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Trust is the foundation of successful human collaboration. This has also been found to be
true for human-robot collaboration, where trust has also influence on over- and under-
reliance issues. Correspondingly, the study of trust in robots is usually concerned with the
detection of the current level of the human collaborator trust, aiming at keeping it within
certain limits to avoid undesired consequences, which is known as trust calibration.
However, while there is intensive research on human-robot trust, there is a lack of
knowledge about the factors that affect it in synchronous and co-located teamwork.
Particularly, there is hardly any knowledge about how these factors impact the dynamics of
trust during the collaboration. These factors along with trust evolvement characteristics are
prerequisites for a computational model that allows robots to adapt their behavior
dynamically based on the current human trust level, which in turn is needed to enable
a dynamic and spontaneous cooperation. To address this, we conducted a two-phase lab
experiment in a mixed-reality environment, in which thirty-two participants collaborated
with a virtual CoBot on disassembling traction batteries in a recycling context. In the first
phase, we explored the (dynamics of) relevant trust factors during physical human-robot
collaboration. In the second phase, we investigated the impact of robot’s reliability and
feedback on human trust in robots. Results manifest stronger trust dynamics while
dissipating than while accumulating and highlight different relevant factors as more
interactions occur. Besides, the factors that show relevance as trust accumulates differ
from those appear as trust dissipates. We detected four factors while trust accumulates
(perceived reliability, perceived dependability, perceived predictability, and faith) which do
not appear while it dissipates. This points to an interesting conclusion that depending on
the stage of the collaboration and the direction of trust evolvement, different factors might
shape trust. Further, the robot’s feedback accuracy has a conditional effect on trust
depending on the robot’s reliability level. It preserves human trust when a failure is
expected but does not affect it when the robot works reliably. This provides a hint to
designers on when assurances are necessary and when they are redundant.

Keywords: human-robot collaboration, trust dynamics, trust factors, trust calibration, human robot teamwork,
verbal feedback

Edited by:
Kaisa Väänänen,

Tampere University, Finland

Reviewed by:
Kirsikka Kaipainen,

Tampere University, Finland
Marketta Niemelä,

VTT Technical Research Centre of
Finland Ltd, Finland

*Correspondence:
Basel Alhaji

basel.alhaji@tu-clausthal.de

Specialty section:
This article was submitted to
AI for Human Learning and

Behavior Change,
a section of the journal

Frontiers in Artificial Intelligence

Received: 30 April 2021
Accepted: 07 July 2021
Published: 20 July 2021

Citation:
Alhaji B, Prilla M and Rausch A (2021)

Trust Dynamics and Verbal
Assurances in Human Robot

Physical Collaboration.
Front. Artif. Intell. 4:703504.

doi: 10.3389/frai.2021.703504

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 7035041

ORIGINAL RESEARCH
published: 20 July 2021

doi: 10.3389/frai.2021.703504

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.703504&domain=pdf&date_stamp=2021-07-20
https://www.frontiersin.org/articles/10.3389/frai.2021.703504/full
https://www.frontiersin.org/articles/10.3389/frai.2021.703504/full
https://www.frontiersin.org/articles/10.3389/frai.2021.703504/full
http://creativecommons.org/licenses/by/4.0/
mailto:basel.alhaji@tu-clausthal.de
https://doi.org/10.3389/frai.2021.703504
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.703504


INTRODUCTION

The exponential growth of machine’s and robot’s intelligence
made it possible for robots and autonomous systems to work
physically alongside humans, interacting and collaborating with
them and supporting them in many domains. This dramatic
advent of technology opens up many opportunities to support
human work and to create new forms of technology-supported
collaborative work. It shifts the robots and other intelligent
system’s roles from being perceived and used as tools into
being perceived as teammates (Groom and Nass, 2007) that
can augment the abilities of humans and allow for hybrid
team formation. This new kind of teamwork has the potential
to collaboratively achieve more than any single entity of its
members can achieve on its own. It can increase the team
performance and reduce the human workload. However, many
challenges accompany this development. For example, it might
reduce the human sense of autonomy (Blake, 2020; Tan and
Taeihagh, 2020) by forcing people to adhere to what the machine
needs. Additionally, it is mostly challenging for humans to
comprehend the limits of intelligent systems designed by
others, which puts them in an uncertain environment,
especially when no experience exists with the machine
(Wagner and Robinette, 2021). Therefore, in order for this
kind of teams to succeed and be beneficial for humans, the
collaboration between the team members needs to be carefully
designed. In this work, we are looking into how humans and
robots can collaborate together autonomously on both sides.

A key factor that strongly influences the quality of this
collaboration is human trust due to its influences on over- and
under-reliance issues in this form of teamwork (Lee and See, 2004).
Inappropriate reliance problems in human-robot collaboration often
come in conjunction with inappropriate trust the human has toward
the robotic team partner (Parasuraman and Riley, 1997; Hoff and
Bashir, 2015). Therefore, trust must be kept within the borders of
proper reliance especially in the case of physical collaboration as
human safety could be at stake. This process is widely known as trust
calibration (Atkinson and Clark, 2013; de Visser et al., 2017). Having
an accurate model of human trust in autonomous robots is a
prerequisite for trust calibration as it can be used by the robot to
estimate trust of the human in it and adjust its behavior in
accordance.

Human trust toward a robot partner, however, is a latent
variable that has shown to be sensible to several factors (Hancock
et al., 2011; Hoff and Bashir, 2015), which makes its modeling a
challenge as the model should include most factors. On the other
hand, trust is known to be a context-dependent construct
(Yagoda and Gillan, 2012). Hence, factors that lead human
trust in a given context X might not necessarily play an active
role it in another context Y. Therefore, human trust toward a
robot should be modeled given the collaboration context. The
majority of the prior research to identify trust factors does not
consider the new emerging context of human robot physical
collaboration in industrial setting (Charalambous et al., 2016), as
traditionally robots are separated from humans e.g., by the means
of physical safety fences. In order to model trust in such a context,
we need first to investigate the relevant factors.

Additionally, trust is known to have dynamics. It develops
over time (increases or decreases) as more and more interactions
occur (Jonker et al., 2004; Lee and See, 2004). We believe that
trust dynamics and how its factors affect it dynamically are
essential cornerstones for its modeling. Existing methods to
measuring trust commonly depend on post-hoc questionnaires
since trust is not directly observable. These questionnaires are
usually administered at the end of an experiment. Measuring trust
at the end of an experiment, however, fails to provide information
about how it evolves, let alone the dynamic effect of the factors,
which requires deeper analysis.

Further, researchers suggested that providing assurances (e.g.,
explanations and confidence levels) from the robot or other forms
of artificially intelligent agents to the human during the execution
of a given task has the potential to calibrate human trust (see
Israelsen and Ahmed, 2019 for a survey).

We believe that in such a hybrid team formulation that
emulates an all-human team a higher-level communication
could be beneficial such as using natural language.

In this work, we aim at finding relevant trust factors in a
physical collaboration setting as well as trust own dynamic
behavior. In addition to that, we study the effect of the robot’s
verbal feedback and test whether it forms a means to calibrate
human trust during the collaboration.

BACKGROUND

There exists no universally accepted definition of trust in the
current literature. It has multiple definitions across different
disciplines. In psychology for example, trust between humans
has been defined as “a psychological state comprising the intention
to accept vulnerability based upon positive expectations of the
intentions or behavior of another” (Rousseau et al., 1998). This
definition is based on the definition out forward by Mayer et al.
stating that trust is “the willingness of a party to be vulnerable to
the actions of another party based on the expectation that the other
will perform a particular action important to the trustor,
irrespective of the ability to monitor or control that other
party” (Mayer et al., 1995).

In human-automation interaction literature, a widely used
definition of trust has been given by Lee and See who defined trust
of a human in a machine as “the attitude that an agent will help
achieve an individual’s goals in a situation characterized by
uncertainty and vulnerability” (Lee and See, 2004), which we
adopt in this work. It can be noticed that most definitions of trust
in the literature are centered around an agent (human) being
vulnerable and uncertain about the outcome of an interaction
with another agent (in our case, a robot). Thus, trust is of major
importance in situations that include these two attributes.

