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Abstract
Purpose of Review Gram-negative resistance is a growing concern globally. Enterobacterales, formerly Enterobacteriaceae,
have developed resistance mechanisms to carbapenems that leave very few antimicrobial options in the clinician’s
armamentarium.
Recent Findings New antimicrobials like ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, cefiderocol,
and plazomicin have the potential to overcome resistance mechanisms in Enterobacterales including different classes of
carbapenemases.
Summary Novel β-lactam/β-lactamase inhibitors, plazomicin, and cefiderocol give the clinician options that were once not
available. Utilizing these options is of the utmost importance when treating carbapenem-resistant Enterobacterales.
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Introduction

Antimicrobial resistance is one of the 2019 World Health
Organization’s (WHO) top ten threats to global health [1].
With increasing exposures to antimicrobials, organisms that
were once easily treatable now harbor mechanisms of resis-
tance that leave few treatment options for clinicians.
Carbapenem-resistant Enterobacterales, formerly known as
Enterobacteriaceae, are a group of organisms that are among
the most difficult to treat; therefore, it is no surprise that the
CDC considers them to be one of the top three most urgent

threats with resistance spreading rapidly in the USA and
throughout the world [2]. As of 2018, the CDC has reported
at least one type of carbapenemase in all 50 states, and rarer
genotypic expressions are becoming more common [3]. Prior
to the introduction of novel β-lactam/β-lactamase inhibitors
with activity against carbapenemase producers, mortality rates
varied from 24% to as high as 74% [4, 5]. It is imperative that
clinicians understand definitions of carbapenem-resistant
Enterobacterales (CRE), local resistance patterns, and how
to optimize treatment based on infection site.

There are major oversights when discussing carbapenem-
resistant organisms (CRO) or CREs. For one, CRE’s simpli-
fied definition of Enterobacterales resistant to carbapenems
does an injustice to the complexities of developed mecha-
nisms of resistance [6]. Combinations of extended spectrum
β-lactamase (ESBL), overexpression of ampC and loss of
porin channels may confer resistance to ertapenem but
meropenem or imipenem may remain active [7–9]. While
considered to be CRE using conventional definitions, these
non-carbapenemase-producing organisms may be amenable
to high-dose carbapenem therapy and do not pose the same
potential for transmissibility due to their lack of plasmid con-
ferred resistance [10]. In contrast to these non-carbapenemase-
producing organisms, it is important to delineate if CRE are
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carbapenemase producers as differing enzymes will have vari-
able phenotypic profiles to commercially available antimicro-
bials as well as a high degree of transmissibility due to their
plasmid-mediated resistance profiles. OXA-48, a serine-based
carbapenemase, may hydrolyze carbapenems, yet ceftazidime
and cefepime will retain activity if no other mechanisms of
resistance are expressed [11, 12]. Isolates may and often have
additional mechanisms of resistance included with
carbapenemase. Additional subtleties with carbapenem resis-
tance occur demonstrating the need for more specific terminol-
ogy. Moreover, the likelihood of different types of resistance
varies between geographical regions. North America and Israel
tend to have a higher prevalence of Klebsiella pneumoniae
carbapenemase (KPC) whereas metallo-β-lactamase (MBL)
can be found in India, Italy, and Greece [7, 13–17]. OXA
carbapenemases are endemic to Europe, Northern Africa, and
the Middle East [7, 11, 12, 14]. A potential treatment option for
a KPC may not necessarily treat an MBL and can be
overlooked using broad terminology like CRE. Table 1 high-
lights different groups and classifications of β-lactamase in-
cluding potential carbapenemase producers.

Perhaps the greatest disservice when discussing treatment
of CRE is assuming the clinician knows the organism prior to
starting empiric therapy. Many risk factors associated with the
development of CRE are associated with other multidrug-
resistant nosocomial infections like Pseudomonas aeruginosa
[18]. Empiric drug choice in an at-risk septic patient should
take into account the roles and limitations of each therapy
option. The remainder of this review will compare antimicro-
bials to treat CRE and discuss trends in treatment management
of this infection entity.

