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Abstract: Irisin is a peptide secreted by skeletal muscle following exercise that plays an important
role in bone metabolism. Numerous experiments in vitro and in mouse models have shown that the
administration of recombinant irisin promotes osteogenesis, protects osteocytes from dexamethasone-
induced apoptosis, prevents disuse-induced loss of bone and muscle mass, and accelerates fracture
healing. Although some aspects still need to be elucidated, such as the dose- and frequency-dependent
effects of irisin in cell cultures and mouse models, ample clinical evidence is emerging to support its
physiological relevance on bone in humans. A reduction in serum irisin levels, associated with an
increased risk of osteoporosis and bone fractures, was observed in postmenopausal women and in
both men and women during aging, Recently, cohort studies of subjects with secondary osteoporosis
showed that these patients have lower circulating levels of irisin, suggesting that this myokine could
be a novel marker to monitor bone quality in this disease. Although there are still few studies, this
review discusses the emerging data that are highlighting the involvement of irisin in some diseases
that cause secondary osteoporosis.

Keywords: irisin; osteoporosis; hyperparathyroidism; Prader–Willi syndrome; growth hormone;
Cushing’s disease; inflammatory bowel disease

1. Introduction

Osteoporosis is a progressive multifactorial skeletal disorder characterized by the
deterioration of bone microarchitecture and increased susceptibility to fracture risk [1].

The increase in life expectancy, causing a higher average age of the population, as the
main achievement of modern science, consequently leads to an increase in the incidence
of chronic diseases typical of the elderly, such as osteoporosis [1]. Typically, the elderly
population with osteoporosis is often concomitantly affected by sarcopenia, which progres-
sively leads to a loss of muscle mass and strength, thus amplifying the risk of fractures [2].
Osteoporosis and sarcopenia are the most common musculoskeletal disorders in the elderly;
however, they can also affect young people with metabolic disorders, neurodegenerative
diseases, cancer diseases, and astronauts during space missions due to weightlessness.
Osteoporosis and sarcopenia represent a dangerous “duet” with a significant social rel-
evance for the great socio-health impact of the consequent fractures. Pharmacologically,
while some measures to treat sarcopenia are beneficial for bone health, the treatment of
osteoporosis does not always reflect positively on muscles. Regular exercise is one of the
proven non-pharmacological strategies to prevent bone fragility and sarcopenia. However,
not all individuals are in a condition to perform regular physical activity; therefore, the

Int. J. Mol. Sci. 2022, 23, 690. https://doi.org/10.3390/ijms23020690 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23020690
https://doi.org/10.3390/ijms23020690
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9683-9975
https://orcid.org/0000-0001-6731-0247
https://orcid.org/0000-0002-7121-5899
https://doi.org/10.3390/ijms23020690
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23020690?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 690 2 of 11

identification of exercise-mimicking molecules represents a resource to prevent and/or
treat both diseases.

Myokine irisin is a protein secreted into the blood by cleavage of membrane protein
5 (FNDC5) after a skeletal muscle contraction under the control of coactivator 1-alpha
(PGC1alpha) [3]. Early studies by Bostrom et al. showed the effect of irisin in activating
the trans-differentiation of white adipose tissue into brown tissue. Irisin was found to
play important roles in metabolic disorders, Alzheimer’s disease, brain function, and bone
metabolism [4–6]. Several studies demonstrated that irisin influences bone cells [7–13].
Specifically, it was shown that irisin stimulates osteoblast differentiation and activity,
through the upregulation of transcription factors and matrix proteins such as the Activating
Transcription Factor 4 (Atf4) and Collagen I. In addition, irisin directly affects osteocytes by
increasing their viability. In parallel, irisin has a dual action on osteoclasts: an indirect action
through the increased expression of Osteoprotegerin (OPG) by osteoblasts [8,11] and a
direct action in stimulating osteoclastogenesis of osteoclast precursors treated continuously
with 10 ng/mL of recombinant irisin (rec-irisin) (Figure 1) [12].
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Figure 1. Graphical illustration of the action of irisin on bone cells. Irisin increases osteoblast
differentiation and activity and affects osteocytes by increasing their viability and inhibiting the
expression of Sost, the gene coding for sclerostin. Irisin has a double action on osteoclasts: an indirect
action through the increase in osteoprotegerin (OPG) expression in osteoblasts that block the receptor
activator of nuclear factor kappa-B ligand (RANKL), and in parallel, a direct action by stimulating
the differentiation of osteoclast precursors.