In general, human trust has two bases: cognition-base and
affect-base (Johnson and Grayson, 2005). Cognition-based trust
is known to be knowledge-based that depends on rational
judgement of the competence and dependability of the trustee.
Affect-based trust on the other hand is more emotional-based
that includes the feeling or confidence that the trustee is
protective and concerned for the welfare of the trustor (Bente
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et al., 2008). The involvement of emotions in trust building and
the subjectivity of the concept makes its modeling a
challenging task.

Modeling Trust and its Factors
Trust is being studied extensively in many different (not
necessarily related) research domains, where researchers are
attempting to develop accurate models that explain the
concept and identify the factors and dimensions that shape it.
For example, in interpersonal trust literature, trust has been
modeled by three different dimensions in a hierarchal stage
manner by Rempel et al. (1985) where it dynamically develops
over time. According to this model, trust at any stage depends on
the outcome of the other earlier stages. The components of trust
model in this work are predictability, dependability, and faith.
These three components form the stages of the model, and they
occur in the aforementioned order. This model has been tested by
Muir in the context of human-automation interaction (Muir,
1994). The result indicates that the model is also valid for this
context. Accordingly, trust in automation as well is not a simple
variable but rather a complex multidisciplinary context
dependent construct that consists of many different
dimensions (Yagoda and Gillan, 2012). This also applies for
many other fields where trust has an influence on the whole
interaction outcome [e.g., in technology (Gulati et al., 2017), in
computers (Nothdurft et al., 2014), in automation (Lee and See,
2004; Hoff and Bashir, 2015; John D.), and in robots (Hancock
et al., 2011; Yagoda and Gillan, 2012)].

Models and factors identified in a given field do not necessarily
transfer to another because of the differences between the
contexts and the way the interaction takes place. For example,
in human-technology/computer interaction context, Gulati et al.
studied the role of trust looking for attributes of technical artifacts
that directly affect human trust in them (Gulati et al., 2018). They
found that willingness of the user to interact with a technical
artifact, perceived competence and benevolence associated with a
technical artifact, and reciprocity are the main attributes that
affect human trust in artifacts. The used artifact was Siri in this
study, which does not have a physical embodiment. Robots, in
contrast to other intelligent artifacts, possess physical existence
attributes and are usually designed in a way that emulates other
living creatures (e.g., animals, insects and humans). For human
trust in automation context, Hoff and Bashir proposed a detailed
model that consists of three layers: dispositional, situational, and
learned trust (Hoff and Bashir, 2015). Each layer of the model
encompasses different factors that play a role in shaping it. From
this work, one can notice that trust is influenced by numerous
factors.

This fact also holds true in the context of human-robot trust.
In this regard, a meta-analysis over the existing literature has been
conducted by Hancock et al. (2011). The identified factors that
affect trust have been clustered into three categories: human-
related (ability-based and characteristics), robot-related
(performance-based and attribute-based), and environmental
(team collaboration and tasking). The result of the analysis
shows that robot-related performance-based factors have the
strongest association with human trust (Hancock et al., 2011).

These factors include dependability, reliability, predictability
among others. Specifically, the reliability of the robot (in both
objective and subjective sense) seems to be one of the major
factors that affect human trust because it severely impacts the
perceived performance. We use the term robot objective reliability
(reliability henceforward) as being able to do the assigned job
successfully. Failing to do so has a strong negative impact on
human trust which has been demonstrated by several research
work (Desai et al., 2013; Hancock et al., 2011; Salem et al., 2015;
Ye et al., 2019). Perceived reliability refers to the sysem
consistency in operation from the user’s perspective (Larasati
et al., 2020), which has also shown to be an important factor for
trust development (Charalambous et al., 2016; Madsen and
Gregor, 2000).

An additional literature survey on human trust in robots by
Law and Scheutz (2021) also divided trust into two categories:
performance-based trust and relational-based trust.
Performance-based trust refers to the case where the robot
does not interact with people but separated in place. The
relational-based trust, however, is more about social activity
(e.g., nursing). Nevertheless, in the context of human-robot
collaboration, even in industrial settings, these two notions of
trust cannot be separated, since collaborating with a robot as a
team partner already embraces many social aspects.

Robot’s attributes also appear to play a role in shaping human
trust. Natarajan et al. studied human’s trust in a robotic teammate
as a function of different robot attributes in a decision support
scenario (Natarajan and Gombolay, 2020). The considered
attributes are anthropomorphism, robot presence, and type of
provided support. The results indicate that trust and
anthropomorphism are positively correlated, whereas the
physical presence of the robot did not prove to have
significant influence on human trust.

The collaboration setting where a human and a robot
collaborate physically in industry is relatively new. Most of the
prior work, based on which the current trust factors are identified,
do not consider physical human robot collaboration. Hence, there
is a lack of knowledge about trust factors in physical collaboration
settings, which calls for further investigations. Human-robot
collaboration developers who aim to account for human trust
during the interaction need to first identify the relevant trust
factors in the given collaboration setting, because of trust context
dependency.

Trust Dynamics
In addition to being affected by many factors, human trust is known
to be a dynamic phenomenon that changes over time as many
research works suggest (Jonker et al., 2004; Lee and See, 2004;
Rempel et al., 1985). Thus, it is of high importance to understand
trust evolvement in a dynamic manner. The majority of trust
researchers, though, resort to post-hoc questionnaires as the main
strategy to estimate and model trust since it is a latent variable and it
is still challenging to measure it. This, however, typically provides a
measurement of trust at a single point of time (Guo and Yang, 2020)
usually administered at the end of an experiment.

To study human trust dynamically, Hu et al. conducted
experiments on a computer-based interface where participants
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reported their trust in a machine in multiple trials to capture its
development (Hu et al., 2019). The machine (a simple simulation
of an autonomous driving car) in these experiments provides the
user with the sensor output and leaves the decision to the human
to trust it or not. The authors were able to identify trust as a linear
dynamical systemwith high accuracy. In this work, trust is mainly
modeled as a function of experience which in turn is
operationalized to be a function of misses and false alarms
and there was no direct collaboration between the user and
the system.

Xu and Dudek adopted a “performance-centric” view of trust
and developed an online probabilistic trust model called OPTIMo
(Xu and Dudek, 2015). The model deploys a Dynamic Bayesian
Network (DBN), where human trust is represented as a belief
state that can be inferred from observations. The DBN is trained
with the data collected from participants who supervised a
boundary-tracking robot in a simulated environment and were
prompted to report their trust periodically.

Other researchers also modeled trust as a function of
performance and implemented a computational model of
dynamic trust as a deterministic time-series [originally
identified by Lee and Moray (1992)] with different measures
of performance depending on the task (Rahman et al., 2015;
Walker et al., 2015; Rahman et al., 2016). In these works, physical
collaboration takes place in assembly and hand-over tasks.

Most of the models that consider the dynamics of trust are
computational which can be helpful to make the robot aware
of its partner/user trust level. Although these models have
proved to enhance the overall interaction and collaboration,
they strongly simplify the concept of trust and do not consider
all trust factors relevant to the use cases. Additionally, even
the performance-based view of trust includes many other
factors as Hancock et al. (2011) illustrate, such as
predictability and adaptability which are overlooked in the
proposed models. Moreover, the difference between the
dynamics of trust in accumulation and dissipation
directions is still understudied.

In order for the model to capture human trust, we first need
deeper understanding on its dynamics in both directions and to
know what factors affect its evolution and how exactly. It is yet
unknown, whether the statically identified factors in the literature
remain relevant in dynamic models.

Trust Calibration
In addition to its modeling and measuring, trust calibration is a
challenging and critical task as well. It is actually the goal of most
of trust researchers in the human-robot interaction field. A
collaborative robot that is considered as a team partner should
make sure that the human partner does not deploy it to tasks that
it was not designed for or overly trust its skills in situations which
are unfamiliar to the robot (Alhaji et al., 2020). The robot should
as well (at least try to) dissuade the human partner from placing
him-/herself or the overall task at risk (Wagner et al., 2018).
Finding and designing methods and means that can be used by
the robot to maintain human trust in it and repair it when needed
is then particularly critical, knowing that trust is easy to lose and
difficult to gain (Juvina et al., 2019).

