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The prediction of binding affinities between target proteins and small molecule drugs is essential for speeding 
up the drug research and design process. To attain precise and effective affinity prediction, computer-aided 
methods are employed in the drug discovery pipeline. In the last decade, a variety of computational methods 
has been developed, with deep learning being the most commonly used approach. We have gathered several 
deep learning methods and classified them into convolutional neural networks (CNNs), graph neural networks 
(GNNs), and Transformers for analysis and discussion. Initially, we conducted an analysis of the different deep 
learning methods, focusing on their feature construction and model architecture. We discussed the advantages 
and disadvantages of each model. Subsequently, we conducted experiments using four deep learning methods 
on the PDBbind v.2016 core set. We evaluated their prediction capabilities in various affinity intervals and 
statistically and visually analyzed the samples of correct and incorrect predictions for each model. Through 
visual analysis, we attempted to combine the strengths of the four models to improve the Root Mean Square 
Error (RMSE) of predicted affinities by 1.6% (reducing the absolute value to 1.101) and the Pearson Correlation 
Coefficient (R) by 2.9% (increasing the absolute value to 0.894) compared to the current state-of-the-art method. 
Lastly, we discussed the challenges faced by current deep learning methods in affinity prediction and proposed 
potential solutions to address these issues.
1. Introduction

Proteins are responsible for a wide range of life activities in organ-
isms, with up to three billion in human cells [1]. However, proteins 
cannot work alone in the body and must bind to other molecules, known 
as ligands [2,3]. These ligands interact with specific parts of proteins, 
known as protein pockets, to carry out various physiological functions 
[4]. During the binding process, the ligand is constantly changing shape 
to achieve the best fit in the protein pocket. Affinity is a measure used 
to assess the strength of the bond between the protein and ligand, with 
higher affinity indicating a stronger connection.

Protein-ligand interactions are essential for a variety of biological 
processes, such as interactions in antibody-antigen recognition [3], cell-
cell communication [5], and signal transduction [6]. Abnormal interac-
tions can lead to many diseases, so it is important to gain a thorough 
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understanding of the mechanisms behind these interactions to facilitate 
the development of new drugs [7]. However, the drug discovery process 
is complex and time-consuming [8], so it is necessary to develop effi-
cient and accurate computational methods [9,10] to predict the affinity 
between proteins and ligands and accelerate drug discovery [11].

Traditional techniques such as GOLD [12], AutoDock [13], and X-
Score [14] are commonly used to analyze protein-ligand interactions. 
However, these methods require specialized expertise in the relevant 
field and involve complex algorithms, making them time-consuming 
and difficult to implement. To address this issue, machine learning 
approaches have been proposed to predict the protein-ligand affin-
ity, which significantly reduces manual operations that are complex 
and time-consuming. Li et al. [15] and Ballester et al. [16] used ran-
dom forest models to predict the binding affinity of protein-ligand, 
while Nguyen et al. [17] applied the gradient boosting tree model 
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Table 1

Summary of deep learning algorithm-based methods.

Name Feature Model Year

TopologyNet [30] element-specific persistent homology (ESPH) 1D-CNN 2017

DeepSite [18] 3D voxel representation (16 Å3) 3D-CNN 2017

KDEEP [19] 3D voxel representation (24 Å3) 3D-CNN 2018

Pafnucy [31] 3D voxel representation (20 Å3) 3D-CNN 2018

DeepAtom [20] 3D voxel representation (32 Å3) 3D-CNN 2019

Hu et al. [27] protein sequence, molecular graph Transformer, GAT 2020

GraphDTA [23] protein sequence, molecular graph 1D-CNN, GNN 2020

Fusion [24] 3D voxel representation (48 Å3), spatial graph representation 3D-CNN, GNN 2021

saCNN [21] 3D voxel representation (24 Å3) 3D-CNN 2021

egGNN [25] edge-gated graph feature GNN 2021
and achieved excellent results. However, the process of this method is 
relatively complicated at first. The deep learning methods that have 
emerged recently are not only comparable to or even surpass this 
method in terms of results, but also show huge advantages in terms 
of time saving.