Polymyxins

After the introduction of polymyxin B and colistin (polymyx-
in E) in the 1950s, they quickly fell out of favor due to their
high risk of acute kidney injury (AKI) and unpredictable ki-
netics [19]. With the emergence of multidrug-resistant organ-
isms like CRE, the polymyxin class has re-emerged as a back-
bone of salvage therapy prior to the clinical availability of
novel β-lactam/β-lactamase inhibitors (BL/BLI) targeted
against carbapenemases. An international guideline on

polymyxin published in 2019 attempts to promote the optimal
use of these drugs [20]. While this document presents a con-
temporary overview of the polymyxins and intends to pro-
mote strategies to improve outcome while minimizing the
toxicodynamic profile of the class, it is important to note that
a majority of guidance is based on small theoretical models,
and for several pieces, such as polymyxin use in CRE, the
committee did not reach a unanimous consensus.

Polymyxin B and colistin are fairly similar chemically even
though their pharmacokinetic parameters differ substantially.
Both agents have a similar mechanism of action by puncturing
and disrupting the outer membrane integrity leading to bacte-
ricidal activity and possible synergy with other antimicrobials
[19]. These agents also demonstrate AUC/MIC pharmacody-
namics with a targeted average steady state (Css avg) of 2 mg/L
[20].

Colistin is administered as pro-drug colistin methane-
sulfonate (CMS) or colistimethate, and the conversion from
inactive to active drug is highly variable. It may take up to
several hours to achieve adequate concentrations of drug even
with appropriate loading doses. Unfortunately, inadequate
rapid concentrations of colistin in the critically ill have dem-
onstrated increased risk of 30-day mortality and may breed
polymyxin resistance which is incredibly concerning consid-
ering patient frailty [19–24]. Both the active and non-active
forms of colistin are highly excreted into the urine, and the
inactivated CMS is partially converted to colistin allowing the
drug to reach higher concentrations in the urine than
Polymyxin B [19]. Colistin dosing units can be expressed as
milligrams of colistin-based activity (CBA) or international
units (IU) depending on country. Approximately one million
IU is equivalent to 33 mg of CBA.

Polymyxin B is formulated in its active sulfate form, and it
is not actively secreted in the urine. The preferable pharmaco-
kinetics and decreased risk of AKI often make polymyxin B
the preferred polymyxin for non-urinary systemic infections
[19, 20, 25]. A loading dose of 2.0–2.5 mg/kg of total body
weight followed by a maintenance dose of 1.25–1.5 mg/kg of
total body weight divided into 2 dose 12 h apart is recom-
mended without renal dosage adjustment [25, 26]. Neither
parental polymyxin B nor colistin achieve adequate lung con-
centration and are suboptimal choices for the treatment of
respiratory infection as monotherapy [19].

Table 1 Classification of β-
lactamase Ambler molecular

classification
Busch-Jacoby
functional groups

Active binding
site

Common enzymes

A 2a, 2b, 2be, 2br, 2c, 2e, 2f Serine TEM, SHV, KPC, CTX-M, GES

B 3 Metallo VIM, NDM, IMP

C 1 Serine AmpC, P99

D 2d, 2de, 2df Serine OXA

Italicized enzymes represent carbapenemase production
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The polymyxins should generally be given in combination
with another susceptible or synergistic antimicrobial when
treating CRE due to the high potential for failure, variable
pharmacokinetics, and development of resistance observed
on monotherapy. As novel therapies active against
carbapenemase-producing organisms become more widely
available, the use of polymyxins as the backbone of treatment
for CRE should subside and the role of these agents should be
reserved as salvage therapy when all other options have been
exhausted.

Aminoglycosides

Similar to polymyxins, aminoglycosides were first clinically
used in the 1940s and were a mainstay of therapy until the
1980s with the invention of safer antimicrobials like cephalo-
s po r i n s , c a r b ap en ems , a nd f l u o r oqu i no l on e s .
Aminoglycosides carry an increased risk of nephrotoxicity
and ototoxicity compared with the antimicrobials mentioned
above [27]. Higher rates of adverse events occur with more
frequent dosing, and a modified once-daily dosing regimen as
demonstrated in the Hartford nomogram may mitigate these
risks [28]. Aminoglycosides can play a crucial role in CRE
because their mechanism of action is not affected by
carbapenemases; however, many CRE organisms harbor ami-
noglycoside modification enzymes (AME) [29, 30]. As such,
the therapeutic role of conventional aminoglycosides, like
gentamicin and amikacin, can be highly variable based on
the widespread geographic distribution of AMEs.