Because of their contribution to human trust evolvement,
Tolmeijer et al. recently developed a taxonomy that
investigates the types of failure in human-robot interaction as
the main cause for trust violation and studied their potential
impact on human trust and repair (Tolmeijer et al., 2020). The
categories of failure they proposed are: design failure (when the
system is not ideal in the real human-robot interaction setting),
system failure (when the system acts different than intended),
expectation failure (when system actions differ from human
expectations), and user failure (which can be caused by the
other categories). The authors also proposed strategies to deal
with each category of failures. However, how trust is affected as a
function to these failures was not considered.

Israelsen and Ahmed’s survey focuses on means of trust
calibration, which are some programmed components of an
artificially intelligent agent (e.g., robot) that are engineered to
address the user trust (Israelsen and Ahmed, 2019). They refer to
these methods as assurances and classify them into hard and soft
assurances. Hard assurances offer formal guarantees that the
system works according to predefined specifications which are
usually necessary for certification. Soft assurances, on the other
hand, are more user-centered and meant to adjust user’s trust.
This work highlights the importance of the assurances that an
agent should provide. It shows a one-way trust cycle that exists
between a human and an artificially intelligent agent (e.g., robot)
in which the robot perceives the trust-related behavior of the
human and provides assurances in order to affect human’s trust.

One possible soft assurance that can be used by the robot is
providing information to the human about the actual abilities and
limitations the robot has. Desai et al. (2013) have studied the
impact of failure and feedback on trust in a teleoperation task.
They tested two types of feedback (sematic and non-sematic)
from the robot to the human to indicate the robot’s own
confidence about its sensor data. They found that this
confidence feedback improves the control allocation strategy
without altering trust levels.

Verbal feedback has shown to be a means to improve human
robot collaboration performance (St. Clair and Mataric, 2015),
because a team of people relies heavily on verbal communication
to succeed. With the increasing intelligence and perception
abilities of robots, a hybrid team of humans and robots might
take advantage of such an anthropomorphic communication way.
The question, however, remains whether such kind of feedback
can be used as a means for trust maintenance and as means to
avoid inappropriate deployment. In the coming sections, we use
the words assurance and feedback interchangeably.

Open Issues and Research Questions
As demonstrated above, trust has a dynamic nature. It changes
over time as a function of changing experience (Jonker and Treur,
1999), and so do the factors that influence it. Hence, in order to
appropriately quantify trust, its dynamics must be taken into
consideration. However, most of the existing methods on
modeling and measuring trust rely mainly on post-hoc
questionnaires at the end of an experiment which provides
only a “snapshot view” of trust (Guo and Yang, 2020) instead
of measuring it continuously.
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Although a couple of models already exist that aim to capture
trust dynamically, trust dynamics itself is still vague in the current
literature (see Trust Dynamics). In addition to that, to have better
understanding on dynamic human trust development in robots,
we need to identify the factors that play a role in a given
collaboration context and we need to understand how the
relation between these factors and trust changes dynamically
over time, because they have to be incorporated in any trust
model. However, the factors that are dynamically related to trust
as it accumulates and as it dissipates, which are essential
components for trust modeling, are still hardly known. This
forms a major gap that we are going to address in this work.

Besides, human-robot collaboration in close proximity and
hybrid team formation is an emerging interaction setting. While
there is intensive research work on human-robot trust as shown
in Modeling Trust and its Factors, there is a lack of knowledge
about the factors of trust in a synchronous and co-located
teamwork setting let alone its dynamics in such a case (Trust
Dynamics), where the human and the robot execute
interdependent actions and share the same workspace.
Accordingly, the research questions that guide this part of the
work regarding the dynamics of trust are:

• RQ1: How does human trust in a robotic partner
dynamically evolve over time in a physical collaboration
setting?

• RQ2: What factors are dynamically related to human trust
in accumulation and in dissipation in human-robot physical
collaboration?

Further, calibration of trust is as critical as its modeling. It is of
equal importance to find means that can be used by the robot to
influence human trust in it (Desai et al., 2013). Especially, when
the collaboration environment includes risk. Assurances from the
robot side are meant to tune user’s trust. The most intuitive and
natural way for non-expert users to receive and share information
is using natural languages (Mavridis, 2015), and we know from
the literature that verbal feedback has a positive influence on team
performance and enhances the perception of the robot as a
teammate (see Trust Calibration), but the influence of this
kind of feedback on human trust when the robot verbally
conveys its abilities and limitations in the given collaboration
setting is currently absent in the literature and requires further
investigation. Correspondingly, the following research questions
are addressed in this work:

• RQ3: What effects do verbal assurances from the robot have
on human trust in it?

• RQ4: When should the robot provide assurances in order to
maintain human trust?

METHODOLOGY

In order to examine the dynamics of trust as well as the impact of
verbal feedback on it, we conducted a two-phase experiment
where participants had to collaborate with a collaborative robot

(aka. CoBot) to disassemble a simplified model of an electric car
traction battery. In the first phase, we studied the dynamics of
trust in a within-subject design by manipulating the reliability of
the robot in two different runs (reliable/unreliable) without any
feedback. For the second phase, we used a 2x2 mixed-design in
which we manipulated both reliability and feedback. In this
phase, feedback correctness was manipulated within-subject
(correct/incorrect) and reliability was manipulated between-
subject (reliable/unreliable). For this study, we simulated the
Panda CoBot from Franka Emika1, which is a typical
industrial robot with 7 degrees of freedom in a mixed-reality
environment. Thirty-two participants took part in this
experiment. Half of them identified as women and the other
half identified as men. They were aged between eighteen and
forty-one years. Participants were recruited using an internal
university participant pool, word of mouth, and the available
university channels and forums. All of them participated
voluntarily. Twenty-nine participants have no experience with
autonomous machines and none of them have experience with
robotic manipulators. Only five participants used the HoloLens
before during experiments for less than 2 h. One whole trial in our
study lasted for 50–60 min and each participant was compensated
with 10 euro for participation. Each participant has witnessed
four different conditions which we detail in the coming sections.

Disassembly Scenario
In the research project HerMes2, we aim at designing human-
machine and human-robot hybrid teams that support a circular
economy. In this case, the robot plays the muscles by taking over
the repetitive and burdening tasks from the human partner, and
the human brings flexibility and high perception capabilities to
the team. The combination of the different but complementary
abilities of both humans and robots allows for the prospect of
harnessing the strength of them both in different applications.

Disassembly is one of the many applications in which full
automation is not feasible and this combination can be a
successful solution. Other applications include search and
rescue, military, and space (Goodrich and Schultz, 2007).
Disassembly is an essential step of the End-of-Life (EoL)
process of used products, which cannot be considered as
reversed assembly (Vongbunyong and Chen, 2015). For
humans, the disassembly tasks can be very burdensome.
However, most of the disassembly tasks in disassembly
factories3 are currently conducted manually by human workers
(Chang et al., 2017). The reason behind this is that the
environments of this kind of factories are very dynamic in
nature because of the uncertainties that are associated with the
unpredictable characteristics of the products at their EoL stage of
their lifecycle, which makes the full automation of the
disassembly processes not possible at present.

The scenario of our experiment is in the same vein. It emulates
the process of the disassembly of electric car traction batteries in a

1https://www.franka.de/
2https://www.simzentrum.de/hermes/
3http://www.electrocycling.de/en/welcome
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disassembly factory (like Umicore4). This process involves high
risk because of the hazardous substances that are contained in the
cells of a battery (Wegener et al., 2015). Any damage to the cells
during the disassembly can threaten the human health.
Consequently, it is essential to have a well calibrated trust for
a successful collaboration between humans and robots as teams in
these environments.

