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Abstract

Ciliated protists often form symbioses with many diverse microorganisms. In particular,

symbiotic associations between ciliates and green algae, as well as between ciliates and

intracellular bacteria, are rather wide-spread in nature. In this study, we describe the com-

plex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular

algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Para-

mecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel

location in vicinity of St. Petersburg in Russia. Species identification was based on both clas-

sical morphological methods and analysis of the small subunit rDNA. Numerous algae occu-

pying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods

as representatives of the Meyerella genus, which before was not considered among symbi-

otic algae. In the same locality at least fifteen other species of “green” ciliates were found,

thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbi-

onts living in the macronucleus of Paramecium chlorelligerum cells was morphologically

and ultrastructurally investigated in detail with the description of its life cycle and infection

capabilities. The new endosymbiont was molecularly characterized following the full-cycle

rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a

member of Holospora genus branching basally but sharing all characteristics of the genus

except inducing connecting piece formation during the infected host nucleus division. We

propose the name “Candidatus Holospora parva” for this newly described species. The

described complex system raises new questions on how these microorganisms evolve and

interact in symbiosis.
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Introduction

One of the most studied ciliate genus is Paramecium (Ciliophora, Oligohymenophorea), which

comprises nineteen valid morphospecies [1]. Some of these species seem to be cosmopolitan,

while other Paramecium species are less widely distributed or might be even considered

endemic [2, 3]. After the initial work of Müller in 1786 [4], more than forty species descrip-

tions of the Paramecium genus have been published [1, 2, 5–6]. Some of these species have

been retrieved only once and have not been found anymore after description. This set of spe-

cies has been treated as uncertain, and some have even been abolished [2]. However, among

these doubtful paramecia, some have been found and redescribed as true morphospecies dur-

ing last two decades: P. duboscqui [7, 8], P. nephridiatum [9, 10], P. chlorelligerum [11, 12]. As

matter of fact, the first two species are currently considered to be widely distributed, instead P.

chlorelligerum can be estimated as a very rare ciliate.

This “forgotten” ciliate bears unicellular symbiotic algae in its cytoplasm, and, thus, it can

be considered as a “green” Paramecium, like well-known P. bursaria. It has been recently

found and redescribed in only a particular pond of Southern Germany, in Simmelried moor-

land [12]. In 2014 the same ciliate has been retrieved by us also in Peterhof (St Petersburg dis-

trict, Russia) in a small permanent ditch, which, by some ecological parameters, appears to be

quite similar to the German one in Simmelried [12]. The newly found freshwater locality man-

ifests very unusual high diversity and number of green ciliates and can be considered a biodi-

versity hot-spot for these protists. Some representatives of the Russian population of P.

chlorelligerum showed bacterial infection in the macronucleus. The morphology of these endo-

symbionts fits quite well to the knownHolospora-like bacteria [13]. Indeed, representatives of

this alphaproteobacterial genus, and some other closely related Rickettsiales, have been found

in seven Paramecium morphospecies as well as in Frontonia salmastra and Frontonia leucas
[13, 14]. These intracellular bacteria are highly infectious nuclear symbionts with unique mor-

phology and life cycle, and they have been considered to be a very promising model organism

for investigations of symbiotic associations between eu- and prokaryotes [15]. Indeed, in the

last years, several studies have been performed to facilitate their use as model organisms [16–

19], and they have been extensively used in evolutionary ecology studies [20–22]. Up to now,

the genusHolospora comprises ten species [13, 23], which have been described morphologi-

cally, but only for several of them molecular characterization is available [23–27].

In the present study, we combined classical morphological approaches with molecular anal-

ysis to improve our knowledge on P. chlorelligerum, an extremely rare Paramecium species,

examining its variability, physiology and symbiotic interactions both with unicellular algae

and prokaryotic microorganisms. Infectious bacteria found in the host ciliate macronucleus

were described as a new species of the genusHolospora.

Materials and Methods

Host isolation, cultivation and identification

P. chlorelligerum has been found in the small but relatively deep permanent ditch in the cor-

ner of the so called English park (Peterhof, St Petersburg district, Russia (N 59˚52047@, E 29˚

51056@). After the first finding, dated September 2014, sampling was repeated throughout the

year covering four different seasons (Fig 1). P. chlorelligerum was constantly present among a

large number of ciliated protists, many of which were inhabited by green symbiotic algae.

We succeeded to establish clonal cultures of P. chlorelligerum using combination of classical

feeding medium (wheat grass medium inoculated with Klebsiella aerogenes or lettuce medium

with the same bacterium) and addition of beta-sitosterol (Merck, Darmstadt, Germany)
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(0.8 mg/l) and 1/3 volume of mineral medium [28]. Cultures were kept in plastic Petri dishes

inside climatic chamber Sanyo at 18˚C with illumination regime of 10 hours darkness and 14

hours light by 2000 lx lamp.

P. chlorelligerum is characterized by unusually low division rate for Paramecium representa-

tives (only 1–2 divisions per week). This could be related with the presence of very few food

vacuoles in the cytoplasm of ciliates, indeed we could keep ciliate culture in a good condition

for about one month even without feeding.

For the study, four clonal cultures established in laboratory (indexes HSG1 and HSG2 cor-

respond to sampling of 2014 and 2015 respectively) were used: HSG1-6, HSG2-10 (without

bacterial infection in the macronucleus), and infected HSG1-11 and HSG2-12. These clones

Fig 1. Sampling location in Peterhof (Russia) in different seasons: (A) August; (B) January; (C) April.

doi:10.1371/journal.pone.0167928.g001
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are available from the Centre of Core Facilities “Culture Collections of Microorganisms”, St

Petersburg State University, Russia.

Species identification of obtained clones was performed according to the ciliate morphol-

ogy [11, 12], and then confirmed by molecular analysis.

Symbiotic algae isolation, cultivation and identification

Attempts of P. chlorelligerum symbiotic algae isolation and cultivation were performed. Several

paramecia cells were thoroughly washed in sterile water, then separately squashed and grinded

with a glass mini-spatula on agar plates containing Bold Bristol Medium (BBM) [29], glucose

(1 g/l) and 10% amino-peptide, and ampicillin (100 μg/ml) in order to minimize bacterial

growth. Plates were kept at +24˚C with constant daylight for four-five weeks. Several colonies

of green algae were obtained directly on BBM agar plates, then grown in liquid BBM, and puri-

fied by repetitive passages on BBM plates. In the experiment, several dozens of paramecia were

used, and only once cyst-like cells were observed after several weeks of slow growth. These

cysts were transferred to liquid BBM, and after one week of growth a non-axenic algae culture

was obtained. Identification of algae cultures was performed by phase contrast microscopy

and by molecular methods (see DNA extraction and molecular characterization).