Plazomicin (Zemdri®) is a new aminoglycoside that is
synthetically derived from sisomicin which remains stable
against most AMEs and it has been shown to be synergistic
when given in combination with β-lactams in vivo [31–33]. A
phase III trial (CARE study) attempted to demonstrate effica-
cy of plazomicin combination therapy compared with poly-
myxin combination therapy for a multitude of carbapenem-
resistant Enterobacterales infections [34]. Although the study
did not reach an adequate power due to slow enrollment into
the study, researchers reported a descriptive decrease in all-
cause mortality. Fifteen patients who received plazomicin
combination therapy were further evaluated to determine if
adequate concentrations of each drug were achieved [35]. Of
the 15 subjects treated with plazomicin combination, 0% treat-
ed with plazomicin and meropenem reached a meropenem fT
> MIC of 40%. Furthermore, only 75% of subjects treated
with combination plazomicin and tigecycline reached tigecyc-
line fAUC/MIC concentrations of 0.9 mg/L or greater, yet
83% of subjects with inadequate meropenem or tigecycline
concentrations achieved microbiological response. These data
demonstrate the potential clinical utility of plazomicin in the
treatment of CRE.

While plazomicin utilizes the once-daily dosing regimen to
improve efficacy and minimize toxicity, dose adjustments are
required in patients with decreased renal function. Asempa
and colleagues evaluated a group of 37 enrolled patients being
treated for CRE bloodstream infections or pneumonia, who
were originally enrolled in the CARE study [36]. Plazomicin
blood samples were collected 10 h post dose to determine an
appropriate dosing interval based on the Hartford nomogram.
Afterwards, the information was simulated to predict toxic
trough concentrations greater than 3 mg/L and an efficacious
interval-normalized AUC. Use of the nomogram reduced the
incidence of potentially toxic trough concentrations while
maintaining similar target AUCs. Additionally, the application
of the Hartford nomogram appears useful in less sick patients
with UTIs [37].

While limited clinical data exist thus far, the microbiologic
potency, pharmacokinetic, and pharmacodynamic profiles of
plazomicin suggest that this agent is a viable option for CRE
in combination with conventional compounds or the novel
BL/BLIs. Other examples of plazomicin’s utility include in
combination to treat an MBL producer where novel BL/
BLIs lack in vitro activity, patients with a hypersensitivity to
ceftazidime and carbapenems, or patients requiring a once-
daily injection being treated in an outpatient antimicrobial
treatment program.

Double Carbapenem

As mentioned above, KPC is the most prevalent
carbapenemase produced in the USA, and antimicrobial op-
tions were often scarce prior to the introduction of novel β-
lactam/β-lactamase inhibitors. Bulik and Nicolau proposed
the use of combination ertapenem and high-dose doripenem
or meropenem as a method to combat CRE [38]. The theoret-
ical mechanism uses ertapenem as a suicide molecule with
high affinity for KPC enzymes, allowing meropenem or
doripenem to treat the organism. Both their in vitro model
and murine thigh model demonstrated bacterial reduction with
a roughly 3 log and 1 log reduction, respectively. Clinical
studies and case reports have also demonstrated an increase
in microbiological cure and a decrease in all-cause mortality
compared with other options like polymyxins [39–42]. While
the clinical utility of double carbapenem therapy has demon-
strated in patients with CRE, it is important to recognize that
the efficacy of this regimen is restricted to KPC-based
infections.