The disassembly process of traction batteries differs from
model to model and the steps vary in accordance. In our
work, we concentrate on the first step of the general process of
disassembling an electric car battery, which is: opening the battery
system by removing the cover (Wegener et al., 2015). In this step,
the robot is supposed to support the human in loosening the
screws that hold the cover of the battery. If the human does not
rely on the robot to do this task for him/her, s/he should perform
this task manually, which will prevent a potential higher
performance and increases the human workload. On the other
hand, if the human overly relies on the robot, s/he might expect it
to safely detect and loosens screws with special abnormal
conditions. The screws in the battery can be in countless
different conditions at the end of the life cycle of a battery.
They could be broken, dirty, rusty, or even missing, which
substantially increases the challenge of automatic recognition
of the screws and their real condition. It is also unknown whether
the robot would be able to handle them since currently robots
cannot be designed to deal with all uncountable possible
variations in the environment. This would be very risky
without the human intervening. This initial step of a battery
disassembly already shows how important it is to have an
appropriate level of reliance in this form of collaboration.

Environment Choice
As mentioned earlier, our experiment takes place in a mixed
reality environment. We chose mixed reality because of the risky
scenario we are using.We wanted to make this risk of the scenario
clear to the participants without actually posturing them to real
danger with a real robot.

Mixed reality is a special form of virtual reality. Whereas
virtual reality completely separates the user from the real world,
mixed reality merges the real and the virtual world by overlaying
virtual objects in the real world allowing the user to interact with
both virtual and real objects. Several research studies used virtual
reality to simulate a robot in human-robot interaction studies
[e.g., (Fratczak et al., 2019; Müller et al., 2017; van den Brule et al.,
2014;Weistroffer et al., 2013; Zhu et al., 2020) just to name a few].
Although this might not supplant a real-world experiment, it
allows for ad-hoc prototyping of real robotic systems for different
applications. This is because of the flexibility this technology
provides to researchers allowing them to avoid the overhead
associated with handling technical and hardware issues (e.g., in
our case autonomous detection of battery and screws positions).
Additionally, previous research has found that using virtual
reality can be a valid option to study human-robot interaction
in manipulation scenarios (Duguleana et al., 2011). This makes

the use of mixed reality a plausible option for an initial step
toward our goals.

Tasks
In our study, we set the goal of the human in this collaboration
setting to be loosening as many screws as possible with the help of
the robot. The robot has a screwdriver as an end-effector and can
autonomously detect the position of the battery and its screws.
The task of the human is to bring a battery and place it
somewhere accessible by the robot (inside the workspace)
whereas the robot task is to loosen the screws for the human.
This process is repeated until no batteries with screws are left.
There were five batteries in total with four screws each. The
number of screws having a special condition increases gradually
from having only normal screws in the first battery to four
abnormal screws for the last one. In our experiment, we chose
the rusty condition as an abnormal one. The human has to handle
the batteries in their order starting from the closest to the robot
base, which does not have any rusty screws, and going outward.
The human has the freedom to choose what screw the robot
should loosen. Figure 1 illustrates the experimental setup.

Experimental Conditions
As illustrated in the related work (see Modeling Trust and its
Factors), the ability of the robot to execute its assigned task
correctly (Reliability) is one of the major factors that affect
human’s trust dynamically. Additionally, assurances and
warnings (Feedback) from the robot side have the potential
to successfully calibrate the trust of the human in it.
Therefore, in this experiment, we manipulated these two
variables. Each one of them has two different levels
explained in the following:

Reliability: this variable has been used to excite trust of the
human in the positive and negative directions, which allows us to
observe the human’s trust evolvement. The levels of this
variable are:

• Reliable behavior: in the reliable case, the robot successfully
loosens all rusty and normal screws and brings them to the
screw bin correctly (see Figure 1). This level is presumed to
excite trust in the positive direction.

• Unreliable behavior: in this case, the robot loosens the
normal screws correctly but fails to loosen the rusty ones
in different ways. Examples include getting stuck (second
battery), failing to bring the screws to the bin (third battery),
getting stuck again (fourth battery), and failing to detect the
position of the screws in the first place (fifth battery). In this
case, the robot hits the battery in the middle which causes an
explosion. This level is presumed to excite trust in the
negative direction.

These two conditions address both research questions RQ1
and RQ2, in which we are interested in exploring human trust
dynamics and the factors associated with its evolvement.

Feedback: this variable is used to check the impact of accurate
and inaccurate assurances/warnings on the trust of the human.
The feedback was only provided if the screw is rusty. This variable4https://www.umicore.com/
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has two levels as well, which are intended to calibrate human trust
during the operation. These levels are:

• Correct feedback: in this case the robot verbally provides the
human with assurances/warnings about its ability to loosen
a specific screw. For example, in the case of reliable
behavior, the robot will say “I Can” as an assurance to

the human that the robot is actually able to loosen the screw.
In the case of unreliable behavior, the robot says “I Cannot”
as a warning.

• Incorrect feedback: similar to the correct feedback case, in
this case the robot verbally provides the human with
assurances/warnings about its ability to loosen a specific
screw. Incorrectly though. For example, in the case of

FIGURE 1 | Experiment setup (from participant’s point of view). The green area shows the accessible workspace of the robot. There are two rows of batteries: on
the front side, the batteries with screws are located; on the back side, some extra already disassembled batteries are located to create a more realistic scene.

FIGURE 2 | Third party point of view. A participant wears the HoloLens and commands the robot to loosen screws. It is allowed to locate the battery anywhere
inside the green workspace except over the screw bin which is marked in red.
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reliable behavior, the robot will say “I Cannot” as a warning
to the human that the robot is actually not able to loosen the
screw. In the case of unreliable behavior, the robot says “I
Can” as a misleading assurance.

These two conditions address both research questions RQ3
and RQ4, in which we are interested in exploring the effect of
verbal feedback on human trust and whether it forms a means for
trust calibration.

Apparatus
Our experiment took place in a mixed-reality environment using
a Microsoft HoloLens 2 (HL2)5, which is a head-mounted display
that allows for 3D visualization of and interaction with virtual
objects (see Figure 2). It has a wide field of view (52° diagonal)
with 47 pixel per degree resolution. It can be controlled naturally
by finger gestures and voice commands. We designed our
software using Unity6 and C#.

Experimental Procedure
Upon arrival, participants were asked to fill in a demographic
questionnaire. Afterward, participants put on the HoloLens and
started a training session in which they familiarized themselves
with the CoBot and with the environment. They also trained on
how to pick up a battery and bring it to the correct location (the
green area in Figure 2). The experimenter provided an overview
about how the experiment will run and explained what tasks the
robot performs and what tasks the participant has to perform.
Next, participants removed the HoloLens to read the scenario in
which they get more information about the environment, the
abilities of the robot, and the interactions available. We told the
participants, in written form and orally, that it is guaranteed that
the robot is able to automatically recognize and loosen screws if
they are in normal condition, whereas, as with many robotic
devices, this behavior cannot be assured for the vast number of
different situations the robot may encounter. Therefore, its
behavior with abnormal screws (rusty in our case) is uncertain
in nature. We mentioned this to create an atmosphere of
uncertainty about the outcome of the collaboration. In
addition to that, we told them that if the robot mistakenly
misses a screw and hits the body of the battery with the
screwdriver end-effector, an explosion might occur which can
be a life-threatening event. This shall make the human vulnerable

in the collaboration with the vulnerability being in the form of a
physical hazard.

Afterward, participants were assigned to one of two main groups.
We will refer to the first group as G1 and the second one as G2.
Different research work suggests that there is a difference between
men and women in terms of trust [e.g., trust games in economics
(Dittrich, 2015), human robot interaction (Gallimore et al., 2019),
and human automation interaction (Schuster et al., 2015)]. Therefore,
we made sure that the number of men and women was equal in the
groups. Both groups started with the reliability manipulation phase,
which we call Trust Dynamics (TD), and afterward they got to the
Trust Calibration (TC) phase where only the feedback accuracy
changes and reliability is held constant. Table 1 illustrates the
groups and the conditions they experienced.