Morphological and Ultrastructural Characterization

Living cells were immobilized for observation with the help of a special device [30]. Impregna-

tion was performed with the silver nitrate procedure made after Champy’s fixation [31, 32],

and nuclear apparatus was also stained with Feulgen method. Living and fixed cells were exam-

ined and photographed by bright field and Nomarski interference (DIC) microscopy using an

Orthoplan Leitz microscope (Leitz, Germany) at ×300–1.250 magnifications with a digital

camera Canon S45 and True Chrome HDII Screen, as well as with Polyvar microscope (Reich-

ert-Jung, Austria).

For the investigation of macronuclear bacteria and cytoplasmic algal symbionts, the mate-

rial was fixed for electron microscope according to a protocol routinely used [33].

Experimental infections

Experimental bacterial infection was carried out using a homogenate prepared from infected

cells according to Preer [34]. In particular, P. chlorelligerum cells were infected mixing equal

volumes of a dense cell culture and of homogenate in a 3-mL depression slide, and maintained

at 18˚C. To check the infection development, at least ten living cells were observed 2 hours, 24

hours, 48 hours, 4 days, 7 days, and 28 days after procedure. Then infection status was con-

trolled every 10–15 days.

DNA extraction and molecular characterization

About 50 starved Paramecium cells were washed several times in sterile distilled water and

fixed in 70% ethanol. Total genomic DNA was extracted using the NucleoSpin™ Plant II DNA

extraction kit (Macherey-Nagel, Germany), following the protocol for mycelium.

All polymerase chain reactions (PCRs) were performed in a C1000TM Thermal Cycler

(BioRad, Hercules, CA) with the TaKaRa ExTaq (TaKaRa Bio Inc., Otsu, Japan). Each PCR

consisted of 35 cycles divided as follows: a preliminary denaturation step at 94˚C for 3 minutes,

then denaturation at 94˚C for 30 seconds, annealing at variable temperature (between 50 and

55˚C) for 30 seconds and elongation at 72˚C for 90 seconds, and a final elongation step at

72˚C for 5 minutes. In every PCR experiment, a negative control without DNA was always
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included. After evaluation by electrophoresis on 1% agarose gel, PCR products were purified

with EuroGold CyclePure kit (EuroClone1, Milan, Italy) and directly sequenced using appro-

priate primers.

The amplification of the host 18S rDNA required a semi-nested PCR approach, as reported

in [35], in order to achieve sufficient DNA for direct sequencing. In short, the first PCR

was carried out with primers 18S F9 Euk (5’-CTGGTTGATCCTGCCAG-3’ [36]) and 18S

R1513Hypo (5’-TGATCCTTCYGCAGGTTC-3’ [37]), then using as template the diluted first

PCR product, a second step was performed employing two semi-nested PCRs: 1—using prim-

ers 18S F9 and Penic R1280 (5’-CGACACGTCCTAACAAGA-3’ [38]) and 2—with primers

Penic F82 (5’-GAAACTGCGAATGGCTC-3’ [39]) and 18S R1513Hypo. The PCR products

were then directly sequenced using eukaryotic universal internal primers, as shown in [40].

The complete ITS1-5.8S-ITS2 sequence of the ciliate was obtained following Boscaro et al.

[41] and the host cytochrome c oxidase subunit I (COI) gene was amplified and sequenced as

described by Strüder-Kypke et al. [42].

The 16S rRNA gene ofHolospora sp. was obtained using primer pair 16S alfa F19a (5’-CCT

GGCTCAGAACGAACG-3’ [43]) and R1492 (5’-GGNWACCTTGTTACGACTT-3’, modified

from [44]). The almost complete 16S rDNA gene sequence was directly sequenced using prim-

ers 16S F114HoloCaedi (5’-TGAGTAACGCGTGGGAATC-3’ [23]), 16S R515ND (5’-ACCG

CGGCTGCTGGCAC-3’), and 16S F785ND (5’-GGATTAGATACCCTGGTA-3’ [43]).

The amplification of 18S rDNA sequences of the algal endosymbiont and cultivated algae

was performed using primers Chlo F59 (5’-CATGTCTAAGTATAAACTGCT-3’ [This study])

and Chlo R1052 (5’-CCTGACAAGGCAACCC-3’ [This study]) and directly sequenced with

internal primers Chlo F194a (5’-TATTAGATAAAAGGCCGACC-3’ [This study]), Chlo R426

(5’-CTCATTCCAATTACCAGAC-3’ [This study]), Chlo F770 (5’-TGGGGGCTCGAAGA

C-3’ [This study]).

Probe design and fluorescence in situ hybridization

The obtained 16S rRNA gene sequences were used to design a specific probe HoloParv_645

5’-CCGTACTCTAGTCTCCC-3’ (Tm = 55.2˚C). The probe was synthesized and labeled with

Cy3 by Eurofins GMBH (Ebersberg, Germany), and its specificity was tested in silico both on

Ribosomal Database Project (RDP [45]) and on TestProbe tool 3.0 (SILVA rRNA database

project [46]) allowing 0 and 1 mismatches (Table 1). The probe sequence was deposited in Pro-

bebase [47].

Fluorescence in situ hybridization (FISH) experiments were carried out using different

formamide concentrations in the hybridization buffer (0, 10, 20 and 30% v/v), in order to test

the different stringency levels. The signal intensity was the best at 0% formamide. All FISH

experiments were then performed following the protocol by Manz et al. [48] and negative con-

trols, namely experiments without the use of probes, were always included. An additional

probe, EUB338 5’-GCTGCCTCCCGTAGGAGT-3’ [49], was used as a control to exclude the

presence of other intracellular bacteria and to detect unambiguously the presence of the endo-

symbionts together with the specific probe inside the host cells.

Table 1. In silico matching of the species-specific probe HoloParv_645 against bacterial 16S rRNA gene sequences available from RDP (release

11, update 4) and SILVA (release 123) databases. The number of sequences (“hits”) which hybridize with the designed probe are reported for 0 and 1

mismatches.

Species-specific probe RDP SILVA

0 mismatches 1 mismatches 0 mismatches 1 mismatches

HoloParv_645 32 hits 1607 hits 7 hits 326 hits

doi:10.1371/journal.pone.0167928.t001
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Sequences comparison and phylogenetic analysis

The three molecular markers (18S rDNA, COI, ITS1-5.8S-ITS2) employed to characterize P.

chlorelligerum were compared with sequences already present in database using BLASTN. In

order to verify previous results and clarify uncertain sequences, cells from the German popula-

tion (kindly provided by Dr. S. Krenek) were used to resequence all three molecular markers.

All phylogenetic analyses were performed both with Maximum Likelihood (ML) and Bayes-

ian Inference (BI) methods. In case of ML, trees were calculated with 1000 bootstrap pseudore-

plicates using PHYML software 3.0 [50] from ARB package [51]. BI was carried out with

MrBayes 3.2 [52] running three runs, with one cold and three heated Monte Carlo Markov

chains each, for 1000000 generations with a burn-in of 25%. After verifying that the average

standard deviation of the split frequencies had reached a value 0.01 or below, the runs were

stopped.