Β-Lactam/Β-Lactamase Inhibitors

Novel β-lactam/β-lactamase inhibitors are a revolutionary
t rea tmen t op t ion fo r ca rbapenemase -p roduc ing
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Enterobacterales. Ceftazidime-avibactam (Avycaz®),
meropenem-vaborbactam (Vabomere®), and the new BL/
BLI imipenem-relebactam (Recarbrio®) have brought wel-
comed treatment options to clinicians treating these MDR
organisms. It is important to note that these drugs do not all
cover the same carbapenemase. Table 2 highlights the differ-
ences in activity against Ambler classification of
carbapenemases and the Clinical Laboratory and Standards
Institute (CLSI) MIC breakpoints for novel BL/BLIs as well
as novel antimicrobials that will be discussed.

Avibactam, a novel diazabicyclooctane β-lactamase inhib-
itor, restores ceftazidime activity against group A, and some D
(OXA-48) serine carbapenemases [43, 44]. There is no ceftaz-
idime restoration against class B metallo-β-lactamases; how-
ever, there are several successful case reports of using
ceftazidime-avibactam with aztreonam for the treatment of
New Delhi metallo-β-lactamase (NDM), and aztreonam-
avibactam is currently in clinical development [45–47].
Ceftazidime-avibactam has displayed consistently improved
outcomes relative to polymyxin-based regimens as numerous
reports show decreased all-cause mortality, increased micro-
biologic cure, and reduced toxicity [48–53].

At present the vast majority of clinical and microbiologic
outcome data with these new BL/BLIs for CRE-based infec-
tions accumulated during the clinical utilization of ceftazi-
dime-avibactam, where this new agent is often being used as
salvage therapy in patients failing polymyxin-based regimens.
As a result, it is not surprising that treatment failure and the
development of resistance on therapy have been observed in
these pre-selected salvage use scenarios. Specifically, the
emergence of a mutant KPC-3 variant has been noted during
therapy [54]. While resistant to ceftazidime-avibactam, the
organism’s genotype reverted to resemble that of an ESBL
testing susceptible to meropenem and not surprisingly to other
BL/BLIs like meropenem-vaborbactam [55]. Shields and col-
leagues also proposed ceftazidime-avibactam treatment

failure correlates to patients treated for healthcare-associated
pneumonias and continuous renal replacement therapy [56].
Their single-center retrospective study looked at treatment
failure with ceftazidime-avibactam and found that 60% of
clinical failures were treated for pneumonia compared with
29% of successes (p = 0.045, OR 3.09, 1.03–9.34). Similar
success and failure trends were seen with continuous renal
replacement therapy at 7% and 37% respectively (p = 0.046,
OR 4.78, 95%CI 1.03–22.2). This raises the question whether
resistance and treatment failure were observed because of in-
appropriate dosing in these critically ill patients. This contro-
versy with ceftazidime-avibactam highlights that it is crucial
that patients receiving these novel BL/BLIs are aggressively
dosed with optimal exposures to achieve clinical cure.

Vaborbactam, another non-β-lactam/β-lactamase inhibitor,
restores meropenem against Ambler group A and C β-
lactamase [55, 57]. The addition of a boron structure allows
for higher affinity for KPC-producing Enterobacterales, but
has no effect on other MDR like Acinetobacter baumannii
or P. aeruginosa. Vaborbactam, furthermore, does not restore
meropenem activity against group B or D carbapenemases.

Targeting Antibiotic Non-susceptible Gram-negative
Organisms (TANGO-II) trial evaluated meropenem-
vaborbactam against best available therapy (either monother-
apy or combination of polymyxin, colistin, high-dose
meropenem, ceftazidime-avibactam (n = 1), or aminoglyco-
side) for the treatment of CRE infections [58]. Eligible pa-
tients were enrolled from 8 countries where KPC is prevalent.
It is important to note that a majority of isolates grew
Klebsiella pneumoniae (87.2%), and the major sites of infec-
tion were bacteremia (46.8%), followed by complicated uri-
nary tract infection (34%), healthcare- and ventilator-
associated pneumonia (10.6%), and complicated intra-
abdominal infection (8.6%). All patients with previous anti-
microbial failure were placed in the meropenem-vaborbactam
group. Meropenem-vaborbactam had statistically significant

Table 2 Novel antimicrobial Ambler class activity

Drug Ambler group A Ambler group B Ambler group C Ambler group D 2019 CLSI Enterobacterales
MIC breakpoint