However, the same authors observed that a higher dose (20 ng/mL) increased the
number of osteoclasts significantly less than the 10 ng/mL dose, and doses of irisin equal
to or greater than 100 ng/mL decreased osteoclastogenesis [12]. Furthermore, Zhang
and colleagues [14] treated pre-osteoclastic RAW264.7 cells with rec-irisin for 3 days and
observed a significant reduction in the mRNA levels of tartrate-resistant acid phosphatase
(TRAP) nuclear factor of activated T cells (NFATc1), and cathepsin K (CatK) [14]. In
addition, the difference observed in vivo between the study by Estell et al. [12] and the
study by Zhang et al. [14], may be due to the duration of irisin treatment, i.e., short duration
(7 days) promoting osteoclastogenesis [12], and chronic treatment (2 months) [14] inhibiting
osteoclastogenesis through the increased activity of the Mck promoter of Fndc5.
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Therefore, it was hypothesized that irisin concentrations, as well as frequency and
duration of treatment, are responsible for the discrepancies observed in the different studies.
Experiments conducted in vivo on young healthy mice show a positive effect of rec-irisin
on cortical bone and its mechanical properties, improving some parameters such as cortical
bone surface, tissue mineral density, cortical perimeter and polar moment of inertia, an
index of resistance of long bone to torsional forces [10]. Follow-up studies on osteoporotic
mouse models showed that treatment with rec-irisin prevented both cortical and trabecular
bone mineral density (BMD) reduction in mice subjected to four weeks of unloading [11].
Furthermore, if irisin was administered after four weeks of unloading, when bone loss
already occurred, cortical and trabecular BMD loss were reverted, indicating the potential
of irisin to also treat osteoporosis [11]. In contrast with these results, Kim and colleagues
showed that mice with a global deletion of the irisin precursor, FNDC5, were resistant to
ovariectomy-induced bone loss through the inhibition of osteoclastic bone resorption and
osteocytic osteolysis [13]. The authors also observed an increased expression of sclerostin,
an inhibitor of bone formation, after 6 daily injections of 1 mg/kg of irisin [13]. In contrast, a
reduction in sclerostin was observed by injecting unloaded mice with a 10 times lower dose,
given weekly for 4 weeks [11]. Similar to the parathyroid hormone (PTH), which exerts both
catabolic and anabolic effects on the skeleton depending on the administration regimen [15],
it was hypothesized that a high dose of irisin could lead to bone catabolism [13], whereas a
lower dose, given with intermittent pulses of irisin, as occurs during exercise, could have
anabolic effects on bone [11]. To further explore this hypothesis, studies were conducted
to evaluate the effects of irisin on osteocyte viability when it was administered at low
doses and intermittently, as occurs during exercise. The results showed that the treatment
of unloaded mice with 100 µg/kg weekly of rec-irisin for four weeks inhibited disuse-
induced osteocytes apoptosis and reduced the number of empty lacunae compared to
unloaded mice treated with a vehicle [16]. In vitro studies were conducted on osteocyte-
like cell lines (Mlo-y4), demonstrating that irisin treatment increases osteocyte survival
by upregulating Blc2/Bax ratio and preventing dexamethasone and hydrogen peroxide-
induced caspase activation. Moreover, in vivo studies also showed an inhibition of caspase
activation in the cortical bone of unloaded mice treated with rec-irisin [16]. Additionally,
rec-irisin activated the MAP kinases, Erk1 and Erk2, and increased the expression of the
transcription factor Atf4 through an Erk-dependent pathway in osteocytes [16]. These
results revealed the basic mechanisms of irisin’s action on osteocytes; to increase their
functions and exert antiapoptotic effects, confirming that mechanosensory cells in bone are
sensitive to the exercise-mimetic myokine irisin [16]. Very recently, it was shown that the
systemic administration of an intermittent, low dosage of irisin accelerates bone fracture
healing in mice [17]. By examining the impact of irisin treatment after 10 and 28 days post
fracture, we observed an accelerated shift of cartilage callus to bony callus, along with
a modification of chondrocytes towards the hypertrophic phenotype, and an increase in
callus volume and bone mineral content, indicating a more rapid mineralization without
affecting trabecular architecture and bone remodeling (Figure 2) [17].