The optimal model of nucleotide substitution was chosen according to the Akaike Informa-

tion Criterion (AIC) calculated with jModelTest [53], which selected the GTR + I + G model

(using a discrete, four-categories gamma function) in all.

The 18S rRNA gene sequences were firstly aligned against more than 3500 ciliates

sequences from SILVA 119.1 database [46] with ARB software package, then the alignment

was optimized manually according to 18S rDNA secondary structure. Phylogenetic analysis

was inferred using 34 sequences of ciliates belonging to the order Peniculida and the final

alignment consisted of 1646 nucleotides (S1 Alignment).

The ITS1-5.8S-ITS2 secondary structures were predicted using mFOLD version 3.2 [54],

and the presence of compensating base changes (CBCs) was examined as shown in Coleman

[55]. After all, in total 29 sequences were aligned with MUSCLE 3.8.31 [56], and phylogeny

was inferred with a final alignment of 999 characters (S2 Alignment).

The obtained 16S rRNA gene sequences of the novel bacterial endosymbionts were firstly

aligned against those present in the latest version of SILVA database (release 123) using the

ARB software package. Afterwards, the alignment was manually edited in order to optimize

base-pairing in the predicted rRNA stem regions. The aligned sequences were reduced at both

ends to the length of the shortest one, and gaps were treated as a missing character.

Phylogenetic analysis was performed using 44 sequences from the order Rickettsiales and 6

alphaproteobacterial sequences as out-group. The final alignment contained 1356 nucleotide

columns, which were used to infer phylogeny (S3 Alignment).

Results

Diversity of ciliates in Peterhof ditch

Ciliates were repeatedly collected in a freshwater ditch (Peterhof, English park) during all sea-

sons for one year. Throughout sampling, the temperature of water varied from +1˚C (January)

to +23˚C (August), and pH ranged from 6.6 to 7.15 (measured in spring, summer, and

autumn). In the same samples, taken from the water column and from the upper layer of bot-

tom, numerous different ciliates with algal cytoplasmic symbionts were detected: Frontonia
vernalis, Frontonia leucas, Stentor polymorphus, Climacostomum virens, Spirostomum semivires-
cens, Loxodes rostrum, Pelagotrix plancticola,Microthorax viridis, Spathidium chlorelligerum,

Prorodon niveus, Euplotes daidaleos, Stichotricha secunda, Dileptus sp., and Paramecium bur-
saria. Four other morphospecies of Paramecium genus were found in the water body: P. cauda-
tum, P. aurelia, P.multimicronucleatum, and P. putrinum. Bacteria belonging toHolospora
genus, namelyH. acuminata andH. obtusa, were retrieved in cells of P. bursaria and P. cauda-
tum respectively.
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The number of P. chlorelligerum cells present in different samples, which were collected in a

distance of about 30–50 cm from each other, might vary significantly, but these ciliates were

always present. P. chlorelligerum was also omnipresent through all the year seasons. In Decem-

ber–February all surface of the ditch was frozen, hence in January 2015 the surface was covered

with ice 10 cm thick (Fig 1B). Despite this, the general composition of ciliate community

under the ice was relatively similar to the one observed during the other seasons, but with

much less abundance.

In absence of a special cultivation conditions (see Materials and Methods) P. chlorelligerum
usually disappeared in few days after collection from the original samples, instead, for instance,

Spirostomum semivirescens or Frontonia vernalis could survive in samples at least several

weeks, while Loxodes rostrum was present for more than a month.

Biology of Paramecium chlorelligerum

Ciliate morphology and ultrastructure. The cell morphology of P. chlorelligerum from

the newly discovered population matches quite well with the description presented in two pre-

vious publications [11, 12]. Cell shape was mostly ellipsoidal, and the average size of living

specimen was 113 x 45 μm; while impregnated ciliates were a bit smaller 106 x 44 μm (Figs 2A

and 3). The main morphological features which allowed to discriminate the species were: 1-

two contractile vacuoles (CV) of “vesicle” type (without collecting canals) terminated in cortex

by single pore (CVP) each in 85% (n = 20) of population, while a small fraction of cells pre-

sented two pores in one of the two CV (Figs 2D, 2E, 3B and 3C); 2- caudal cilia (about 10),

which were twice longer than the rest of somatic ciliature (about 10 μm (Fig 2G)); 3- relatively

small (4.5–6.0 x 2.0–2.5μm) single spindle-shaped micronucleus of “compact” type with a hya-

line “achromatic cap” (only once 2 micronuclei were detected in a cell) (Figs 2B, 2C, 3E, 3G

and 3I). Just after cell division and in case of bimicronuclear cell, the form of the micronucleus

was different from spindle-shape (Fig 3H). In the cells of investigated clones, oral opening was

located slightly in front of cell equator line; oral ciliature manifested sometimes irregularity

(Fig 3A and 3E) of quadrulus (4 or 5 rows), but the classical composition (4 rows) was the

most common.

The cytoplasm of P. chlorelligerum always contained a number (several hundreds) of green

algae, which reminded at a first glance Chlorella sp. Slightly ellipsoidal algae cells were 5–7 x

3–6 μm in size. These endosymbionts were located in perialgal vacuoles, and were character-

ized by one cap-like chloroplast without distinctive pyrenoid inside. A single nucleus was gen-

erally situated close to chloroplast, but in some algae cells the nucleus was doubled. When the

nucleus was stained by Feulgen, it looked as a vesicle structure (because of big nucleolus) local-

ized in periphery of the cell (Figs 2A–2C, 2F, 3J and 4).

Endosymbiotic algae identification and cultivation attempts. Endosymbiotic algae

were identified molecularly by PCR on fixed cells of P. chlorelligerum. A partial (1223 bp long,

GenBank KX669637) 18S rRNA gene sequence was obtained, and its identity was 99.3% with

Meyerella planctonica isolated from environmental samples [57, 58] (Table 2). When this

sequence was compared to the one of German P. chlorelligerum endosymbiotic algae (Gen-

Bank JX010741), identity was 98.9%, thus confirming the presence ofMeyerella sp. as endo-

symbiont of this green ciliate.

All algae cultures obtained directly from the initially grown on BBM plates were clearly not

morphologically resembling the algae inhabiting the P. chlorelligerum cytoplasm, as they had

distinct pyrenoid (data not shown). By partial 18S rDNA sequencing they were identified as

Chlorella sorokiniana. Algae present in the single culture started from cyst-like cells (see Mate-

rial and Methods) were morphologically similar to symbiotic algae observed in P.
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chlorelligerum cytoplasmic symbionts (Fig 5A). These opaque green algae lacked of pyrenoid.