As deep learning advances in the areas of image recognition and 
natural language processing, researchers are increasingly exploring its 
application in the identification of potential drug candidates, and have 
achieved remarkable results. Jiménez et al. [18,19], Li et al. [20] and 
Wang et al. [21] have employed 3D Convolutional Neural Network [22]
(3D-CNN) to predict protein-ligand binding affinities, which utilizes 3D 
structural information of both proteins and ligands. Nguyen et al. [23], 
Jones et al. [24] and Jiao et al. [25] have used Graph Neural Net-
work [26] (GNN) to complete the affinity prediction of proteins and 
ligands, which takes into account the 3D structural information of pro-
teins and structural information of ligands respectively. Hu et al. [27]
have adapted the graph attention network [28] (GAT) model to extract 
the 2D structure information of proteins and ligands, and then applied 
the Transformer [29] model to further extract the sequence information 
of proteins, in an effort to incorporate more protein information.

We have gathered some approaches for predicting protein-ligand 
affinity, including traditional and deep learning methods. Deep learn-
ing methods are found to be more effective than traditional methods, 
so we will focus on the popular deep learning methods, which can 
be divided into three categories: convolutional neural network meth-
ods, graph neural network methods, and Transformer methods. We will 
first explain the feature construction techniques and model architec-
tures used by various deep learning algorithms and their respective 
use cases. Then, we will compare the performance of these methods 
using the PDBbind benchmark dataset. Lastly, we will analyze four al-
gorithms in detail and discuss their individual advantages in predicting 
protein-ligand affinity. Through these studies, we hope to provide use-
ful information about the progress of deep learning methods and their 
effectiveness in addressing the issues related to protein-ligand affinity 
prediction.

2. Analysis of deep learning methods

At present, the most commonly used deep learning techniques for 
protein-ligand affinity prediction can be divided into three categories: 
convolutional neural networks, graph neural networks, and Transform-
ers. Most of these models treat affinity as a continuous value and handle 
it as a regression task. The models we introduce next are all like this. In 
this section, we will look at the features of these three types of methods, 
examine their model building processes, and analyze their application 
scenarios. A summary of the related deep learning methods is presented 
in Table 1.

2.1. Methods based on convolutional neural network

Cang et al. [30] introduced the element-specific persistent homology 
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(ESPH) method as a means of representing the three-dimensional spatial 
structure of proteins and ligands using one-dimensional topological in-
variants. This approach effectively reduces computational complexity. 
Subsequently, they developed a multi-task and multi-channel topolog-
ical neural network called TopologyNet, which utilizes fusion learning 
to enhance model performance. TopologyNet operates by converting 3D 
structure information into 1D representations, leading to some infor-
mation loss. Furthermore, since the model employs a 1D convolutional 
neural network for feature learning, the overall model framework is 
simpler compared to a 3D network. However, compressing 3D struc-
tures into one dimension often leads to information loss, and then using 
a simple 1D convolutional neural network to learn features with incom-
plete information may make the results even worse. In fact, there are 
already many excellent models based on 3D spatial structure input and 
processed by 3D convolution. This also implies that we may get better 
results by directly using 3D neural networks to process spatial struc-
tures.

Jimenez et al. [18] first proposed to use 3D structure descriptors to 
construct the characteristics of proteins and ligands. Firstly, a 16 Å3

three-dimensional grid is constructed as a container to accommodate 
proteins and ligands. Then the relative coordinates of protein and lig-
and are calculated with the mean of ligand coordinates as the geometric 
central point. Then they only took the protein and ligand structures with 
relative coordinates in the three-dimensional grid (the whole ligand is 
basically in the grid) for feature construction. For proteins, the Deep-
Site mainly referred to the atomic type defined by AutoDock4 [32]. 
Then they fused the atomic information in the surrounding grids, and 
calculated the contribution of each atom through the following equa-
tion:

𝑛(𝑟) = 1 − 𝑒−(𝑟𝑣𝑑𝑤∕𝑟)12 (1)

where 𝑟 represents the Euclidean distance between the voxel of the 
current atom and other voxels, and 𝑟𝑣𝑑𝑤 represents the van der Waals 
radius of the current atomic type. Once the features were constructed, 
they were inputted into a deep convolutional neural network (DCNN) 
for training. This method employs feature descriptors with a limited 
number of characteristic channels and a simple deep convolutional 
neural network to extract features from protein-ligand complexes and 
ultimately predict affinity.