β-lactam/β-lactamase inhibitor

Ceftazidime-avibactam + - + + (OXA-48) 8/4

Meropenem-vaborbactam + - + - 4/8*

Imipenem-relebactam + - + - 1/4**

Other novel antimicrobials

Plazomicin + + + + 2**

Cefiderocol + + + + 2**

Fosfomycin + + + + N/A

*Higher than meropenem breakpoint, avoid use in OXA endemic areas

**FDA minimum inhibitory concentration breakpoint

OXA, oxacillinase; CLSI, Clinical and Laboratory Standards Institute
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improvement for clinical cure at end of treatment (ARR
32.3%, 95% CI 3.3–61.3, p = 0.03) and at test of cure (ARR
32.7%, 95% CI 4.6–60.8, p = 0.02). There was no difference
in 28-day all-cause mortality; however, when previous treat-
ment failure was removed, meropenem-vaborbactam did
show statistical difference (absolute reduction 29%, 95% CI
54.3–3.7, p = 0.02). Drug-related adverse events, including
nephrotoxicity, were seen less often in the meropenem-
vaborbactam-treated patients (24%) than in best available
therapy (44%).

Of concern with meropenem-vaborbactam is that the cur-
rent CLSI-/FDA-approved breakpoint for Enterobacterales is
≤ 4/8. This encompasses 30–40% of the MIC distribution for
OXA-producing organisms despite the designation of no
in vitro activity for this class of carbapenemases as mentioned
in the package insert of the commercially available product.
Despite no activity and no clinical data, the elevated
breakpoint relative to that of meropenem at ≤ 1 is due solely
to the nuances in dosing between the products [59]. As a
result, caution should be exercised when using meropenem-
vaborbactam for the treatment of susceptible carbapenemase-
producing Enterobacterales when OXA-based enzymes are in
the differential and genotypic profiling has not confirmed the
enzymologic driver of resistance.

Relebactam, like avibactam, is a diazabicyclooctane β-
lactamase inhibitor restoring imipenem against group A and
C β-lactamases [60, 61]. In vitro and animal models show
efficacy with imipenem-relebactam, and it has recently been
approved for complicated urinary tract infections and compli-
cated intra-abdominal infections [60–66]. Motsch and col-
leagues recently published a randomized controlled trial com-
paring imipenem-relebactam to imipenem and colistin for
imipenem non-susceptible bacterial infections [67]. Out of
the 31 modified microbiologic intent to treat population, a
majority of isolates were P. aeruginosa, (77%) followed by
Klebsiella spp. (16%) and other Enterobacterales (6%).
Imipenem-relebactam was considered non-inferior for micro-
biological cure (71%) compared with imipenem and colistin
(70%) and had a significant 28-day favorable response (71%
vs. 40%, 90% CI 1.3–51.5). The authors further described a
non-significant reduced 28-day all-cause mortality of 10%
with imipenem-relebactam compared with 30% of imipenem
and colistin subjects. Notably, CRE specific data demonstrat-
ed only one out of four carbapenem-resistant Enterobacterales
showing a microbiological cure compared with one out of one
imipenem and colistin treated subject. Authors attributed mi-
crobiologic failure of imipenem-relebactam to organisms har-
boring several group A and C extended β-lactamases. The
therapeutic niche of imipenem-relebactam remains unclear
as it may be used as an additional option for CRE or it may
be more useful in treating multidrug-resistant P. aeruginosa
including those producing carbapenemases [62]. Similarly to
ceftazidime-avibactam, the additional pseudomonal coverage

may make imipenem-relebactam an appropriate option for
empiric therapy in a septic patient with high risk of CRE
and pseudomonal infection. Unlike the two previously ap-
proved β-lactam/β-lactamase inhibitors which are recom-
mended to have each dose administered over 2–3 h,
imipenem-relebactam is given via a 30-min infusion. Shorter
infusion durations may be advocated in some institutional
settings.