Several life stages were observed (Fig 5A): young vegetative cells, mature cells actively produc-

ing and secreting lipids (Fig 5E), a typical characteristic forMeyerella growing in restrictive

conditions [59], and cyst-like cells. These algae multiplied either by dividing into four cells as

tetrads or chains (Fig 5B and 5C), or producing autospores (Fig 5D), another distinctive fea-

ture of free-livingM. planctonica [58]. Mature cells formed double-layered shells, thus, proba-

bly, preparing for encystment. Formation of cyst-like cells is typical for free-living algae which

have to survive in unfavorable conditions, such as desiccation [60]. Such cyst-like cells are also

known as hypnospores [61] and they are characterized by thick multilayered cell walls, and by

accumulation of lipids, starch, and phenolic substances [60]. Unfortunately, the culture of

these algae suddenly stopped growing in liquid BBM within a week, and all cells died before

reaching sufficient amount for DNA extraction. Attempt to transfer them back from liquid

medium to BBM agar plates also failed.

Molecular characterization, sequences comparison and phylogenetic analysis of Para-
mecium chlorelligerum. The almost complete 18S rRNA gene sequences (1716 bp) were

obtained by direct sequencing after semi-nested amplification from the two strains (HSG1-11

GenBank KX669629, and HSG2-12 GenBank KX669630), and they were identical. These “Rus-

sian” P. chlorelligerum sequences were 99.8% identical to representatives of the “German” pop-

ulation [1, 12]. In those sequences, respectively three (position 1029, 1298 and 1310) and two

(positions 1298 and 1310) mismatches were present. The two 18S rDNA sequences produced

from German population [1, 12] were differing in a nucleotide, a W in [12]. To resolve this

ambiguity, we resequenced a sample derived from the German population obtaining the same

result as [1]. Thus, we can confidently assume that 18S rDNA from German population is dif-

fering from Russian one in two nucleotides. Intriguingly these two mutations are located on

opposite site of the stem with the second mutation re-establishing the correct secondary struc-

ture (they represent a compensatory base changes (CBC)); the two mutations are consequently

not evolutionary independent and possibly highlight a highly variable stem in P.

chlorelligerum.

The two Russian strains had an identical sequence of COI gene (760 bp, HSG1-11 GenBank

KX669632, HSG2-12 GenBank KX669633), which was 100% homologous to COI gene of the

ciliates from German population [1]. On the contrary, the other COI sequence attributed in

GenBank (KF110720) to P. chlorelligerum appeared to be completely different and probably is

the result of organism misidentification. Indeed, in recent COI phylogenetic reconstruction

[1], this sequence is present in the outgroup composed by different ciliate species.

ITS1-5.8S-ITS2 sequences were 1080 bp long and 100% identical among all P. chlorelli-
gerum characterized by us (HSG1-11 GenBank KX669629, HSG2-12 GenBank KX669630

and German population GenBank KX669631), and no CBC were found. Again, the GenBank

sequence KF110708 attributed to P. chlorelligerum seems to be the result of a mixture of

sequences belonging to Paramecium and some other ciliate, probably prostomatean (e.g. Pro-
rodon sp.), thus showing a misidentification of ciliate cells or contamination during DNA sam-

ple preparation.

After the model GTR + I + G was chosen by jModelTest, phylogeny for 18S rDNA and

ITS1-5.8S-ITS2 were inferred. As previously shown [1, 12], the 18S rRNA gene phylogeny

Fig 2. Morphological features of P. chlorelligerum. (A) General view of living cell; (B) nuclear apparatus: macronucleus (Ma)

and micronucleus (black arrowhead) are indicated; (C) squashed cell: macronucleus (Ma) and micronucleus (black arrowhead)

are indicated; (D) pore of contractile vacuole (white arrowhead); (E) contractile vacuole with satellite vesicles; (F) cytoplasmic

symbiotic algae released from the squashed ciliate cell; (G) tuft of long caudal cilia. Scale bars: 17 μm (A); 6 μm (B, C); 10 μm

(D-F); 20 μm (G).

doi:10.1371/journal.pone.0167928.g002
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Fig 3. Silver nitrate impregnation (A-C) and Feulgen staining (G-J) of P. chlorelligerum. (A) ventral and (B, C) dorsal sides of the ciliate; position of

oral aperture and pores of contractile vacuoles (black arrows) well visible; (D) oral ciliature: two peniculi and quadrulus (white arrow); (E) nuclear

apparatus: macronucleus (Ma) and micronucleus (black arrowhead) are indicated; (F) macronucleus (Ma) infected with bacteria; (G) general view of a

ciliate after Feulgen staining; nuclear apparatus with two (H) and one (I) micronuclei; (J) symbiotic algae in the cytoplasm of ciliate. Scale bars: 13 μm

(A-C); 20 μm (D, G); 8 μm (E, F); 10 μm (H, I); 7 μm (J).

doi:10.1371/journal.pone.0167928.g003
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Fig 4. Ultrastructure of cytoplasmic symbiotic algae. (A) longitudinal section of alga cell; (B) cross section of alga cell; (C) part of the cell

with nucleus. Nucleus (N), chloroplast (Ch) and mitochondria (Mt) are indicated. Scale bars: 0.5 μm (A), 0.4 μm (C); 3 μm (B).

doi:10.1371/journal.pone.0167928.g004

Table 2. 18S rDNA gene sequences identities among members of Meyerella genus.

Meyerella planctonica

isolate from Lake Itaska

(AY543042)

Meyerella sp. isolate

from Utah desert

(KF693808)

Endosymbiont of German P.

chlorelligerum (JX010741)

Endosymbiont of Russian P.

chlorelligerum (KX669637)

Meyerella planctonica isolate

from Lake Itaska (AY543042)

/ 98.27 99.39 99.34

Meyerella sp. isolate from

Utah desert (KF693808)

/ 97.90 97.58

Endosymbiont of German P.

chlorelligerum (JX010741)

/ 98.90

Endosymbiont of Russian P.

chlorelligerum (KX669637)

/

doi:10.1371/journal.pone.0167928.t002
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confirmed the position of P. chlorelligerum as clustering with the subgenera Cypriostomum and

Paramecium (Fig 6). These results were confirmed also by ITS1-5.8S-ITS2 gene phylogeny, in

which P. chlorelligerum was slightly associated as sister group of all species of the subgenus

Cypriostomum as shown in Fig 7. The faint differences between German and Russian P. chlor-
elligerum 18S rDNA sequences are visible also on the tree (Fig 6), which is in agreement with

the last 18S rDNA phylogenetic tree published on Paramecium genus [1]. On the contrary, our

ITS1-5.8S-ITS2 phylogenetic tree (Fig 7) presents a different situation. First of all, we provided

new and correct sequences of P. chlorelligerum and its position is completely different from

previous studies. Indeed, this green ciliate clusters as sister group with Cypriostomum subge-

nus, which is in agreement with other phylogenetic reconstructions based on other molecular

markers (e.g. 18S rDNA, COI) [1]. On the other hand, ITS1-5.8S-ITS2 phylogeny shows that

P. polycarium does not cluster with the other members of Cypriostomum group, thus enlight-

ening a necessity of revising this subgenus from a morphological and molecular point of view;

and some positions within Paramecium aurelia complex are not solved due to a probably lack

of sequences.