Inspired by DeepSite, J Jimenez et al. proposed the KDEEP model 
[19] again, as shown in Fig. 1(a). They adjusted DeepSite’s descriptor 
set to better characterize proteins and ligands, including 8 character-
istic channels: Hydrophobe, Aromatic, Acceptor, Donor, PosIonizable, 
NegIonizable, Metallic and Excluded volume. During the feature build-
ing process, they built a 24 Å3 three-dimensional grid instead of the 16 
Å3, other feature building process is similar to DeepSite. Then they tried 
a variety of classical convolutional neural network architectures, includ-
ing ResNet [33], VGG [34] and SqueezeNet [35]. Ultimately, they found 
that the architecture of the SqueezeNet model yielded the best results. 
By employing the improved feature representation and exploring var-
ious classical convolutional neural network architectures, they aimed 

to cover a wide range of possibilities. However, their investigations did 
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not lead to any significant improvement over the classical architectures 
tested.

The feature construction process of Stepniewska-Dziubinska et al. 
[31] was similar to that of DeepSite and KDEEP. The key distinction in 
their approach was the utilization of a larger set of feature descriptors 
(19 descriptors) to represent the atoms in proteins and ligands. Addi-
tionally, they constructed a three-dimensional grid with a size of 20 Å3. 
They defined a three-layer 3D convolutional neural network to learn 
features, and finally completed affinity prediction through three fully 
connected layers, called Pafnucy, as shown in Fig. 1(b). In summary, 
Pafnucy incorporates a more comprehensive range of protein and lig-
and information by employing additional feature descriptors, allowing 
the model to extract critical information more effectively from protein-
ligand complexes.

Li et al. [20] introduced feature representations consisting of 12 
descriptors to construct protein-ligand features. During the feature con-
struction process, they employed a 32 Å3 three-dimensional grid to 
accommodate the protein-ligand complexes. The contribution of each 
atom in the protein and ligand was calculated using the same equa-
tion as DeepSite. Drawing inspiration from various lightweight network 
architectures [36–38], they proposed a novel lightweight 3D convo-
lutional neural network. This network architecture improved the pre-
diction performance without significantly increasing the model’s com-
plexity. These methods delve into the detailed exploration of the roles 
of various feature descriptors and convolutional neural networks in 
affinity prediction, thus advancing the progress of deep learning in pre-
dicting affinity.

Wang et al. [21] combined the KDEEP feature representation method 
[19], and used the improved feature descriptors in HTMD [39] to con-
struct features. To construct protein features, the researchers analyzed 
the physical and chemical properties of each atom and allocated them to 
specific channels accordingly. This process involved categorizing atoms 
based on their properties and assigning them to appropriate channels. 
For the feature construction of ligands, they employed the atomic types 
defined by SMARTS, which is a package used for specifying molecular 
patterns in chemoinformatics. An open-source toolkit called feature fac-
tory used for constructing ligand features was implemented using RDKit 
[40] which can extract the chemical characteristics of each atom in the 
ligand. Throughout their experimentation, the researchers also explored 
different voxel sizes for constructing the three-dimensional grid. Ulti-
mately, they determined that a grid size of 24 Å3 was most suitable for 
their purposes.

In Wang’s work, in addition to enhancing the feature descriptor, 
a novel end-to-end convolutional neural network architecture called 
saCNN (spatial attention CNN) was proposed. This architecture incor-
porated a spatial attention mechanism, as depicted in Fig. 1(c). By 
applying the attention mechanism, the model could assign weights to 
different voxels, allowing it to focus more on important atom pairs or 
spatial structures. This, in turn, enabled the model to learn more pro-
found features by prioritizing crucial information. The inspiration for 
the attention mechanism used in saCNN came from CBAM [41]. By 
integrating the attention mechanism into the 3D convolutional neural 
network, the saCNN model not only improved the existing feature de-
scriptor but also facilitated easier learning within the model.