In support of the importance of irisin in the human musculoskeletal system, observa-
tional studies have shown that circulating irisin levels correlate positively with parameters
of healthy bone and muscle tissues [18,19]. Recently, we described a positive correlation
between serum irisin and both femoral and vertebral bone mineral density in a population
of elderly subjects [20]. Levels of the irisin precursor, FNDC5, in skeletal muscle of these
subjects correlated positively with serum irisin levels and osteocalcin expression in bone
biopsies, indicating a strong correlation between muscle and bone [20]. In the same study,
we provided in vitro evidence demonstrating that treatment with rec-irisin in osteoblasts
reduces the expression of p21, one of the effectors of the senescence process [20]. Therefore,
these results suggest that this molecule could represent a viable therapeutic option to delay
osteoporosis caused by senescence [21].
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Figure 2. Systemic administration of recombinant irisin accelerates fracture healing in mice. Treatment
with irisin administered at a low dose (100 µg/kg) and intermittently (once a week) increased X-type
collagen expression in the cartilaginous callus at 10 days after fracture, indicating a more advanced
stage of endochondral ossification of the callus during the early phase of fracture repair. Further
evidence that irisin induced the transition of cartilaginous callus into osseous callus was provided
by a reduction in SRY (sex-determining region Y)-box 9 (SOX9) and an increase in runt-related
transcription factor 2 (RUNX2). At 28 days after fracture, microCT analyses showed that total callus
volume (TV), bone volume (BV), and bone mineral content (BMC) were increased in irisin-treated
mice compared with controls.

All these in vitro and in vivo studies demonstrated the importance of irisin action on
bone metabolism. Although some aspects remain to be elucidated, particularly the dose-
and frequency-dependent effects of irisin in cell cultures and in mouse models, extensive
clinical evidence is emerging in support of its physiological relevance for bone and its
role in secondary osteoporosis. In parallel, new studies identify irisin as a possible serum
prognostic marker of bone pathologies [22,23].

In this review, we focus on recent findings about the involvement of irisin in different
pathologies causing secondary osteoporosis.

2. Irisin in Primary Hyperparathyroidism

Primary hyperparathyroidism (PHPT) is an endocrine disease characterized by ele-
vated calcium and PTH levels [24]. Affected patients develop a decreased BMD, particularly
at the cortical site of the distal radius [25]. Joint pain is a common symptom in patients with
PHPT [26,27], who, over time, develop osteoarthritis and osteoporosis [28]. Less frequent
manifestations include Achilles tendon rupture, and sacral insufficiency fractures [26].
Biomolecular studies revealed that chronic high levels of PTH stimulate osteoclastogenesis
indirectly by acting on osteoblasts. Indeed, PTH-stimulated osteoblasts secrete nuclear
factor receptor-κB ligand (RANKL) and release low levels of OPG [25]. Emerging preclinical
data regarding the possible interaction between PHT and irisin showed that, although in
opposite ways, both affect bone, muscle, and adipose tissue. Therefore, recent studies fo-
cused on the cellular interaction between these two hormones by evaluating the expression
of the irisin precursor, FNDC5, in skeletal muscle cells treated with 1-34 PTH (Teriparatide).
Palermo et al. demonstrated that both short-term (3 h) and long-term (6 days) treatment
with PTH negatively regulates the FNDC5 gene and protein expression in myotubes by
acting through the PTH receptor, which in turn activates the phosphorylation of Erk1/2,
most likely increasing intracellular cAMP [19]. The study also showed that irisin treatment
decreases PTH receptor expression in osteoblasts, suggesting that this myokine may exert
its anabolic effect on bone not only by stimulating osteoblast formation and function, but
also by reducing the action of PTH on these cells [19]. Furthermore, serum irisin levels
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were lower in postmenopausal women with PHPT compared with control subjects [19].
This finding supported the results of other previous clinical investigations showing that
irisin was inversely related to PTH in postmenopausal women with low bone mass [29]
and in hemodialysis patients [30]. It is known that physical activity can help reduce PTH
secretion, particularly if the exercise is chronic rather than resistance exercise [31]. This is
relevant to the disease, as a slight reduction in circulating PTH levels may be desirable in
patients with PHPT.