Bacterial morphology and its life cycle

In the sampled P. chlorelligerum populations, 5–7% of cells manifested macronuclear infection

by bacteria morphologically resemblingHolospora sp. After subcloning from two samples in

2014 and 2015, two infected strains were established (HSG1-11, HSG2-12), and cells of these

were investigated from morphological and molecular points of view.

Two types of straight non-motile bacteria with different size and structure were observed in

the infected macronucleus. There were two morphological forms, which looked like infectious

Fig 5. Diversity of cells in the culture of presumably ex-symbiotic algae obtained from P.

chlorelligerum. (A) The young vegetative cells (vc), the mature cells (mc), and the cyst-like cells (cl); (B)

division into four cells as tetrads or (C) chains; (D) production of autospores; (E) mature cell with a lipid droplet

in cytoplasm. Scale bars: 7 μm (A); 5 μm (B-E).

doi:10.1371/journal.pone.0167928.g005
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(IF) and reproductive (RF) forms of classicalHolospora-like bacteria [13]. RFs were short,

slightly ovoid, and their length was 1–3 μm; IFs were spindle-shaped and 3–5 μm long; diame-

ter of both forms of the bacterium was estimated as 0.6–0.7 μm (Figs 8–10). The RF manifested

typical homogenous prokaryotic cytoplasm (Figs 9, 10A, 10B and 10D). The bacterium IF with

distinctive tapered ends displayed differentiated cytoplasmic and periplasmic parts and a rec-

ognition tip-like structure (Fig 10A and 10B). The recognition tip contained less osmiophilic

material and reminded those of otherHolospora species, but periplasmic region always showed

two different parts, a larger and denser one, and another one more transparent. The latter was

located close to recognition tip structure and looked as a minor part of periplasm (Figs 9, 10A

and 10B). Sometimes the same cell could manifest two strips of dense periplasm, but the trans-

parent part of it was always single and situated close to the recognition tip (Fig 10A and 10B).

Another difference between IF and RF was the composition of its surface membrane. Indeed,

in majority of IFs their surface was decorated with fine fibrous material (Fig 10B–10D).

The microorganism had a typical Holospora-like life cycle with alternation of IFs and RFs

[13], and it could be completed (during experimental infection) only in 6 weeks, while the life

cycle ofHolospora sp. takes normally just 7–12 days [13]. In fact, the first IFs were detected in

experimentally infected culture after 40 days. Before the nucleoplasm was populated exclu-

sively by RFs. Sometimes, infected macronucleus might be overpopulated by symbionts with

several hundred of IFs (Fig 8A–8C), becoming distinctively roundish and larger in size than

uninfected ovoid nucleus (Figs 2B, 2C and 3F). During cultivation, growth of infected cells was

as slow as a growth rate of uninfected ones, only 1–2 divisions per week.

Fig 6. Bayesian inference phylogenetic tree of genus Paramecium based on 18S rDNA gene sequences. Numbers associated to each node represent

bootstraps values inferred after 1000 pseudoreplicates and Bayesian poster probabilities (values below 70 | 0.70 are not shown). Sequences in bold were

characterized in this study. The bar stands for an estimated genetic distance of 0.05.

doi:10.1371/journal.pone.0167928.g006
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The fate of infected cell lines was different. HSG1-11 manifested 100% infection, but after 6

months died. Instead, cells of HSG2-12 showed 100% of infection and then almost lost infec-

tion after 2 months of cultivation, but after 6 other months the strain recovered bacterium

presence up to 10–90% (subpopulations of the same stock in different Petri dishes). It was pos-

sible to check only few dividers, but the connecting piece was never observed during division

of infected macronucleus. The connecting piece, an equatorial part of the dividing host

nucleus where the majority of IFs are gathered, is a feature manifested by all “classical” holos-

poras [62]. The daughter cells of infected P. chlorelligerum always inherited both bacterial

forms in their macronuclei, and sometimes IFs could even produce a kind of clusters in the

karyoplasm. The process of IFs release from the macronucleus into the ciliate cytoplasm was

not investigated, but some bacteria were detected in cytoplasm during electron microscopy

investigation.

Molecular characterization and phylogenetic analysis of the bacterial

endosymbiont

Almost complete 16S rRNA gene sequence (1404 bp) was obtained by direct sequencing from

the two strains (HSG1-11 GenBank KX669635, and HSG2-12 GenBank KX669636) harboring

endosymbionts. These were identical between each other and presented an identity value rang-

ing from 96.5% to 98.1 with otherHolospora species (Table 3).

A species-specific probe was designed and FISH experiments were carried out in order to

detect the presence of the bacterial endosymbiont (Fig 11), as expected by “full-cycle rRNA

Fig 7. Bayesian inference phylogenetic tree of genus Paramecium based on ITS1-5.8S-ITS2 sequences. Numbers associated to each node represent

bootstraps values inferred after 1000 pseudoreplicates and Bayesian poster probabilities (values below 70 | 0.70 are not shown). Sequences in bold were

characterized in this study. The bar stands for an estimated genetic distance of 0.09.

doi:10.1371/journal.pone.0167928.g007
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Fig 8. P. chlorelligerum infected with Holospora-like bacterium. (A) general view of infected cell:

macronucleus (Ma) is indicated; (B) highly infected macronucleus; (C) slightly infected macronucleus; (D)

bacteria releasing from the squashed macronucleus; (E) infectious (IF) and reproductive (RF) forms of the

bacterium; (F) spindle-like IFs under high magnification. Scale bars: 13 μm (A); 10 μm (B); 8 μm (C); 5 μm (E,

F).

doi:10.1371/journal.pone.0167928.g008
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approach” [49]. According to the 16S rRNA gene secondary structure and diversity of the

Holospora genus sequences, regions suitable for species-specific probe design were limited.

Indeed, the HoloParv_645 probe was designed in the only region, which resulted both accessi-

ble and also sufficiently variable. According to RDP results, HoloParv_645 probe may recog-

nize, in addition to “Ca. Holospora parva”, a handful of sequences of uncultivable organisms.

When a single mismatch was allowed, the number of hits significantly increased including also

H. obtusa. In order to verify species-specificity of newly designed probe in condition of one

mismatch, hybridization experiments with probe HoloParv_645 and Paramecium caudatum
bearingH. obtusa were performed in 0, 15, 30% formamide conditions. The probe was never

binding toH. obtusa at any formamide concentration (data not shown).