2.2. Methods based on graph neural network

Nguyen et al. [23] took the protein sequence as the text, and ex-
pressed the characteristics of the protein using the one-hot vector. At 
the same time, they transformed the SMILES code of the ligand into a 
molecular graph using RDKit software [40], and extracted five pieces 
of information as the feature representation of the ligand. Then they re-
spectively constructed 1D convolution neural network and graph neural 
network models to learn the characteristics of proteins and ligands then 
finally connected the hidden layer characteristics of the two to achieve 
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affinity prediction. When modeling ligands with graph neural network, 
Computational and Structural Biotechnology Journal 21 (2023) 5796–5806

they tried four different models, including GCN [42], GAT [28], GIN 
[43], and GAT-GCN variants. They respectively regard ligands and pro-
teins as two-dimensional molecular diagrams and one-dimensional se-
quences for feature learning. Although the SMILES, a data format used 
to represent molecular chemical formulas, and protein sequence data 
used for feature representation are easy to obtain, they lack the spatial 
structural information of protein-ligand complexes, which could lead to 
a decrease in model performance since protein-ligand interactions oc-
cur in a three-dimensional space. More and more work is tending to 
process and learn spatial structure, which also shows to a certain extent 
that spatial structure information does play an important role in affinity 
prediction.

Jones et al. [24] used 3D descriptors to represent proteins and con-
structed 3D spatial features. This process shared similarities with the 
convolution-based approach but focused solely on the 3D characteri-
zation of proteins. Ligands were treated as spatial molecular graphs, 
with atoms represented as nodes and covalent and non-covalent bonds 
as edges. To facilitate feature learning, both convolutional neural net-
works and graph neural networks were applied separately to process 
the protein and ligand data. The features of the protein and ligand 
were then fused to exchange information between them. The model 
makes full use of the 3D spatial structure information of protein and 
the 2D structure information of ligand, but the architecture of the 
model remained relatively simple, and there was no attention mech-
anism incorporated into the ligand modeling process, which made it 
challenging for the model to weigh the importance of each atomic node 
accurately.

Jiao et al. [25] characterized the inputs in the form of graph. The 
entire ligand was treated as a graph network, with atoms representing 
nodes and chemical bonds acting as edges connecting these nodes. The 
node features and edge features in graph networks were constructed by 
the RDKit tool. Node features were composed of various atom proper-
ties, including atom type, degree, chemical valence, aromaticity, formal 
charge, and free radical electrons. Edge features, on the other hand, en-
compassed bond type, aromaticity, conjugation, and ring information. 
In the case of proteins, a similar methodology was employed based on 
the practice of Torng et al. [44]. Each residue within the protein pocket 
was considered a node, and an edge was established between residues 
that were within a distance of 11 Å. This procedure resulted in the con-
struction of a protein pocket graph. The features of nodes and edges 
were from AAindex [45–47], which is an open source database contain-
ing various physicochemical properties of amino acids.

Then Jiao et al. [25] proposed a edge gated graph neural network 
model, called egGNN, viewed edges as gating units to control the flow 
of nodes in the graph, as shown in Fig. 1(d). The model integrated edge 
information in a novel way, which can learn the importance of dif-
ferent neighbor nodes (the importance of the same atoms connected 
by different chemical bonds are different). By utilizing the multi-head 
mechanism, the model achieved enhanced stability. Furthermore, the 
egGNN model employed the ReZero mechanism, enabling the training 
of deeper layers compared to traditional graph models. This mecha-
nism facilitated the scalability of the model, ensuring its ability to 
handle complex datasets effectively. The egGNN not only uses more 
node features to describe proteins and ligands in the process of fea-
ture construction, but also proposes a new scalable graph neural net-
work model framework to promote the weighted fusion of edges and 
nodes.

2.3. Methods based on transformer

When characterizing proteins, Hu et al. [27] applied both sequence 
information and two-dimensional structure information, which fully 
learned proteins to a certain extent. At the same time, they treated lig-
ands as SMILES and also applied their two-dimensional structure infor-
mation. The 2D feature representation of proteins and ligands reduces 