3. Irisin in Prader-Willi Syndrome (PWS)

Prader-Willi syndrome (PWS) is a rare genetic disorder that affects appetite, growth,
the hormonal system, metabolism, cognitive function, and behavior. Most cases of PWS are
attributed to a spontaneous genetic error that occurs due to a lack of gene expression in a
specific part of the long arm of the paternal chromosome 15 [32]. The main mechanisms
leading to the lack of gene expression responsible for Prader–Willi syndrome are interstitial
deletion of the proximal long arm of chromosome 15 (del15q11-q13) (DEL15), maternal
uniparental disomy of chromosome 15 (UPD15), and imprinting defects [33]. Patients
with PWS show reduced muscle tone, short stature, incomplete sexual development,
intellectual disability, peculiar behavior, poor nutrition, and initial failure to thrive, followed
by hyperphagia and obesity in early childhood if eating is not controlled, multiple endocrine
abnormalities, including growth hormone deficiency (GHD) and hypogonadism [34,35].

Notably, PWS patients also show bone defects. Children with PWS during puberty
have normal bone mineral density (BMD) adjusted for reduced height [36–38], but in adoles-
cence and adulthood, they show a decrease in total BMD and, in some cases, bone mineral
content (BMC), because they have not reached bone mineral maturation; this is also due
to pubertal delay/hypogonadism [39–42]. Consequently, osteoporosis is predominant in
PWS individuals, who also have other orthopedic complications, worsened by weight gain,
including scoliosis, kyphosis, hip dysplasia, flat feet, genu valgum, and fractures [41,43].

Many research groups showed an increasing interest in assessing irisin levels in adult
and pediatric PWS patients in relation to genetic background, metabolic profile, cognitive
impairment, and bone status. Hirsch et al. found increased amounts of salivary irisin in
obese PWS compared with non-obese controls, whereas plasma irisin levels did not change
significantly between the two groups [44,45]. Mai et al. also reported that PWS patients
and controls had similar circulating irisin levels [46]. More recently, hypovitaminosis D
was found by our group in a cohort of PWS patients [47]. Interestingly, irisin levels of those
not supplemented with 25(OH)-Vitamin D were lower than levels detected in both controls
and supplemented patients. Of note, a multiple regression analysis showed that irisin
levels in both pediatric and adult PWS were predicted by genetic background and levels of
25(OH)-Vitamin D [47]. However, further studies are needed to understand the relationship
between irisin and 25(OH)-Vitamin D and whether this interaction is influenced by disease
type. Currently, there is limited and conflicting evidence about the effects of vitamin D
on irisin synthesis. Preclinical studies in a diabetic rat model demonstrated that vitamin
D supplementation upregulated FNDC5 gene expression in muscle but not serum irisin
levels [48]. Studies conducted in healthy young adults showed that a single 100,000 IU
dose of vitamin D did not influence irisin levels [49]. However, in older adults affected by
type 2 diabetes mellitus with vitamin D deficiency, 8 weeks of vitamin D supplementation
(50,000 IU/week) were effective for increasing irisin levels [50].