Fig 9. Micrograph of P. chlorelligerum macronucleus infected with Holospora-like bacterium. In karyoplasm both infectious (IF) and

reproductive (RF) forms of the bacterium are visible. IF manifest double composition of periplasm (white asterisks). Attached to the macronucleus

(Ma) a part of the micronucleus (Mi) with distinctive a hyaline “achromatic cap” (black asterisk). Scale bar: 2 μm.

doi:10.1371/journal.pone.0167928.g009
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All cells screened showed the presence of bacteria in the host macronucleus (Fig 11). More-

over, signals from both probes EUB338 and HoloParv_645 overlapped, thus excluding the

presence of other bacterial endosymbionts.

ML and BI trees were inferred (Fig 12) after the GTR+I+G substitution model was chosen

by jModelTest. The ML and BI trees showed good statistical values of bootstrap and posterior

probability in the majority of nodes. As shown in the Fig 12, the monophyly of the families

within the order Rickettsiales was confirmed, and their evolutionary relations were in agree-

ment with recent literature [63–67], namely Rickettsiaceae as sister group of Anaplasmataceae-
“CandidatusMidichloriaceae” clade (99% bootstrap value for ML and 1.00 posterior probabil-

ity for BI). All members of theHolospora genus cluster together forming a monophyletic

Fig 10. Peculiarities of Holospora-like bacterium. (A) part of infected macronucleus; (B) composition of infectious form: cytoplasm (c),

periplasm regions with different density (white asterisks) and recognition tip (t); (C) cross sections of infectious (IF) and reproductive (RF) forms; (D)

fine fibrous material can be presented on the surface of some of IFs (black arrows). Scale bars: 2 μm (A); 1.5 μm (B); 1 μm (C); 0.6 μm (D).

doi:10.1371/journal.pone.0167928.g010

Nuclear Symbiont Holospora Discovered in Rare Paramecium Species

PLOS ONE | DOI:10.1371/journal.pone.0167928 December 16, 2016 17 / 29



group. The newly characterized “Ca. Holospora parva” branches independently as sister of the

cladeH. obtusa + H. undulata + H. elegans.

Discussion

The water body in Peterhof, Russia, as a diversity hot-spot for green

ciliated protists

The newly found freshwater locality manifested very unusual high biodiversity of green cili-

ates, at least fifteen species. In spite of 40 years practices in ciliate sampling in Russia, as well as

in different parts of the World [68], we never found so high diversity of such ciliates in the

same place. Some of mentioned species (e.g. Loxodes rostrum, Pelagotrix plancticola,Micro-
thorax viridis, Spathidium chlorelligerum, Prorodon niveus, Frontonia vernalis and Stichotricha

Table 3. 16S rDNA gene sequences identities among members of Holospora genus and within the same species, when more than one sequence is

present.

H. obtusa H. undulata H.elegans H. curviuscula H. acuminata “Ca. H. parva”

H. obtusa 99.59 98.15 98.08 96.29 96.47 96.55

H. undulata / 99.92 97.29 97.30 97.64

H. elegans / 97.02 96.76 97.22

H. curviuscula 99.71 97.90 97.22

H. acuminata 100.00 97.48

“Ca. H. parva” 100.00

doi:10.1371/journal.pone.0167928.t003

Fig 11. Fluorescence in situ hybridization results on fixed P. chlorelligerum cell infected with Holospora-like bacterium. (A) The ciliate

macronucleus stained by DAPI; bacteria in the macronucleus are visualized both with eubacterial probe EUB338 (B) labeled with AlexaFluor®
(green signal) and with the probe specific for Holospora-like bacterium HoloParv_645 labeled with Cy3 (red signal) (C). Scale bars: 20 μm.

doi:10.1371/journal.pone.0167928.g011
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secunda), were never previously recorded in Russia. In literature, the case of six green ciliate

species present in the same pond was treated as “spectacular abundance” [69] and reported

number of ciliate species associated with endosymbiotic algae could be from one to eight in

the same water body [70–72]. Indeed, the finding of so many green ciliate species demon-

strates that Peterhof ditch can be considered as a hot-spot for ciliates inhabited by green algae.

To our best knowledge, the diversity of ciliates with cytoplasmic green algae symbionts was

higher only in Simmelried moorland ponds, nearby the town of Konstanz, where 30 species

were found [73]. These two localities hosting P. chlorelligerum shared some general ecological

features. On one hand, ground flora is rather different between Simmelried and Peterhof bio-

topes. Moss (Sphagnum fallax) which is a dominant plant in Simmelried, does not grow in

proximity to the Peterhof ditch. Also edificatory trees in Simmelried were Pinus sylvestris,
Pinus mungo, Picea abies, and Betula sp. with, probably, Alnus sp. (according to pictures from

[73]), while in Peterhof the most common trees close to the ditch were Betula pendula, Alnus
glutinosa, Salix sp., and Quercus robur (minority). However, at the same time both areas are

humid and a bit marshy, and the waterbodies possess similar set of water vegetation: Lemna
sp., Carex sp., Phragmites australis, Typha sp. and Caricetum sp. (minority in Peterhof). Some

water plants like Cladium marisci absent in Peterhof just indicate more south localization of

Fig 12. Bayesian inference phylogenetic tree of order Rickettsiales based on 16S rDNA gene sequences. Numbers associated to each node represent

bootstraps values inferred after 1000 pseudoreplicates and Bayesian poster probabilities (values below 70 | 0.70 are not shown). Sequences in bold were

characterized in this study. The bar stands for an estimated genetic distance of 0.07. “Ca.” stands for “Candidatus”.

doi:10.1371/journal.pone.0167928.g012
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Simmelried. This similarity between Simmelried and Peterhof water bodies gives ground to

doubt another finding of P. chlorelligerum in Romania, Herăstrău Lake, Bucharest [74] as that

lake is big, rather clean and does not remind at all, according to the water vegetation set, the

first two water bodies. On the contrary, the first description made by A. Kahl [11], even if

short, indicates mire environment: “I know it only from the mud of a mire puddle” (page 830).

So, we can assume that rather particular environmental conditions are needed for P. chlorelli-
gerum presence. Probably specific quantities of microelements and substances present in water

and soil of these marshy biotopes produce favorable conditions for specific water vegetation

and stimulate the growth of unicellular algae prone for symbiosis with protists [75]. Such mire

environments are not yet so much studied; if our considerations are correct, we can predict to

find P. chlorelligerum and diverse green ciliates in some similar biotopes.