In the Trust Dynamics phase (TD), participants experienced
reliable and unreliable behavior of the robot in two separate runs,
which shall excite human trust in the positive and negative
directions, respectively. The runs were fully counterbalanced;
thus, half of the participants witnessed the reliable behavior
first and then witnessed the unreliable behavior. The other
half has experienced exactly the opposite sequence. For the
purpose of understanding how trust evolves over time,
participants in this phase have filled out a questionnaire after
each battery (five times in total), so we get multiple snapshots of
trust as it changes after each interaction to keep track of its
accumulation or dissipation. In the Trust Calibration phase (TC),
the robot acts always reliably in G1 and the correctness of the
feedback it gives changes between two separate runs. In contrast
to G1, the robot in G2 acts always unreliably and the correctness
of the given feedback changes in two separate runs. In the two
parts of the TC phase, we are interested in exploring the effect of
correct/incorrect verbal feedback on trust in reliable/unreliable
behavior and whether it can be used as a means to calibrate
human trust. To measure this effect, we asked participants to fill
out a questionnaire at the end of each run. The order of the runs
was also fully counterbalanced between participants. Figure 3
depicts the whole experiment procedure.

The experiment ends with a short debriefing session in which
we asked the participants about their experiences and personal
opinions with regard to the different conditions they went
through.

Verbal Commands
In this experiment, the human and the robot interact verbally.
The recognizable set of commands the human can use is as
follows:

TABLE 1 | Experiment groups and conditions. Reliable: succeeds with all screws. Unreliable: succeeds with normal screws but fails with rusty ones. Correct Feedback: when
the screw is rusty, the robot says “I Can” if it will succeed and “I Cannot” if it will fail. Incorrect Feedback: when the screw is rusty, the robot says “I Cannot” if it will succeed
and “I Can” if it will fail.

Trust dynamics (Within-subject) Trust calibration (2x2 Mixed-Design)

Group G1 (n � 16) Reliable (REL) Reliable + Correct Feedback (REL+CF)
Unreliable (UNREL) Reliable + Incorrect Feedback (REL+IF)

Group G2 (n � 16) Reliable (REL) Unreliable + Correct Feedback (UNREL+CF)
Unreliable (UNREL) Unreliable + Incorrect Feedback (UNREL+IF)

5https://www.microsoft.com/en-us/hololens/
6https://unity.com/
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• Ready: Used when the human has already positioned the
battery correctly. Here, the robot responds with “OK” to
acknowledge the reception of the command.

• One, Two, Three, and Four: Used to indicate which screw the
human wants the robot to loosen. One command can be used
at a time. For example, if human says “One” to loosen the first
screw, he should wait until the robot is done with the screw
before using the next command, “Four” for example.

• Stop: Forces the robot to go back to its initial configuration
and abort the task at hand. This was to be used when the
robot fails to continue a certain task.

• Go: After the robot gives its feedback to the human whether
it can or cannot loosen the desired screw, it waits until the
human approves the execution of the task using this
command. Although some participants believed the
feedback given by the robot and were hesitant about
approving the execution especially when the robot says “I
Cannot”, in our experiment, the human has no other option
than approving, because we need to see the impact of the
feedback variable.

Measures
Similar tomultiple previous research (Madhani et al., 2002; Brown and
Galster, 2004; Hergeth et al., 2015; Hergeth et al., 2016), we used a
single item to measure trust and each factor that might have an
influence on it. We used the factors collected in the robot-related
category ofHancock et al. (2011) study andMuir andMoray (1996) as
potentially relevant factors to dynamically affect trust in our setting (see
Modeling Trust and its Factors).We concentratemainly on factors that

have a dynamic nature. These factors are: Dependability, Reliability,
Predictability, Adaptability, Anthropomorphism, Safety/Proximity,
and Faith as shown in Figure 4. We included faith since it seems
to be an important factor from the studies of Rempel et al. (1985) and
Muir (1994).We excluded the factors that do not fit the scenario or the
collaboration setting we are using. For example, we excluded the level
of automation factor since in our design this is a static one.

To measure these variables, we selected items from different
questionnaires of prior studies that measure the factors we are
interested in. The items and the factors they intend tomeasure are
listed below:

• Perceived Dependability: we used the item from Muir
questionnaire to what extent can you count on Panda to
do its job? [Muir 1989; as cited in Desai (2012)].

• Perceived Reliability: we used the item from Charalambous
questionnaire the robot did not seem reliable (Charalambous
et al., 2016).

• Perceived Predictability: we used the item from Muir
questionnaire to what extent can the robot’s behavior be
predicted? [Muir 1989; as cited in Desai (2012)].

• Perceived safety: we used the item fromGarza questionnaire
during the experiment I felt unsafe when the robot was
physically close to me (Garza, 2018).

• Perceived Adaptability: we used the item from Conti the
robot adapts its behavior according to my preferences (Conti
et al., 2019).

• Anthropomorphism: we used two items of the Godspeed
questionnaire which ask participants to rate their

FIGURE 3 | Experimental procedure. Participants start with TD phase and fill a questionnaire after each battery. They proceed with TC phase depending on the
group, where only one questionnaire is administered. Batteries should be handled in their order. In TD phase, trust dynamics is studied. In the TC phase, the effect of
verbal feedback on human trust is studied with different reliability levels.

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 7035049

Alhaji et al. Trust Dynamics and Verbal Assurances

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


impression of the robot on the scales of machine-like and
human-like as well as on the scale of unconscious to
conscious (Bartneck et al., 2009).

• Faith: we used the item from Muir questionnaire to what
extent do you believe that the robot will be able to cope with
all situations in the future? [Muir 1989; as cited in Desai
(2012)].

• For trust itself, we used also the item from Muir
questionnaire overall how much do you trust the robot?
[Muir 1989; as cited in Desai (2012)].

The selection process of these items is based on how such
variables are usually measured in the literature. We selected the
items that best fit our experimental setting from previously
developed questionnaires. We used seven points Likert-type
scale to measure the factors ranging from Strongly Disagree/
Not at All to Strongly Agree/To a Great Extent. The questionnaire
was administered in both German and English languages and the
items were translated into German by a native speaker.

Statistical Analysis
Our data are ordinal in nature as they are collected by Likert-type
scales. For this kind of data, non-parametric tests are suitable
(Field and Hole, 2003). Thus, we employ two-tailed Wilcoxon
Signed-Rank and Mann-Whitney U tests to make pairwise
comparisons for dependent and independent samples
respectively (within and between groups). The significance
level used in this work is α � 0.05 for all statistical tests
adjusted with Bonferroni correction in the case of multiple
pairwise comparisons. We performed all statistical tests and
graphics representations using libraries in Python (SciPy:
Virtanen et al., 2020; NumPy: Harris et al., 2020; Pandas:
McKinney, 2010; Matplotlib: Hunter, 2007).

RESULTS

Reliability Manipulation (TD)
In this phase as shown in Table 1, thirty-two participants
witnessed the reliable and unreliable behavior of the robot
(fully counterbalanced) without any feedback. We will refer to
the condition when the robot always acts reliably as REL, and to

the case when the robot always acts unreliably as UNREL. Half of
the participants in this phase (16 participants) started with the
REL condition and then moved to the UNREL condition. We
refer to this sequence as REL→UNREL. The other half did exactly
the opposite sequence which we will refer to asUNREL→REL (see
Figure 3).

Sequence Impact
As mentioned in Trust Calibration, trust cannot be easily repaired.
It takes a long time for the human to recover from a trust violation.
Therefore, as the order of our experimental conditions (reliable
REL, unreliable UNREL) are completely counterbalanced, we need
to check whether it is feasible to combine the data collected from
REL condition in the sequence REL→UNREL with REL condition
in the sequence UNREL→REL and the same for UNREL condition
data. For this purpose, we compare REL last results of
REL→UNREL sequence with REL last results of UNREL→REL
sequence. Accordingly, we use Mann-Whitney U test as we are
comparing two separate groups in this case.