data sparsity and computational cost. Then they applied transformer 
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Fig. 1. The four deep learning models utilize either a Convolutional Neural Network (CNN) or a Graph Neural Network (GNN) to forecast the affinity of a protein-
ligand pair. (a) Reproduced with the permission of ref. [19], © 2018 American Chemical Society. (b) Reproduced with the permission of ref. [31], © 2018 Oxford 
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University Press. (c) and (d) Reproduced with the permission of ref. [21,25], © 2021 IEEE.
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Fig. 2. The results of saCNN (shown in red), egGNN (shown in yellow), and other methods (AGL-Score, KDEEP, DeepAtom, CASF-2016, Fusion, TNet, PLEC, Pafnucy, 
EIC-Score, and cyScore) for predicting binding affinity are displayed for the PDBbind v.2016 core set (marked with ∗) and the CASF-2016 dataset (without ∗).
to pretrain protein sequences and applied GAT model to 2D structures 
of proteins and ligands to predict the affinity of protein-ligand. They 
explored the impact of different dimensional data of proteins on the 
model, and applied the attention mechanism in both proteins and lig-
ands, making it easier for the model to find key information. However, 
there is still a lack of spatial structure information of proteins and lig-
ands, and there is a certain degree of information loss.

Because protein sequences can be easily obtained from protein se-
quence databases, such as UniProt [48] which contains multiple sub 
databases, it is appropriate to apply Transformer model to proteins. 
However, Transformer training often requires a lot of computing re-
sources and is time-consuming, and the use of protein sequence infor-
mation will lose its spatial structure information, making the spatially 
adjacent atoms unable to be reflected in the sequence. There are few 
three-dimensional structure databases of proteins. However, due to the 
emergence of Alphafold2 [49,50], the structure of proteins can be ob-
tained accurately and quickly. Therefore, on the basis of a large number 
of protein structures, we can easily use 3D convolution neural network 
to model proteins, which can be faster than Transformer and retain the 
spatial structure information of proteins completely. After the 3D spa-
tial structure information of the protein is obtained, the 2D structure 
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information of the protein can also be obtained, so the graph neural 
network can be used for modeling, which will be faster than the convo-
lution neural network.

3. Results

This review focuses on four deep learning techniques: KDEEP [19], 
Pafnucy [31], egGNN [25] and saCNN [21]. We conducted experiments 
to compare and contrast these methods in order to determine their 
respective strengths and weaknesses. This is essential for creating suc-
cessful models for predicting protein-ligand binding affinity.

3.1. Datasets

In order to provide experimentally determined binding affinity data 
for all classes of biomolecular complexes stored in the Protein Data Bank 
[51] (PDB), the PDBbind database [52] was established. This database 
plays a critical role in bridging the gap between the energetic and struc-
tural information of these complexes, enabling various computational 
and statistical studies on molecular recognition, drug discovery, and 
related fields. PDBbind dataset provides an essential linkage between 
the energetic and structural information of those complexes, which is 

helpful for various computational and statistical studies on molecular 
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Fig. 3. The four models were compared by plotting the scatter plots between the experimental affinity and the predicted affinity of the PDBbind v.2016 core set. 
The experimental affinity was calculated using the formula -log(Kd/Ki), where Kd is the dissociation constant and Ki is the inhibition constant. The dotted line in 
the graph represents the ideal situation in which the predicted value is equal to the true value. The closer the points are to this line, the more accurate the model is 
in predicting the affinity.
recognition, drug discovery, and many more. According to the disso-
ciation (𝐾𝑑 ), inhibition (𝐾𝑖), half-concentration (𝐼𝐶50), and resolution 
factors, the PDBbind dataset can be divided into general set and refined 
set, which can be simply understood as normal quality and high qual-
ity. A total of 17342 protein-ligand complexes (excluding complexes 
that exist in the test set) from the general set and the refine set are 
used as the training set and 290 complexes are used as the test set for 
evaluation.

3.2. Performance and correlation analysis

Firstly, in order to explore the performance of various models in 
affinity prediction, we selected the Pearson Correlation Coefficient and 
the Root Mean Square Error (RMSE) between model predicted val-
5801

ues and true affinity values (labels) as metrics. We listed some of the 
currently representative methods. As shown in Fig. 2, the saCNN and 
egGNN methods have achieved top rankings in both of the metrics, se-
curing the first and second positions. Meanwhile, KDEEP and Pafnucy 
also demonstrated good performance in these two metrics. This not 
only indicates that KDEEP and Pafnucy, both based on 3D convolu-
tion, perform well in affinity prediction tasks, but it also suggests that 
saCNN, utilizing spatial attention, and egGNN, utilizing graph neural 
networks, indeed further enhance the model’s affinity prediction per-
formance.