Biology of Paramecium chlorelligerum

General morphology. Morphological characteristics of P. chlorelligerum from Russia

match quite well with original description and redescription [11, 12]. Some small variations

occurred in cell size, position of oral aperture, composition of the quadrulus and the number

of contractile vacuole pores. Small morphometric deviations could be explained, probably, by

measurement technique; on the contrary, quadrulus structure and variable number of pores

could be explained by different geographical origin of the two investigated populations. Gen-

eral structure of contractile vacuole and single spindle-shaped micronucleus of “compact” type

with a hyaline “achromatic cap” are stable for representatives of P. chlorelligerum and allow to

identify it unequivocally, and, in particular, to discriminate between P. chlorelligerum and

another green Paramecium, P. bursaria. However, it is worth mentioning after the German

colleagues that P. chlorelligerum might have been overlooked many times in natural samples,

as at a glance check it is very easy to confuse with P. bursaria or even with green prostomateans

[12]. Thus, the frequency of P. chlorelligerum in nature might be significantly underestimated.

Sequence comparison, molecular variability and phylogeny of Paramecium chlorelli-
gerum. The retrieval of another P. chlorelligerum population in a new location gave the possi-

bility to investigate in more detail this rare green ciliate both from molecular and phylogenetic

points of view. For this purpose, three molecular markers (18S rDNA, COI, ITS1-5.8S-ITS2)

with different rate of evolution were employed (Figs 6 and 7).

The novel Russian locality hosted a very stable and homogeneous population from genetic

point of view, and, thus, probably, isolated population as no difference was observed in the

diverse molecular markers used to characterize strains isolated in different years. Our rechar-

acterization of the German population confirmed previous data by Krenek et al. [1] and

provided a novel and correct ITS1-5.8S-ITS2 sequence for this ciliate. Our phylogenetic recon-

structions supported the previous ones inferred on 18S rDNA and COI [1, 12] and provided a

novel phylogenetic tree based on ITS1-5.8S-ITS2, which confirmed the position of this rare

ciliate species as a sister group of Cypriostomum subgenus, although with a low support. Un-

fortunately, it was not possible to infer phylogeny on the complete rDNA locus, as for most of

Paramecium species present in databases some genes are missing. The comparison of P. chlor-
elligerum sequences revealed that this species displays a very low genetic variability, even in

geographically separated populations. Indeed, only one out of the three molecular markers

showed differences between the German and the Russian P. chlorelligerum populations. COI

and ITS1-5.8S-ITS2, molecular markers usually employed to investigate intraspecific diversity,

did not show any difference in the populations as they were 100% identical. Surprisingly, evo-

lutionary more conserved 18S rDNA presented a couple of mismatches (CBC), which could be

suitable to design a population-specific FISH probe, as an alternative and faster method to
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discriminate strains within the same morphospecies [76, 77]. The same phenomenon, but less

emphasized, was found also in other members of the genus Paramecium [46, 78], where intra-

specific variability was higher in 18S rDNA sequence than in the usually less conserved

markers.

Nevertheless, the increase of sampling and studies on marshy environments could lead to

the retrieval of other P. chlorelligerum populations, thus allowing a deeper understanding of

the real genetic diversity of this rare ciliate. Furthermore, as several sequences in GenBank

have been incorrectly assigned to P. chlorelligerum (KF110720, KF110708), now it becomes

more and more important to combine molecular tools with morphological analysis of the stud-

ied microorganism to avoid further mistakes.

Characterization and ecology of endosymbiotic algae. The characterization of Russian

P. chlorelligerum algal endosymbionts was performed both morphologically and molecularly,

and they were identified as members of theMeyerella genus. This algal genus splits off the

Chlorella group basally [57]. The main discriminating morphological feature of this genus is

absence of pyrenoid in chloroplasts. This feature characterizes only three groups of green

microalgae, namely Kalinella, Leptochlorella andMeyerella [79, 80]. The presence of a single

chloroplast was revealed in symbiotic algae of Russian P. chlorelligerum (Fig 4), thus resem-

blingM. planktonica description [58]. Still, ultrastucture ofM. planktonica is not identical with

symbionts from P. chlorelligerum. Some morphological differences were revealed also between

Meyerella sp. from Russian paramecia and other members of theMeyerella genus. At the

moment two free-living species ofMeyerella have been described, namelyM. planktonica from

the Itaska lake in Minnesota [58], andMeyerella sp. from the soil crust in Utah desert area

[57]; also microalgae inhabiting German P. chlorelligerum have been identified asMeyerella sp.

[12]. In particular, two chromatophores, leaving blank one polar region, were detected in sym-

biotic algae of German P. chlorelligerum [12], whileMeyerella sp. isolated from the soil crusts

was characterized by lobed or even fragmented chloroplasts [57]. Significant diversity within

theMeyerella genus was observed also from molecular point of view. Indeed, two free-living

Meyerella sp. were molecularly characterized [57, 58] and they displayed 98.3% similarity of

18S rDNA. At the same time, two 18S rDNA sequences of symbioticMeyerella lineages were

98.9% identical. Comparison between free-living and symbioticMeyerella sequences showed

differences from 97.6 to 99.3% (Table 2). Thus, symbioticMeyerella from Russian P. chlorelli-
gerum was even more similar toM. planctonica, than two free-living species ofMeyerella to

each other.

Meyerella has never been reported as a symbiont of any other ciliate, except P. chlorelli-
gerum. Until recently [79], all known symbioses between freshwater ciliates and algae generally

have been presumed to involve representatives of Chlorella genus (Chlorophyta). Systematic

revision of zoochlorellae [79], redescription of P. chlorelligerum [12], new data on green symbi-

onts of Loxodes rostrum [71] and on Tetrahymena utriculariae [81], changed this view on algae

inhabiting cytoplasm of ciliates. Comparative analysis of different Chlorella-like symbionts

[79] revealed five phylogenetically distinct symbionts, namely Chlorella, Choricystis, Cocco-
myxa, Scenedesmus andMicractinium, which could be found in several ciliates. Recently repre-

sentatives of a new green algae group called “Chlorb” (probably forming a new genus) were

retrieved from four green ciliates isolated from Lake Biwa in Japan [82]. Now also the genus

Meyerella should be added to the list of symbiosis-forming algae after its retrieval in the cyto-

plasm of both German [12] and Russian P. chlorelligerum. Two independent findings of these

algae in geographically diverse populations of P. chlorelligerum allow to suggest that this sym-

biotic association is not occasional. The failure in stable cultivation of ex-symbioticMeyerella
on BBM, considered as a quality standard for maintenance of unicellular algae including ex-

symbiotic Chlorella andMicractinium [83], may be explained by the lack of some special
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conditions which these algae meet inside the ciliate cell. For example, these endosymbiotic

algae may get a certain advantage living in a host with slow growth rate, as propagation

enhanced by artificially favorable conditions could be too fast. Other possible explanations of

unsuccessful cultivation attempts of symbioticMeyerella may include low frequency of cyst-

like cells formation readily in Paramecium, occasional overgrowth of it by Chlorella if the latter

are present in medium or engulfed but not digested by the ciliate, and even presence of a latent

virus which activates and lyses the host cells when they start rapid growing outside of Parame-
cium [84, 85].