Results reveal that the resulting trust in the REL condition is higher
for the sequence REL→UNREL (M � 6.12, SD � 0.88) than trust in
the reverse sequence UNREL→REL (M � 5.88, SD � 0.96). However,
this difference is not significant (n � 16, U � 148, p� 0.426). Similarly,
trust in the UNREL condition of the sequence REL→UNREL (M �
3.06, SD� 1.48) is also higher than in the sequenceUNREL→REL (M
� 2.31, SD � 1.35), but not significantly neither (n � 16, U � 166, p �
0.141). Finally, we also compare the level of trust in the first step of the
REL condition in the sequence REL→UNREL (M � 5.62, SD � 0.88)
with the first step of the REL condition in the sequenceUNREL→REL
(M � 4.81, SD � 1.76) and similarly we perform a comparison for the
UNREL condition for both sequences REL→UNREL (M � 6.0, SD �
0.97) andUNREL→REL (M� 5.75, SD� 1.0). The assumptionwe are
checking here is that priming participants with reliable/unreliable
behavior considerably impacts their propensity to trust the robot in
the next run, whichmight cause a trust repair problem that needs to be
considered.Mann-Whitney U test did not show statistical significance
neither in the REL (n � 16, U � 161.5, p � 0.192) nor in the UNREL
(n � 16, U � 147.0, p � 0.451) conditions. Therefore, we did not have
any trust repair problems caused by the different sequences and from
now on we will ignore the sequence.

Reliability Effect
The reliability of the robot’s behavior is probably the most important
characteristic that it should have in order to gain human trust (see
Modeling Trust and its Factors). We presume that reliable behavior
has a positive effect on human trust whereas unreliable behavior is
presumed to affect it negatively as current state of the art indicates. To
make sure that in our experiment the change in the robot’s behavior
did excite trust in the intended direction, we compare the last step of
the REL (M � 6.0, SD � 0.92) with the last step of the UNREL (M �
2.69, SD � 1.45) conditions (see Figure 3). Here we want to check
whether witnessing the robot always succeed in loosening the rusty
screws is associated with a higher trust as compared to the case where
it always fails. Results of Wilcoxon signed-rank test show statistically
significant difference between the reliable and unreliable conditions
(n � 32,W � 0, p� 0.000*). Thus, this variable does have a significant
impact on human trust and can be used as intended.

FIGURE 4 | Potential trust factors included in this study.
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Gender Effect
Previous work suggests differences between men and women in
terms of trust. Therefore, we check whether we can observe
similar differences in our experiment. However, the results of
Mann-Whitney U test show no statistical differences between
men and women in all five steps of both reliable and unreliable
behavior as illustrated in Table 2.

Trust Dynamic Evolution
Since the sequence does not seem to have a significant impact on the
development of trust, we study the dynamics of trust as it accumulates
and as it dissipates regardless of the sequence participants went
through. Hence, the sample size for this part is n � 32.

Trust Accumulation (Reliable)
We pair-wisely compare the reported trust after each battery in the
REL condition using Wilcoxon signed-rank test. Because we make
five comparisons here, we use Bonferroni correction to calculate
our corrected significance level, which is αcorrected � α

5 � 0.01. In the
case where the robot acts always reliably, human trust shows a
statistically significant development over the five steps. However, it
does not show a statistically significant development in between the
steps except between the first and the second ones. Figure 5
illustrates the trust accumulation process, where it starts from a
relatively high value (M� 5.22, SD � 1.43) after the first battery and
increases after successful handling of the rusty screws.

Trust Dissipation (Unreliable)
Similar to the reliable case, we compare the reported trust after each
battery in the UNREL condition using pair-wize Wilcoxon signed-
rank test. The results show that, when the robot acts always
unreliably, trust does show statistically significant development
over the five different steps similar to the accumulation case
(αcorrected � 0.01). The difference, however, is that in the negative
direction there mostly is significant development in between the
steps which implies a stronger dynamic. Trust in this case as well

starts from a relatively high value (M � 5.88, SD� 0.98) after the first
battery and decreases strongly after each failure. Figure 6 shows the
dissipation process of trust.

Trust Dynamics
Figure 7 shows how trust accumulates and dissipates in our
experiment. It can be seen that the slope of the trust accumulation
line is almost half the slope of trust dissipation one even when the
explosion part is excluded (see Experimental Conditions), which
means that its dynamics is stronger as it dissipates than its
dynamics as it accumulates. It also empirically shows evidence
that trust is difficult to build and easy to lose.

Trust Factors in Accumulation
In order to find the factors that affect trust in this collaboration
scenario, we conduct Spearman correlation analysis to find out
what factors go along with trust as it increases. It is common in
the literature to consider a correlation to be high when the
correlation coefficient is equal or greater than 0.5 (Bröhl et al.,
2019) or 0.7 (Ratner, 2009). In our study, we decided to use a
middle ground and we will consider a correlation as high if the
correlation coefficient is equal to or greater than 0.6 (rs ≥ 0.6).
The result of this analysis is illustrated in Table 3.

The first step’s result shows three factors that strongly correlate
with trust. They are predictability, dependability, and faith. From
the second step onward, reliability joins the other factors and
continues to strongly correlate with trust afterward. One can also
notice that the safety factor appears only once which we attribute to
the use of a virtual robot instead of a real one which in turn has
increased participants perception of safety. Additionally,
adaptability appears a couple of times starting from the second
step and then disappears in the final step. This inconsistency could
be due to the high subjectivity of the measured data, as participants
sometimes attributed adaptability to the robot while the behavior of
the robot was constant. Since both factors do not show consistency,
we will not consider them as relevant factors in this work.

As a result, based on our correlational analysis, it seems like
trust is dynamically associated with four factors that affect its
accumulation as shown in Table 3. This needs further
investigation to validate whether a causal relationship exists
between the identified factors and human trust.

Trust Factors in Dissipation
We follow the same process by conducting Spearman correlation
analysis and analyze the factors that associate trust as it decreases.
A similar correlation criterion is used here (rs ≥ 0.6). Table 4
contains the result of this analysis.

In this case, none of the considered factors show a coherent
relation to trust. Only adaptability appears twice at the end of the
run. Similar to the accumulation, reliability also appears in the
second step but disappears afterward.

Reliable Behavior With Feedback
Correctness Changing (TC in G1)
In this condition (see Table 1), we study the effect of assurances
from the robot side on the human trust and whether they can be

TABLE 2 | Results of men vs. women trust comparisons over the five steps. No
statistically significant difference has been detected.

Steps Men (n = 16) Women
(n = 16)

Statistics (U) p

M SD M SD

REL

1 5.38 1.54 5.06 1.34 149 0.413
2 5.82 1.38 5.44 1.26 157 0.251
3 5.88 1.20 5.56 1.03 154.5 0.297
4 6.06 1.12 5.56 1.15 163.5 0.162
5 6.25 0.77 5.75 1.0 164 0.152

UNREL

1 6.06 0.85 5.69 1.08 153.5 0.312
2 5.44 1.31 5.0 1.21 153.5 0.318
3 4.94 1.06 4.56 1.46 143 0.557
4 4.31 1.74 4.44 1.46 121 0.787
5 2.94 1.48 2.44 1.41 151.5 0.362
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FIGURE 5 | Trust accumulation asmore successful interactions and task executions occur (means of trust at all steps). Significant gain of trust between the first and
the last steps, but not in between them (α � 0.01).

FIGURE 6 | Trust dissipation as more failures occur (means of trust at all steps). Significant loss of trust mostly even in between steps (α � 0.01).
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used as means to calibrate it. There are multiple forms of feedback
the robot can provide to the human collaborator about its
confidence and abilities (see Trust Calibration). In our
experiment, we used a verbal form of assurances. In this

condition, we study the impact of correct and incorrect verbal
feedback on trust in the reliable behavior condition.