Secondly, to comprehensively compare the prediction performance 
of the four methods, correlation scatter plots were created for each 
method, as depicted in Fig. 3. The X-axis represents the predicted values 
generated by each method, while the Y-axis represents the true affin-

ity values between the protein and ligand. The diagonal line indicates 
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Fig. 4. The four models were evaluated in five distinct affinity ranges of proteins and ligands, and the results are presented. A Venn diagram is included to illustrate 
the true positives (left) and false positives (right) samples.
perfect prediction, where the predicted values align perfectly with the 
true values. Therefore, the closer the distribution of predicted and true 
values is to the diagonal, the more accurate the method’s predictions. 
Upon comparison, KDEEP exhibits significant deviations from the diago-
nal line, moreover, when the true affinity value is higher, the deviation 
becomes more pronounced, indicating poorer predictive performance. 
Pafnucy tends to follow the diagonal line more closely, although some 
deviations may occur when the true affinity value is relatively low. 
Additionally, from a distribution perspective, when the affinity value 
exceeds 10, the predicted values of KDEEP and Pafnucy tend to be 
smaller. This discrepancy may be attributed to the limited availability 
of training data for this particular range, leading to incomplete learning 
by the models in this region. As for egGNN and saCNN, these two mod-
els perform relatively better compared to KDEEP and Pafnucy, with the 
overall difference between them not being very significant. However, 
it’s worth noting that saCNN exhibits a slight advantage when the true 
affinity value falls within the range of 4 to 8.

3.3. Analysis of different intervals

In order to explore the predictive ability of each method across dif-
ferent ranges of protein-ligand affinity, the affinity values were divided 
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into five intervals ranging from 2 to 12. Precision, Recall, and F1 scores 
were calculated for each method and plotted in Fig. 4 (a). From the fig-
ure, it can be observed that egGNN performs exceptionally well when 
the affinity between the protein and ligand exceeds 8. On the other 
hand, KDEEP faces challenges in predicting affinities in these ranges, 
hence its absence in the corresponding sections of the figure. The saCNN 
method demonstrates superior performance when the affinity value falls 
within the range of 2 to 8. Furthermore, when the affinity value exceeds 
10, the recall of all models is relatively low, indicating that very few 
methods accurately predict protein-ligand affinities above this thresh-
old. However, their precision remains relatively high, suggesting that 
although most methods struggle to predict high-affinity interactions, 
the predictions made within this range are relatively reliable.

The true positive and false positive samples for each method were 
collected and represented using Venn diagrams in Fig. 4 (b). On the 
left side of the figure, it can be observed that the number of unique 
positive samples for each method is nearly identical. This suggests 
that each method possesses its own unique strengths and advantages, 
which may be attributed to the different strategies employed by each 
method. These advantages are particularly evident in certain individual 
samples. On the right side of the figure, it is evident that KDEEP and 
Pafnucy exhibit a larger number of unique false positive samples com-
pared to saCNN and egGNN. This indicates that spatial attention and 

graph neural networks have an advantage in extracting features from 
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Fig. 5. The visualization of samples accurately predicted by each model is marked in the upper right corner with the true and predicted affinity values. The small 
molecules (in black) that each model excels at are distinct. KDEEP is more accurate in predicting samples with smaller molecules. Pafnucy is better at predicting 
long strip molecules. egGNN is more successful when there are many rings in the molecule. saCNN is the most proficient in predicting small molecules covered by 
proteins.
Table 2

Comparison results of 4Assemble and the 
four methods.

Model R RMSE

saCNN 0.865 1.117
egGNN 0.862 1.121
KDEEP 0.806 1.641
Pafnucy 0.774 1.424
4Assemble 𝟎.𝟖𝟗𝟒 𝟏.𝟏𝟎𝟏

protein-ligand complexes, leading to improved model performance and 
generalization.

