101 MHz, CDCl3, 25 ◦C):
δ = 21.6 (2CH2), 28.1 (2CH2), 32.6 (2CH2), 57.3 (2CH2N3), 77.3 (2 C).

HRMS (ESI+, 70 eV, m/z): calculated for C10H18N6O2 [M+Na]+: 277.1383; found:
277.1387.

((1R,8S)/(1S,8R)-8-(Azidomethyl)-9-oxabicyclo[6.1.0]nonan-1-yl)methanol (14).
Obtained from bis(oxirane) 6b and sodium azide (0.52 g, 8 mmol). Reaction time 2 h.

Yield 40% (84 mg), yellow oil, Rf = 0.10 (light petrol:EtOAc 4:1).
1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 1.40–1.70 (m, 10H, 6CH2), 1.90 (br.m, 1H, OH),

2.24–2.37 (m, 2H, 2CH2), 3.52 (d, 1H, 2J = 13.5, CH2N3), 3.62 (d, 1H, 2J = 13.5, CH2N3),
3.72 (dd, 1H, 2J = 12.2, 3J = 4.6, CH2O), 3.86 (dd, 1H, 2J = 12.2, 3J = 5.4, CH2O); 13C NMR
(101 MHz, CDCl3, 25 ◦C): δ = 25.1 (CH2), 25.4 (CH2), 26.49 (CH2), 26.51 (CH2), 29.57 (CH2),
29.63 (CH2), 52.3 (CH2N3), 62.5 (CH2O), 66.0 (C), 66.3 (C).

HRMS (ESI+, 70 eV, m/z): calculated for C10H19N3O3 [M+Na]+ 252.1319; found:
252.1315.

(3s,7s)-7-(Azidomethyl)-1-oxaspiro[2.7]decan-7-ol (16).
Obtained from bis(oxirane) 9a and sodium azide (0.26 g, 4 mmol). Reaction time 2 h.

Yield 14% (30 mg), yellowish liquid, Rf = 0.27 (light petrol:EtOAc 3:1).
1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 1.41–1.53 (m, 2H, 2CH2), 1.60–1.74 (m, 4H,

4CH2), 1.74–1.91 (m, 6H, 6CH2), 2.62 (s, 2H, CH2O), 3.26 (s, 2H, CH2N3); 13C NMR
(101 MHz, CDCl3, 25 ◦C): δ = 19.2 (2CH2), 34.1 (2CH2), 35.7 (2CH2), 55.4 (CH2O), 58.9
(Cspiro), 60.9 (CH2N3), 75.1 (C).

HRMS (ESI+, 70 eV, m/z): calculated for C10H17N3O2 [M+Na]+: 234.1213; found:
234.1215.

(1s,5s)-1,5-Bis(azidomethyl)cyclooctane-1,5-diol (17).
Obtained from bis(oxirane) 9a and sodium azide (0.52 g, 8 mmol). Reaction time 6 h.

Yield 82% (208 mg), yellowish liquid, Rf = 0.17 (light petrol:EtOAc 3:1).
1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 1.45–1.62 (m, 6H, 6CH2), 1.81–1.96 (m, 6H,

6CH2), 2.28 (br.s, 2H, 2 OH), 3.21 (s, 4H, 2CH2N3); 13C NMR (101 MHz, CDCl3, 25 ◦C):
δ = 17.9 (2CH2), 36.4 (4CH2), 62.6 (2CH2N3), 74.1 (2 C).

HRMS (ESI+, 70 eV, m/z): calculated for C10H18N6O2 [M+H]+: 255.1564; found:
255.1570.

[5-(Azidomethyl)-9-oxabicyclo[3.3.1]non-1-yl]methanol (18).
Obtained from bis(oxirane) 9b and sodium azide (0.26 g, 4 mmol). Reaction time 2 h.

Yield 64% (136 mg), yellowish liquid, Rf =0.37 (CH2Cl2).
1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 1.31–1.48 (m, 4H, C2H2, C4H2, C6H2, C8H2),

1.59–1.76 (m, 6H, C2H2, C3H2, C4H2, C6H2, C7H2, C8H2,), 1.93–2.13 (m, 3H, C3H2, C7H2,
OH), 3.03 (s, 2H, CH2N3), 3.34 (d, 2H, 3J = 6.4, CH2OH); 13C NMR (101 MHz, CDCl3, 25 ◦C):
δ = 18.4 (C3H2, C7H2), 29.5 (C2H2, C8H2), 31.0 (C4H2, C6H2), 61.4 (CH2N3), 71.4 (CH2OH),
72.9 (C1), 73.9 (C5).

HRMS (ESI+, 70 eV, m/z): calculated for C10H17N3O2 [M+H]+: 212.1394; found:
212.1388.

3.4. Synthesis of (1R,8S)/(1S,8R)-1-(Azidomethyl)-8-(methoxymethyl)-9-oxabicyclo[6.1.0]
nonane (15)

To the solution of alcohol 14 (0.21 g, 1 mmol) and methyl iodide (0.72 g, 0.33 mL,
5.7 mmol) in dry DMF (12 mL), NaH (60% suspension in oil; 0.14 g, 3.6 mmol) was added.
The reaction mixture was stirred for 12 h at r.t., quenched with saturated aqueous NH4Cl
(10 mL), and extracted with EtOAc (3 × 5 mL). Combined organic layers were dried over
MgSO4; the solvent was evaporated under reduced pressure. The product was isolated via
preparative column chromatography (SiO2).
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Yield 16% (36 mg), brown oil, Rf = 0.38 (CH2Cl2:light petrol 1:1).
1H NMR (400 MHz, CDCl3, 25 ◦C): δ = 1.36–1.66 (m, 10H, 6CH2), 2.23–2.35 (m, 2H,

2CH2), 3.36 (s, 3H, CH3), 3.431 (d, 1H, 2J = 11.1, CH2O), 3.438 (d, 1H, 2J = 13.4, CH2N3), 3.53
(d, 1H, 2J = 13.4, CH2N3), 3.73 (d, 1H, 2J = 11.1, CH2O); 13C NMR (101 MHz, CDCl3, 25 ◦C):
δ = 25.2 (CH2), 25.5 (CH2), 26.2 (CH2), 26.7 (CH2), 29.2 (CH2), 29.9 (CH2), 52.8 (CH2N3),
59.3 (CH3O), 64.6 (C), 65.1 (C), 74.2 (CH2O).

HRMS (ESI+, 70 eV, m/z): calculated for C11H19N3O2 [M+Na]+: 248.1369; found:
248.1369.

4. Conclusions

To summarize, novel bis(oxiranes), containing cyclooctane core, were synthesized and
investigated upon treatment with sodium azide. Configuration of bis(oxiranes) was found
to drastically influence on their reactivity towards azide anion. A novel pathway of the
reaction of 1,3-bis(oxiranes) with a nucleophile, producing oxabicyclononane moiety, was
found. Preparative approaches towards a series of novel cyclooctane and oxabicyclononane
derivatives, containing azido and hydroxy groups, starting from spirocyclic oxiranes and
employing simple and convenient methods, were realized.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27206889/s1, assignment of relative configuration of
diastereomers of bis(oxiranes); optimization of conditions of the ring opening of 6a and 9a; copies of
NMR spectra of the novel compounds [40–45].
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