To analyze the effect of feedback accuracy, we compare reliable
behavior of the robot (REL), where no feedback was provided,
with reliable behavior with correct feedback (REL+CF) and
incorrect feedback (REL+IF) respectively. The REL condition,
however, has five different data points (one after each battery, see
Figure 3). Therefore, for a fair comparison, we use the data from
the last step of the REL condition which is equivalent to the data
of REL+CF and REL+IF (see Figure 3). For this, we apply
Wilcoxon signed-rank test with a Bonferroni-corrected
significance level of α � 0.025. The result shows no
statistically significant difference (n � 16, W � 25.5, p � 0.477)
between the two conditions RELlast (M � 5.81, SD � 0.83) and
REL+CF (M � 5.62, SD � 0.81). Thus, correct feedback did not
increase human trust when the behavior is reliable. Similarly,
when incorrect feedback was provided, Wilcoxon signed-rank
test shows a statistically significant difference (n � 16, W � 13, p �
0.021*) between the two conditions RELlast (M � 5.81, SD � 0.83)

FIGURE 7 | Dynamic trust development. Almost doubly stronger dynamics in dissipation compared to accumulation.

TABLE 3 | Factors strongly correlated with trust in accumulation phase over the
five steps (Spearman rs � 0.6, α � 0.05). Multiple factors show consistent
correlation with trust.

Steps Factors Correlation p-value*

1 dependability 0.6343 0.0001
predictability 0.65 0.0001
faith 0.784 0.000

2 dependability 0.6733 0.000
reliability 0.6271 0.0001
predictability 0.66 0.000
adaptability 0.6175 0.0002
faith 0.887 0.000

3 dependability 0.6882 0.000
reliability 0.7433 0.000
predictability 0.7073 0.000
adaptability 0.6192 0.0002
faith 0.8663 0.000

4 dependability 0.65 0.0001
reliability 0.6401 0.0001
predictability 0.6561 0.000
safety 0.634 0.0001
adaptability 0.7059 0.000
faith 0.7939 0.000

5 dependability 0.6113 0.0002
reliability 0.6287 0.0001
predictability 0.6346 0.0001
faith 0.7884 0.000

TABLE 4 | Factors strongly correlated with trust in dissipation phase over the five
steps (rs � 0.6, α � 0.05). No consistent correlation has been detected.

Steps Factors Correlation p-value*

1 safety 0.7459 0.000
2 reliability 0.6714 0.000

predictability 0.6459 0.0001
3 - - -
4 adaptability 0.6468 0.0001
5 adaptability 0.7195 0.000

faith 0.7149 0.000
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and REL+IF (M � 4.5, SD � 1.55). Hence, incorrect feedback did
decrease human trust when it accompanies reliable behavior.

Although men reported higher trust than women in both
REL+CF (men: M � 5.88, SD � 0.64; women: M � 5.38, SD � 0.92)
and REL+IF (men: M � 5.0, SD � 1.60; women: M � 4.0, SD �
1.41) conditions, these differences did not show statistical
significance in any of them (REL+CF: n � 8, U � 43.5, p �
0.194; REL+IF: n � 8, U � 43.5, p � 0.212).

Unreliable Behavior With Feedback
Correctness Changing (TC in G2)
In this condition, we want to test the impact of correct and
incorrect feedback when the robot acts always unreliably. We
compare the data from the last step of the unreliable behavior of
the robot (UNREL) with unreliable behavior with correct
feedback (UNREL+CF) and incorrect feedback (UNREL+IF),
respectively. The result of Wilcoxon signed-rank test with
Bonferroni correction (α � 0.025) shows a statistically
significant difference between the two conditions UNRELlast
(M � 3.25, SD � 1.53) and UNREL+CF (M � 4.88, SD �
1.20), thus correct feedback appears to have a positive impact
on trust when the behavior is unreliable (n � 16, W � 6, p �
0.015*). However, Wilcoxon signed-rank test shows no
statistically significant difference (n � 16, W � 16.5, p � 0.074)
between the two conditions UNRELlast (M � 3.25, SD � 1.53) and
UNREL+IF (M � 4.19, SD � 1.17). Hence, incorrect feedback did
not seem to influence human trust when the robot is unreliable.

In this condition as well, men reported higher trust than
women in the UNREL+CF (men: M � 5.0, SD � 1.51; women:
M � 4.75, SD � 0.89) and in the UNREL+IF (men: M � 4.62, SD �
1.06; women: M � 3.75, SD � 1.16) conditions. However, we did
not observe a statistical significance (UNREL+CF: n � 8, U � 33,
p � 0.913; UNREL+IF: n � 8, U � 45, p � 0.159).

Further Feedback Accuracy Effect (TC in G1
and G2)
To further explore the effect of feedback on human trust, we
check the impact of correct feedback with both behavioral levels
(reliable/unreliable), and the impact of incorrect feedback as well.
This comparison takes place between the groups G1 and G2 (see
Table 1).

First, we compare the reliable with correct feedback condition
(REL+CF) with the unreliable with correct feedback condition
(UNREL+CF). We apply Mann-Whitney U test here because we
have two independent samples (see Table 1). The result shows
that the trust level in the REL+CF (M � 5.62, SD � 0.81) is
statistically significantly higher (n � 16, U � 179, p � 0.045*) than
its level in the UNREL+CF condition (M � 4.88, SD � 1.20). This
means the correct feedback effect on human trust is dominated by
the effect of the unreliable behavior of the robot.

Similarly, we compare the reliable with incorrect feedback
condition (REL+IF) with the unreliable with incorrect feedback
condition (UNREL+IF). Although the level of trust in the REL+IF
condition (M � 4.5, SD � 1.55) is higher than in the UNREL+IF
condition (M � 4.19, SD � 1.17), the result of Mann-Whitney U

test in this case did not show a statistically significant difference
between the two conditions (n � 16, U � 142, p � 0.59). This
implies that the effect of the reliable behavior of the robot on
human trust is dominated by the effect incorrect feedback the
robot provided.

DISCUSSION

Our focus in this work is to study the dynamics of human trust
and its factors in collaboration with a robot, and to explore means
that can be used by the robot in order to maintain and calibrate it
should the need arise. This is an essential starting point to develop
a computational model that can be implemented on the robot
controller to make it aware of the trust level of its human partner
and helps it adjust its behavior in accordance.

Trust Dynamics and the Associated Factors
We empirically found that trust shows different dynamics
depending on the direction of its evolvement. Its dynamics
seems to be twice as strong while dissipating than while
accumulating (see Figure 7). Our results correspond with
previous theoretical work (Juvina et al., 2019) and empirically
supports it (RQ1).

In the accumulation phase, four factors show a strong
correlation with human trust, which are dependability,
reliability (starting from the second step), predictability, and
faith as can be observed in Table 3. The first step’s result
shows the same three factors appear in the model of Rempel
et al. (1985) and Muir (1994), and these factors continue to
correlate with trust as it increases. Thus, the result of the first step
agrees with the interpersonal trust model. However, our results
disagree with the hierarchy of it, because in our case, the three
factors appeared together in the first step of the interaction,
whereas the factor of predictability should have dominated at the
early stage of the interaction, then dependability, and faith
afterward according to the model. Perceived reliability appears
from the second step onward. The reason of its latency can be that
the participants first needed to observe how the robot would
handle a rusty screw before they judge its reliability.

Additionally, we could not find factors that strongly and
consistently correlate with trust as it dissipates (see Table 4),
which could be due to the small sample size used in this study.
Only the factor adaptability appears twice at the end of the run.
This suggests that this factor might play a strong role in the trust
dissipation phase. Thus, the ability of the robot to adapt to the
user’s preferences could contribute to maintaining the level of
human trust in the collaboration. Although we did not identify
clear factors in this direction, it shows evidence to a very
interesting conclusion; that is, trust might have different
factors in the dissipation phase than in accumulation one. Any
method or instrument to measuring trust, be it subjective or
objective, must take these characteristics of trust into account in
order to provide reliable measurements. This has been overlooked
by researchers since trust is mostly being measured with a post-
hoc questionnaire once at the end of an experiment, with no
guarantee that the questionnaire actually captures trust accurately
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enough. Although this finding does not fully answer the second
research question (RQ2), it calls for researcher’s attention
regarding the differences of these two phases. Accordingly,
using a single instrument to measure trust will most likely fail
to capture it. Therefore, multiple instruments are required to
measure trust accurately.