Drawing inspiration from Fig. 4 (a), which highlights the unique 
advantages of each method, we hypothesized that aggregating these 
methods could lead to more reliable results across different types of 
samples. We consider these four models to exhibit outstanding per-
formance in protein-ligand binding affinity prediction, and they each 
have distinct characteristics. For instance, KDEEP and Pafnucy are both 
built upon 3D convolution, but the latter utilizes a larger set of fea-
ture descriptors (19 descriptors) to represent atoms. On the other hand, 
saCNN and egGNN are constructed based on spatial attention, and graph 
neural networks respectively. Their combination not only compensates 
for each other’s shortcomings in feature extraction from protein-ligand 
complexes but also enhances the model’s fault tolerance. To test this hy-
pothesis, we integrated the four models into a combined model called 
4Assemble, and performed experiments on the PDBbind v.2016 core set. 
The experimental results are presented in Table 2. The results demon-
strate that the 4Assemble model achieves a correlation coefficient of 
0.894 and an RMSE of 1.101, surpassing the performance of each in-
dividual method. Our hypothesis is that it is because the fusion of 
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different models achieves complementary effects that the model has 
stronger generalization capabilities. For example, 3D convolution can-
not take into account the learning of global information very well, but 
spatial attention can supplement the problem of 3D convolution not be-
ing able to learn global information to a certain extent, at the same 
time, graph neural network can help learn the topological structure 
information of the data. To the best of our knowledge, these results out-
perform any existing method reported in the literature. These findings 
confirm our hypothesis that the integration of multiple models lever-
ages the strengths of each method, resulting in improved prediction 
performance. It’s worth emphasizing that we assign equal weight to 
each of the four models for the combination process.

3.4. Visualization

In order to gain a more concrete understanding of the differences 
between the methods, we conducted visualization experiments and pre-
sented the results in Fig. 5. We selected four representative samples that 
were better predicted by each method, providing insight into the bind-
ing states of proteins and ligands, as well as the structural characteris-
tics of small molecules. Each example is selected based on the affinity 
value predicted by the four models, ensuring that each model has a 
best-performing example. In Fig. 5 (a), it can be observed that KDEEP
performs well on samples with smaller molecular structures. This sug-
gests that KDEEP may have a particular advantage in predicting affinity 
for such samples. Fig. 5 (b) reveals that Pafnucy excels in predicting the 
affinity of proteins and molecules with chain structures. This affinity 
prediction capability may be attributed to the specific features captured 
by Pafnucy that are relevant to this type of molecular configuration. 
Moving on to Fig. 5 (c), it is evident that egGNN demonstrates a su-
perior performance on molecules with multiple rings. This observation 
is likely associated with the graph model employed by egGNN, which 

facilitates the effective integration of information from the molecular 
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Fig. 6. The plots of the four models’ experimental and predicted affinities on the PDBbind v.2016 core set show a commonality. This is because the training set has 
a lack of samples with both small and large affinity values, resulting in the models’ poor predictions for those at either end.
graph, enabling it to capture relevant features specific to ring struc-
tures. Lastly, Fig. 5 (d) depicts a scenario where a molecule is enclosed 
within the protein. In this case, saCNN outperforms the other meth-
ods in accurately predicting the binding state. The advantage of saCNN 
can be attributed to its utilization of a 3D convolutional network with 
spatial attention, allowing it to effectively learn the spatial relationship 
and location information of the protein and ligand. It is worth noting 
that since Fig. 5 represents the best-case scenarios for KDEEP, Pafnucy, 
saCNN, and egGNN, the 4Assemble model’s performance may not be the 
absolute best. Nevertheless, its performance is acceptable and exhibits 
remarkable stability.

4. Discussions

Despite the progress made in predicting protein-ligand binding affin-
ity, there are still some difficulties that need to be addressed. Fig. 6
shows the distribution of true and predicted values for each method, 
and it is clear that the performance of all four methods is weaker on 
samples with smaller or larger affinities. This is likely due to the lack 
of data in this range, which prevents the models from learning the rel-
evant features for samples with extreme affinities. To tackle this issue, 
it is suggested to focus on this particular segment of the data during 
model training. Weighting or data augmentation can be used to im-
prove the learning process for these samples, allowing the model to 
better capture the essential features of smaller or larger affinity values. 
Weighting or data augmentation has achieved great success in the field 
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of CV. For example, AutoAugment [53] proposed by Google in 2019 
is based on cropping, rotating, and translating images, and searching 
through the probability of corresponding operations to find the best 
augmentation strategy. Including the subsequently proposed Fast Au-
toAugment [54] and Population Based Augmentation [55], they have 
accelerated AutoAugment to a certain extent and achieved very good 
results. Even though there is currently no common weighting and aug-
mentation method in the field of affinity prediction, we believe that 
similar methods will appear sooner or later, and we are also study-
ing related weighting and augmentation methods. By addressing these 
challenges and following the advice given in this review, researchers 
can further enhance the performance of protein-ligand binding affinity 
prediction models.