Zidebactam, a novel diazabicyclooctane β-lactamase in-
hibitor, serves two functions by preventing broad spectrum
hydrolysis of cefepime and binding PBP2 [68, 69].
Currently it is in phase I of development. The combination
theoretically works against A, C, and D β-lactamase
Enterobacterales with additional in vitro restored function to
some group B β-lactamase Enterobacterales, drug-resistant P.
aeruginosa, and drug-resistant A. baumannii [69]. In vivo
cefepime-zidebactam has shown 1 to greater than 3 log reduc-
tions of growth, and 1.6 log reductions in growth for
Enterobacterales and P. aeruginosa, respectively [68].
Further research is warranted for zidebactam as it may be the
next breakthrough novel antimicrobial.

There are limited data comparing β-lactam/β-lactamase
inhibitors in the treatment of CRE which makes it difficult
to determine a superior drug with overlapping susceptibilities.
At least one BL/BLI which covers carbapenemase-producing
Enterobacterales and P. aeruginosa should be on each hospital
formulary. Local resistance patterns to Enterobacterales and
Pseudomonas aeruginosa as well as the availability of micro-
biologic testing should be taken into account when making
formulary decisions.

Cefiderocol

Coined as the “Trojan horse” antimicrobial, cefiderocol uses a
siderophore to hijack bacteria’s iron uptake system and enter
the cell to disrupt cell wall synthesis [70–72]. Cefiderocol is
stable and potent against all Ambler group β-lactamases
in vitro, including MBLs, without the addition of a β-
lactamase inhibitor [70, 73, 74]. In vivo and healthy volunteer
studies have demonstrated adequate tissue concentration into
epithelial lining fluid making it a promising therapy in bacte-
rial pneumonia [73, 75]. Cefiderocol responded well against
Gram-negative isolates of Klebsiella spp., P. aeruginosa, and
A. baumanniiwith a greater than 3 log bacterial growth reduc-
tion in a rat lung model. Similar results were seen in an im-
munocompromised murine thigh infection model with greater
than 3 log bacterial growth reduction against various
Enterobacterales [74]. Cefiderocol is currently approved for
complicated urinary tract infections as it was non-inferior to
imipenem in a phase II trial. It is important to note that
carbapenem-resistant isolates were excluded from this trial
[76]. Cefiderocol is a welcomed novel antimicrobial for a
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clinician’s repertoire. Not only is this a novel mechanism of
delivery, but also it may be one of the first monotherapy agents
to effectively treat metallo-β-lactamase with minimal adverse
events. Further clinical development will help determine the
exact niche for cefiderocol.

Fosfomycin

IV fosfomycin is a treatment gaining interest in the USA for
the treatment of various MDR organisms due to high rates of
susceptibility and tolerability [77, 78]. A small prospective
study including 11 critically ill patients evaluated the use of
IV fosfomycin in combination against hospital-acquired car-
bapenem-resistant Enterobacterales and found that all-cause
mortality rates (18.2%) were lower than other best available
therapies [79]. A potential fail point of this therapy is devel-
opment of resistance during treatment when used as mono-
therapy [80]. The USA lags behind a majority of other coun-
tries as oral fosfomycin is the only formulation available at
this moment; however, an IV formulation is currently under
development [81]. Fosfomycin will likely be combined with
additional agents for its additive and synergistic effects. Avery
and colleagues evaluated combination fosfomycin against var-
ious CPE isolates using the E-test method [82]. Fosfomycin
had no antagonism against any tested antimicrobial and had at
least one isolate that was additive making it a potential option
for treating multidrug-resistant organisms.