The difference in the relevant trust factors during the
accumulation and dissipation phases could be a reason why
trust shows different dynamics in these two phases. These new
findings about human trust dynamics need to be considered in
future research on trust in order to capture it in real-time. This
partially addresses the first research question (RQ1) and calls for
further deeper investigations.

Verbal Feedback Effect
In addition to the trust dynamic development, we also explored
the potential effect of providing feedback by the robot on human
trust and whether this can be used to preserve human trust and
calibrate it when needed during the collaboration. We expected
that correct verbal feedback will increase human trust even when
the robot works reliably. However, the results of the study did not
support this expectation and we found no statistically significant
difference in the reported trust when correct feedback
accompanies reliable behavior or not [see Reliable Behavior
With Feedback Correctness Changing (TC in G1)]. Conversely,
correct verbal feedback did increase the level of human trust when
the robot fails to do its task [see Unreliable Behavior With
Feedback Correctness Changing (TC in G2)]. Accordingly, the
results imply that correct verbal feedback might be redundant in
case the robot works as it should but essential if failures are
expected. This does not comply with the findings of previous
work of Desai et al. (2013), as feedback did not affect human trust
in their study. Besides, correct feedback does have a positive
impact on trust when the robot works unreliably because it works
as a warning as most participants stated after the experiment
which has been perceived by participants as a good behavior [see
Unreliable Behavior With Feedback Correctness Changing (TC in
G2)]. These results underline how important an assurance is
when a failure is expected. It may be able to prevent trust of the
human from draining beyond recovery.

Incorrect verbal feedback, on the other hand, did not have a
strong impact on human trust if the robot acts unreliably. It seems
to have influence only if the robot acts reliably [see Reliable
Behavior With Feedback Correctness Changing (TC in G1) and
Unreliable Behavior With Feedback Correctness Changing (TC
in G2)].

Overall, the results show how sensitive trust is to feedback and
suggest that feedback can actually be an effective way to calibrate
trust. It seems that human trust ismore sensitive to incorrect feedback
than it is to correct feedback when the behavior is reliable, and it is
more sensitive to correct feedback than incorrect feedback when the
behavior is unreliable. The conclusion that emerges from that is
interesting mainly for designers, since it implies that the system does
not need to provide feedback unless a failure is expected. Our results
contribute to existing the models put forward about these assurances,
e.g., the trust cycle of Israelsen and Ahmed (2019), as our results
shows that those assurances have a different impact on the level of

human trust depending on other factors which might sometimes
dominate over assurances (the reliability of the behavior in our case).
This helps in answering our third research question (RQ3).
Additionally, as verbal feedback affected trust in both directions,
one can conclude that verbal feedback has the potential to actually
calibrate human trust during the execution of a task.

Regarding our fourth research question (RQ4), the results of
the analysis suggest that the use of correct feedback is effective
only if an unreliable behavior is expected, and the incorrect
feedback has an influence on human trust only if the behavior
is reliable. Therefore, providing correct feedback might help in
preserving human trust during the collaboration although it
might be redundant in some cases. Additionally, providing
incorrect feedback can help in lowering human trust when it
gets too high.

Moreover, if we consider the levels of the used variables as
Booleans (unreliable: false, reliable: true; incorrect feedback: false,
correct feedback: true; trust not affected: false, trust affected:
true), then the conclusion from analyzing the different conditions
gets very interesting. It seems like human trust is affected (true) if
only one of the variables (reliability and feedback) is true, and it is
not affected (false) otherwise, which means that trust sensitivity
(affected or not) is the result of the exclusive disjunction
operation XOR between the used variables as shown in Table 5.

This helps also in answering the fourth research question
(RQ4) andmodeling human trust. To reduce human trust when it
is too high, purposefully incorrect feedback might help bringing it
back to the safe zone. On the other hand, if it is low because of
failures, then correct feedback might help in preserving human
trust, which makes the verbal feedback a valid means for trust
calibration.

Study Limitations
Although this study contributes toward better understanding on
human trust in collaboration with a robot, its calibration, and the
factors that might influence it, the study has its own limitations
that can be addressed in future research. Firstly, the use of a
mixed-reality environment had an influence on participant’s
perception of safety. Most of the participants of our study felt
safe during the collaboration with the virtual robot, which might
have affected participant’s subjectively reported trust. Prior work
(see Environment Choice), though, suggested that using virtual
reality to study human-robot interaction is a valid option.
Therefore, we believe that the results presented in this study
provide reasonably valid contributions and we are currently
planning a follow-up experiment with the same robot used in
this study but in a real physical collaboration setting in order to
make the environment closer to the real application.

TABLE 5 | Boolean logic relationship between reliability and feedback and their
effect on human trust compared to the case where no feedback is provided.

Reliability Feedback Logic Trust

Reliable (1) Correct (1) XOR Not affected (0)
Reliable (1) Incorrect (0) XOR Affected (1)
Unreliable (0) Correct (1) XOR Affected (1)
Unreliable (0) Incorrect (0) XOR Not affected (0)
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Secondly, all of our participants were university students and
employees, who have very limited (if any) practical experience
with the disassembly processes and their complexity. Although
the results provide us with better insights on human trust in
collaboration with a robot, this limitation might have a strong
impact on the external validity of the experiment.

Thirdly, the conclusions drawn regarding the factors that
guide human trust in the collaboration setting (TD phase)
were based mainly on correlational analysis, which does not
necessarily imply causation. For better and more robust
results, the causal relationship between the used factors and
trust needs to be investigated in similar physical collaboration
setting.

Finally, the sample size in the conditions of the TC phase, in
which feedback and reliability influences on human trust were
investigated, is relatively small to draw generalizable conclusions.
This might also be the reason why we were not able to find any
statistically significant differences between men and women in
trust which does not conform with previous studies where
women reported higher trust in Gallimore et al. (2019) and
lower trust in Schuster et al. (2015) than men. A larger sample
size would better represent the population allowing for the use of
parametric tests and enhancing the power and generalizability of
the results.

CONCLUSION AND FUTURE WORK

In this study, we explored multiple aspects of human trust toward a
robotic team partner. Mainly, we were interested in understanding
human trust evolvement over time when collaborating with a robot
in a shared workspace and whether it can be calibrated by the robot
to avoid inappropriate reliance. Essential to this is knowing the
factors that could affect trust development. Therefore, we started by
examining the relevant factors in a human-robot hand-in-hand
collaboration setting. We differentiated between trust accumulation
and dissipation phases by considering each one separately.We found
four relevant factors that strongly correlate with trust in its
accumulation phase. They are: dependability, reliability,
predictability, and faith. However, none of the proposed factors
correlated with trust in the dissipation phase. This can be due to the
small sample size, but it points to a very interesting conclusion,
which is that trust factors in its accumulation phase differ from those
in its dissipation phase. Additional research is required to obtain
better understanding on these factors and their effect on trust
development. Further, we investigated the dynamics of trust in
the aforementioned phases. We detected a stronger dynamic
behavior in the dissipation phase compared to the accumulation
one, which conforms with previous theoretical research. In addition
to trust dynamics, we also investigated the impact of the verbal
assurance provided by the robot on human trust in different
conditions and whether it contributes to trust calibration. Our
findings suggest that verbal feedback has the merit to influence
human trust positively and negatively depending on its correctness

which makes it a strong candidate to be deployed in order to
calibrate trust of a human partner.

Although the study has some limitations, its findings
meaningfully contribute to our knowledge about human trust
in a robotic partner and provide insights to designers for a better
collaboration quality.

One possibly important limitation was the use of a virtual
robot, which might have strongly reduced participant’s
perception of vulnerability as their perception of safety was
mostly high. To approach this limitation, we are planning a
similar experiment with a real physical robot.

Our future work will concentrate further on finding trust
factors which is an initial step toward developing a reasonable
quantitative model. The implementation of this model on the
robot’s controller could make it aware of the human trust which
allows it to adapt its behavior accordingly.
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