5. Conclusion

Protein-ligand binding affinity prediction is a key factor in speed-
ing up the drug development process. This paper examines the use of 
deep learning techniques for predicting protein-ligand affinity. Mod-
els based on convolutional neural networks are capable of capturing 
three-dimensional structural information of proteins and ligands, and 
the addition of attention mechanisms further improves their learning 
capabilities. On the other hand, models based on Transformers only 
learn the sequence information of proteins and ligands, thus losing valu-
able spatial information. Graph neural networks, however, are adept at 
capturing two-dimensional structural information by constructing sim-
ple graph features. Four deep learning methods were tested in this 

study, and it was observed that each model had distinct advantages 
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and disadvantages across different affinity intervals. An analysis of 
complexes predicted correctly or incorrectly by each model provided 
further insights into their prediction characteristics. Visualization of 
protein-ligand binding sites also helped to elucidate the strengths of 
each model. Finally, an ensemble model that combines predictions from 
all four models was developed through weighted integration, which 
showed improved binding affinity prediction capabilities. This inte-
gration approach leveraged the unique advantages of each individual 
model, leading to enhanced predictive performance. This study con-
tributes to the understanding and application of deep learning methods 
for protein-ligand binding affinity prediction.
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[19] Jiménez José, Škalič Miha, Martínez-Rosell Gerard, De Fabritiis Gianni. 𝐾𝐷𝐸𝐸𝑃 : 
protein–ligand absolute binding affinity prediction via 3D-convolutional neural net-
works. J Chem Inf Model 2018;58(2):287–96.

[20] Li Yanjun, Rezaei Mohammad A, Li Chenglong, Li Xiaolin. DeepAtom: a framework 
for protein-ligand binding affinity prediction. In: 2019 IEEE international conference 
on bioinformatics and biomedicine (BIBM); 2019. p. 303–10.

[21] Wang Yuxiao, Qiu Zongzhao, Jiao Qihong, Chen Cheng, Meng Zhaoxu, Cui Xuefeng. 
Structure-based protein-drug affinity prediction with spatial attention mechanisms. 
In: 2021 IEEE international conference on bioinformatics and biomedicine (BIBM); 
2021. p. 92–7.

[22] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to docu-
ment recognition. Proc IEEE 1998;86(11):2278–324.

[23] Nguyen Thin, Le Hang, Quinn Thomas P, Nguyen Tri, Le Thuc Duy, 
Venkatesh Svetha. GraphDTA: predicting drug–target binding affinity with graph 
neural networks. Bioinformatics 2021;37(8):1140–7.

[24] Jones Derek, Kim Hyojin, Zhang Xiaohua, Zemla Adam, Stevenson Garrett, Ben-
nett WF Drew, et al. Improved protein–ligand binding affinity prediction with 
structure-based deep fusion inference. J Chem Inf Model 2021;61(4):1583–92.

[25] Jiao Qihong, Qiu Zongzhao, Wang Yuxiao, Chen Cheng, Yang Zhenghe, Cui Xuefeng. 
Edge-gated graph neural network for predicting protein-ligand binding affinities. 
In: 2021 IEEE international conference on bioinformatics and biomedicine (BIBM); 
2021. p. 334–9.

[26] Scarselli Franco, Gori Marco, Tsoi Ah Chung, Hagenbuchner Markus, Mon-
fardini Gabriele. The graph neural network model. IEEE Trans Neural Netw 
2008;20(1):61–80.

[27] Hu Fan, Hu Yishen, Zhang Jianye, Wang Dongqi, Yin Peng. Structure enhanced 
protein-drug interaction prediction using transformer and graph embedding. In: 
2020 IEEE international conference on bioinformatics and biomedicine (BIBM); 
2020. p. 1010–4.
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