In conclusion, although studies to date have not found differences in circulating
levels of irisin in PWS patients compared with matched controls, a possible role of genetic
background in PWS on irisin level has emerged. In addition, further studies are desirable
to evaluate whether vitamin D supplementation may be a key factor in the regulation of
circulating irisin levels.
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4. Irisin in GH Deficiency (GHD)

Growth hormone deficiency (GHD), also known as dwarfism or pituitary dwarfism, is
a condition caused by insufficient amounts of growth hormone in the body. Children with
GHD have an abnormally short stature with normal body proportions and were shown to
have low BMD [51]. In adults, GHD causes abnormalities in body composition, problems
with movement and exercise in conjunction with decreased BMD, and increased fracture
risk [52,53]. GHD can be present at birth (congenital) or develop later (acquired).

In the pediatric population, a reduction in irisin may play a role in the pathogenesis of
childhood obesity [54] because this myokine plays a very important role in the regulation
of adipose tissue metabolism [55,56] and correlates with glucose tolerance and insulin
resistance in humans [57,58]. Several studies showed a possible link between skeletal
muscle and adipose tissue mediated by irisin. Irisin plays a role in both adipose tissue and
glucose metabolism; therefore, changes in irisin may mediate the effects of GH deficiency
(GHD) and GH replacement (GHR) on these endpoints.

Specifically, GHD is characterized by altered body composition with reduced muscle
mass and increased adiposity [58,59], as well as metabolic alterations [60,61], and GHR
may cause a reversal of these effects [62,63]. A direct interaction between irisin and GH
was documented in nonmammalian species. Indeed, fish irisin acts directly at the level of
the pituitary gland to inhibit the expression of GH transcription through multiple signaling
pathways [64]. However, it is not known whether GHD and GHR can affect irisin levels or
whether changes in irisin levels in GHD and its replacement are associated with changes
in body composition and glucose homeostasis. A previous study assessed circulating
irisin levels in a cohort of children with GHD at diagnosis, with a bone age delay of at
least 1 year from the chronologic age, as estimated by radiography of the left wrist and
hand. Changes of irisin levels during GHR, and any association of irisin with body com-
position and metabolic parameters, were also assessed. The results showed that GHD is
associated with lower irisin levels, in turn associated with changes in body composition
and metabolic endpoints [65]. After 12 months of GHR, children with GHD showed a
significant increase in serum irisin levels, along with an increase in IGF-I, and an improve-
ment in bone/chronological age ratio. In agreement with this finding, a previous study,
performed in patients with Turner syndrome, showed an increase in irisin, concomitant
with an increase in IGF-I levels, after the administration of supraphysiological doses of
GHR (0.05 mg/kg/d) [66]. Therefore, this suggests that future studies will be needed to
understand whether the association between GH and irisin is causative or not, and it would
be interesting to evaluate whether, in GHD patients after GHR, increasing irisin levels can
improve musculoskeletal homeostasis, and can revert the bone age delay in children.

5. Irisin in Cushing’s Disease (CD)

Cushing’s disease (CD) is a rare condition that results from an excess of cortisol in the
body. Cortisol is a hormone normally produced by the adrenal glands and is essential for
life. Excess cortisol may be caused by a pituitary tumor that secretes ACTH. However, CD
generated by this oversecretion of ACTH in the pituitary gland differs from other causes
of Cushing’s syndrome, i.e., adrenal overproduction of cortisol or paraneoplastic ectopic
production of ACTH. When left untreated, CD leads to excess mortality [67]. However,
there is uncertainty about the long-term survival of patients with CD in remission, because it
causes metabolic, psychiatric, cardiovascular, and musculoskeletal comorbidities associated
with hypercortisolism [68,69]. Glucocorticoid levels affect skeletal muscle activity, resulting
in muscle atrophy and weakness in patients with CD. In fact, 40–70% of patients with CD
report muscle weakness especially in the proximal muscles of the lower extremities [70,71].
Therefore, these patients have difficulty getting up from a squatting position or climbing
stairs, whereas they have less difficulty running or walking [72,73]. Moreover, patients
with CD, develop sarcopenia, which is generally associated with obesity and osteoporosis,
leading to a condition called osteosarcopenic obesity [73].
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Excess cortisol could affect circulating irisin levels, especially since skeletal muscle,
the main source of irisin, is one of the target organs of cortisol. A recent study evaluated
circulating irisin levels in patients with active, controlled Cushing’s disease [73]. Guarnotta
et al., observed that circulating irisin levels were lower in patients with CD before and after
the correction of hypercortisolism compared with controls [73]. Given the role of irisin
as a player in the bone, muscle, and adipose tissue axis, further studies will certainly be
relevant to understand whether this molecule represents a marker for the diagnosis of
osteosarcopenia and central obesity in patients with CD.