Monotherapy vs. Combination and Colistin
or BL/BLI as Backbone of Therapy

The treatment of a non-metallo carbapenemase-producing
Enterobacterales with monotherapy or combination has been
a topic of interest for many clinicians now that novel β-lac-
tam/β-lactamase inhibitors have been introduced into clinical
practice. Historically, the high mortality rates of polymyxins
due to poor microbiologic potency and less than optimal drug
exposures that have been limited by toxicity have mandated
the use of combination therapy in severely ill patients. A large
retrospective cohort study evaluated the treatment of blood-
stream infections either with monotherapy or combination
therapy [83]. Three hundred forty-three subjects were strati-
fied into groups based on severity of illness with a primary
endpoint of overall mortality. There were no statistical differ-
ences among combined cohorts (HR 0.76, 95% CI 0.53–1.08)
and the low mortality score cohort (HR 1.18, 95% CI 0.62–
2.23); however, subjects identified as a high risk of mortality
had a statistically significant decrease in overall mortality (HR
0.6, 95%CI 0.39–0.93). It is important to note the above study
did not include novel therapies like BL/BLIs which should
take over as themainstay of CPO therapy. The shift away fromT
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using nephrotoxic agents with unpredictable pharmacokinet-
ics has reopened the debate of which agent is superior. There
is a growing amount of literature demonstrating ceftazidime-
avibactam, imipenem-relebactam, and meropenem-
vaborbactam lead to better treatment outcomes with less ad-
verse events compared with polymyxin best available therapy
regimens [49, 52–54, 58, 67]. A summary comparing BL/BLI
therapy to traditional colistin-based therapy can be seen in

Table 3. If an organism is susceptible to a novel β-lactam/β-
lactamase inhibitor, then that agent may be considered for
monotherapy because these compounds have demonstrated
efficacy in the setting of severe infections. Even with novel
agents demonstrating superiority over colistin, prescribing
habits are slow to change. A recent publication by Clancy
and colleagues show that polymyxin and colistin are still the
most prescribed antimicrobials for CRE infections which is

Fig. 1 Algorithm for the empiric therapy of the critically ill septic patient. Choose empiric coverage based on patient specific factors, local epidemiology,
and concordant resistance. ABX, antimicrobial, CRO, carbapenem-resistant organism
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deeply concerning [84]. Gaining access to novel agents to
treat CRE should be a priority for all clinicians as these β-
lactam/β-lactamase inhibitors have been shown to improve
outcomes and reduced toxicities relative to polymyxin-based
regimens.

Empiric Therapy

Another carbapenemase t rea tment dogma of ten
overshadowed in literature is when to use empiric therapy
which covers carbapenemase. A prospective observational co-
hort study conducted by Gianella and colleagues evaluated
risk factors for development of CRE bloodstream infection
from previously colonized subjects and found ICU admission,
invasive abdominal procedures, chemotherapy/radiation, and
multiple CRE colonization sites independently increased risk
[85]. Another study conducted in Israel demonstrated that
clinically significant increased risks in carbapenem-resistant
colonized patients developing infection were treated with anti-
pseudomonal penicillins [86]. In an effort to maximize the
probability of early appropriate therapy in patients at risk for
resistant pathogens, clinicians need to become increasingly
comfortable with the antimicrobial spectrum, pharmacokinet-
ic and toxicodynamic profiles of the novel therapies discussed
so that optimal empiric therapy can be initiated at the onset of
infection (Fig. 1). Unfortunately a single source of antimicro-
bial susceptibility data for the agents included in this review is
not available and thus comparative assessments based on per-
cent susceptible collated from multiple sources are potentially
misleading for CRE due to differing genotypic profiles across
the globe. As such, these challenges highlight the importance
of local susceptibility testing to determine the most suitable
agent(s) for clinical practice in any given region.While the use
of novel broad-spectrum antimicrobial agents may bewarrant-
ed in the setting of initial empirical therapy for the septic
patient, great effort should be taken to utilize the available
diagnostic techniques (i.e., invasive sampling strategies, mo-
lecular tests) to identify the causative pathogen(s) and thus
allow a rapid, narrow targeted approach to treatment.

Conclusion

The rapid emergence of carbapenemase-producing organisms
is a major concern for human health. It is of utmost importance
that clinicians are familiar with what antimicrobials can be
used to treat serious infections like carbapenem-resistant
Enterobacterales as well as the evolving enzymology associ-
ated with these pathogens. With the introduction of new β-
lactam/β-lactamase inhibitors and the improved clinical out-
comes associatedwith these compounds, a shift away from the
less efficacious, more toxic polymyxin-based regimens

appears completely warranted. While the β-lactam/β-
lactamase inhibitors will play an important role moving for-
ward, other parenteral agents such as plazomicin, fosfomycin,
and cefiderocol show great promise and are welcomed options
for treating multidrug-resistant organisms.
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