All these data indicate that there is a need of revision ofMeyerella species, as this genus

includes both free-living and diverse symbiotic algae which possess also morphological differ-

ences. Furthermore, our findings raise a question on the origin and evolution of symbiosis

between these algae and ciliates and suggest that P. chlorelligerum from the two populations

independently acquiredMeyerella from the environment.

Intracellular symbionts of Paramecium chlorelligerum are a novel

Holospora species

The characterized bacterium shares many morphological and life cycle similarities with mem-

bers of theHolospora genus. The pattern of features usually employed to identify bacteria of

this genus was previously described for several species [86–94]. Indeed, alternation of IF and

RF in their life cycle, high infectivity of the IF, nuclear specificity, and high selectivity for the

host Paramecium species are considered to be distinctive features ofHolospora species. The

novel bacterium found in P. chlorelligerum macronucleus fits to all these criteria, and, thus,

can be considered as a representative of theHolospora genus. This conclusion is also supported

by ultrastructural data on morphology of IFs. The ultrastructure of IF slightly varies in the spe-

cies of theHolospora genus. Among them, P. chlorelligerum symbiont is the smallest in size

and according to shape and length remindsH. acuminata [87]. Finally, 16S rDNA sequence

similarity with severalHolospora species of circa 97% and phylogenetic analysis has shown that

novel bacterial symbiont of P. chlorelligerum clusters withH. obtusa, H. unduluta, andH. ele-
gans, thus unequivocally including it in theHolospora genus (Fig 12).

This newHolospora species proved to be infectious, as experiments in stock HSG2-12

showed that reinfection is a possible event in the P. chlorelligerum population. However, out-

come of experimental infection was relatively low, and development of infection took much

longer than in all otherHolospora species. Low rate of this process is probably connected with

physiology of the host ciliate, which is characterized by unusually slow reproduction and, con-

sequently, may put certain limitations on the readiness of experimental (or native) infection. It

is also possible that laboratory conditions are insufficient to allow faster growth of the host cili-

ate and, consequently, the symbiotic bacteria slow down their reproduction.

All members of theHolospora genus recover maximal support and form a monophyletic

group (Fig 12). Up to now, the validity of theHolosporaceae family within the order Rickett-
siales is under discussion. As shown in some recent literature based on 16S rDNA and genome

phylogenies [23, 63, 64], the family Holosporaceae is placed as basal to the rest of Rickettsiales
and within this order. Other studies utilizing different and less widespread molecular markers,

such as 23S rDNA and protein-coding genes, placed Holosporaceae outside of the order Rick-
ettsiales and suggested to rank it as a separate order [95–97]; a recent study formally elevated

Holosporaceae to the orderHolosporales providing an overall revision of families belonging to

this new order [98].

However, our phylogenetic reconstruction ofHolosporaceae andHolosporales is in accor-

dance with previous studies [23, 63, 64, 98] and its inner relations are confirmed. Indeed, all
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H. obtusa sequences cluster together withH. undulata as sister group, and the earlier diver-

gence ofHolospora species associated with P. bursaria is confirmed and they cluster together

[23]. Within the group of P. caudatum “classical” holosporas, the novel species from P. chlorel-
ligerum occupies basal position, thus forming a separate lineage. “Candidatus Gortzia infec-

tiva”, anHolospora-like bacterium, is confirmed as the closest relative ofHolospora genus

[23, 99].

These phylogenetic findings make doubtful the importance of inducing the connecting

piece as another feature considered to be distinctive between two groups of holosporas. Con-

necting piece is the result of IF concentration in a particular median body during division pro-

cess of the infected host nucleus facilitating further release of symbionts to environment [100].

It was shown that the presence of the connecting piece is characteristic for classical Holospora
species (i.e. those infecting P. caudatum and P. bursaria), while this structure is not induced by

otherHolospora-like bacteria [13, 23, 62]. If present, this event could be considered as a partic-

ular adaptation of bacteria evolved to accomplish more efficiently the complex life-cycle,

exploiting host cell divison machinery [100, 101]. This feature has not been found for two

Holospora species infecting macronuclei of representatives of the Frontonia genus, namely

F. salmastra and F. leucas [13, 68]. Moreover, the lack of inducing the connecting piece was

observed also in “Candidatus Gortzia infectiva” from P. jenningsi [23]. Interestingly, the novel

macronuclear endosymbiont of P. chlorelligerum also does not induce the connecting piece

reminding “Ca. Gortzia infectiva” rather than “classical” holosporas, though phylogenetically

it is closer to the latter. Considering both morphological and molecular data, we can not claim

anymore the presence of the connecting piece as an apomorphic feature for allHolospora
species.

According to the current microbiological rules [102] for nomenclature, we can coin only

the status of “Candidatus” for the novel macronuclear bacterium of P. chlorelligerum as a repre-

sentative of non-cultivable microorganisms.

Description of “Candidatus Holospora parva” sp. nov.

Holospora parva (N.L. adj. parva, a little)

Rod-shaped gram-negative bacteria, with differentiated reproductive (RF) and infectious

(IF) forms. RF 1.0–3.0×0.6–0.7 μm with homogeneous cytoplasm without visible inclusions.

IF 3.0–5.0×0.6–0.7 μm straight rods, with distinctive tapered ends, extensive periplasmic

space divided into two parts with different osmiophilic density, and a recognition tip. Does not

induce the formation of a distinctive connecting piece during host cell division. Macronuclear

endosymbiont of the free-living ciliate Paramecium chlorelligerum, identified in samples taken

from permanent ditch in English park of Peterhof (St. Petersburg district, Russia). Capable of

horizontal and vertical transmission in the host species. Basis of assignment: 16S rRNA gene

sequence (GenBank KX669636) and positive matching with the 16S rRNA-targeting oligonucle-

otide probe HoloParv_645; morphological characters pattern as above. Uncultured thus far.

Supporting Information

S1 Alignment. Alignment of 18S rDNA of Paramecium genus. 34 sequences of ciliates belong-

ing to the order Peniculida were aligned to perform phylogenetical analysis of Paramecium chlorel-
ligerum. The resulting 1646 nucleotides columns are presented here. (S1 Alignment)

(TXT)

S2 Alignment. Alignment of ITS1-5.8S-ITS2 of Paramecium genus. 29 sequences of ciliates

were aligned to perform phylogenetical analysis of Paramecium chlorelligerum. The resulting
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999 nucleotides columns are presented here. (S2 Alignment)

(TXT)

S3 Alignment. Alignment of 16S rDNA of Rickettsiales order. 44 sequences of the order

Rickettsiales and 6 other alphaproteobacteria as outgroup were aligned to perform phylogeneti-

cal analysis of Paramecium chlorelligerum bacterial endosymbiont. The resulting 1356 nucleo-

tides columns are presented here. (S3 Alignment)

(TXT)
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