6. Irisin in Inflammatory Bowel Disease (IBD)

Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the
intestine and gastrointestinal disorders; the most common forms of IBD are Crohn’s disease
(CD) and ulcerative colitis (UC) [74]. Patients with IBD suffer not only from intestinal
pathology but also from multiple comorbidities induced by extraintestinal inflammation.
Malnutrition, vitamin D deficiency, reduced physical activity, hypogonadism, delayed
puberty, inflammation, and corticosteroid use are common findings in patients with IBD
and, in turn, may negatively impact the skeletal system [75]. Indeed, IBD causes osteopenia,
osteoporosis, and a subsequently high fracture risk [76,77]. In these patients, the bone
microstructure is damaged. Inflammation generates a decrease in bone mass because it
increases osteocyte protein expression and osteoclast activity; it also increases the expression
of the receptor activator of NF-kB ligand (RANKL), TNF-a, and IL-6, which are factors
implicated in IBD and known to stimulate bone resorption [78]. However, it is not known
whether the immunological processes that drive bone loss in IBD are distinct from or
parallel to those in the intestine. There is currently no cure for chronic IBD, so all efforts are
being made for treatments aimed at mitigating the symptoms of the disease [79]. Given
the emerging anti-inflammatory role of irisin, a recent study examined how exogenous
treatment with irisin might improve disease status in a rat model of TNBS-induced chronic
IBD [80]. This rat model is characterized by morphological and functional changes in the
gut that occur in parallel in the bone, with increased bone resorption and decreased bone
formation. Results showed that exogenous treatment with irisin blocked the gut from
inflammatory changes, improved lymphatic structure, and recovered bone turnover by
reducing TNF-a and RANKL [80], thus proposing irisin as a promising clinical approach in
chronic inflammatory conditions [80]. Although information on irisin and IBD in humans is
currently unknown, it is well recognized that moderate exercise may exert an ameliorative
effect in this disease. Crohn’s disease patients who exercised were significantly less likely
to develop active disease after six months. In addition, moderate exercise was shown to
exert a positive effect on weight maintenance and delay of osteoporosis in patients with
IBD [81]. Conversely, it is known that, depending on its intensity and duration, exercise can
cause mild transient systemic inflammation and increases the release of pro-inflammatory
cytokines, thereby exacerbating gastrointestinal symptoms. Therefore, studies correlating
serum irisin levels with inflammatory cytokines in IBD are not only desirable but also
urgent since physical activity is one of the strongly recommended nonpharmacological
therapies for the mental and physical well-being of these patients.

7. Conclusions

Secondary osteoporosis most commonly affects patients including men and patients
without classic clinical risk factors. More than 50% of premenopausal women and between
50% and 80% of men have secondary osteoporosis, whose skeletal fragility may result from
the underlying chronic condition that can either interfere with the achievement of peak bone
mass during growth or increase the rate of bone loss due to the chronicity of the condition.
Unidentified secondary osteoporosis may contribute to the severity of osteoporosis or
inadequate responses to treatment. For example, in glucocorticoid-induced osteoporosis, if
diagnosed early, the use of an anabolic agent may be preferable. Therefore, it is critical to
identify new biomarkers involved in bone loss caused by secondary osteoporosis in order
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to diagnose it at the earliest possible time. Although there are still few studies, emerging
data showing altered circulating levels of irisin in secondary osteoporosis are promising.
Further studies are needed to understand whether the modulation of irisin is caused by
mechanisms underlying the disease itself, e.g., genetic causes, or whether it is the muscle
and bone damage, hallmarks of these diseases, that influence the circulating levels of this
myokine.
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