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Abstract
The use of extracorporeal life support (ECLS) for the pediatric and neonatal population continues to grow. At the same time, 
there have been dramatic improvements in the technology and safety of ECLS that have broadened the scope of its application. 
This article will review the evolving landscape of ECLS, including its expanding indications and shrinking contraindications. 
It will also describe traditional and hybrid cannulation strategies as well as changes in circuit components such as servo 
regulation, non-thrombogenic surfaces, and paracorporeal lung-assist devices. Finally, it will outline the modern approach 
to managing a patient on ECLS, including anticoagulation, sedation, rehabilitation, nutrition, and staffing.
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Introduction

Extracorporeal life support (ECLS) provides life-sustaining 
gas exchange and hemodynamic support for patients with 
acute pulmonary or cardiac failure. Pioneered in neonatal 
patients [1], ECLS has expanded exponentially to routine 
use in pediatric and adult patients. ECLS has been defined 
by the following characteristics:

1.	 Supportive: ECLS is not a curative treatment. ECLS 
is often initiated when patients fail optimal treatment 
for their underlying condition. It sustains the life of the 
patient by maintaining adequate hemodynamics and gas 
exchange while they continue further treatment with the 
goal of organ recovery or as a bridge to organ replace-
ment.

2.	 Temporary: ECLS does not serve as destination therapy. 
It provides temporary support to those patients whose 
underlying condition is reversible or who are candidates 

for organ replacement or transplantation. The duration 
of “temporary” varies widely, with patients having sur-
vived courses of ECLS for  > 1 year.

3.	 Partial or total: patients can receive both hemodynamic 
and gas-exchange support with veno-arterial (V-A) 
ECLS or gas-exchange support alone with veno–venous 
(V–V) ECLS. Additionally, ECLS can be titrated to offer 
varying levels of support according to each patient’s 
needs.

4.	 Avoids iatrogenic injury: patients with pulmonary fail-
ure often sustain considerable lung injury from high-
pressure mechanical ventilation. Likewise, vasopressor 
use, particularly at high doses, can cause ischemic injury 
to the large and small intestine, kidneys, and extremi-
ties. ECLS can replace the gas-exchange function of the 
lungs and promote lung recovery on lower ventilator 
settings and provide hemodynamic support to allow for 
the weaning of vasopressors and restoration of adequate 
perfusion.

In this review, we discuss the evolution and potential for 
future developments in the standard of care for ECLS, inclu-
sive of (1) indications and contraindications, (2) approaches 
to cannulation, (3) equipment, and (4) management.
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Indications and contraindications

Indications

ECLS is indicated for children with respiratory failure 
refractory to ventilator management (Table 1). One met-
ric commonly used to define respiratory failure—often in 
neonates—is the oxygenation index (OI). This is calculated 
as MAP × FiO2 × 100/PaO2 (post-ductal), where MAP is 
the mean airway pressure, FiO2 is the fraction of inspired 
oxygen, and PaO2 is the arterial partial pressure of oxygen. 
An OI of 25 is associated with a 50% mortality, whereas 
OI of 40 is associated with an 80% mortality. Tradition-
ally, neonates were candidates for ECLS when OI reached 
40; however, as the safety of ECLS has improved, ECLS 
is commonly considered for neonates with OI over 25 and 
strongly indicated for OI 40 or over. Special considera-
tion must be given to those patients that are on modes of 
ventilation other than conventional ventilator support (e.g. 
high-frequency jet ventilation, high-frequency oscillator 
ventilation) since the relationship between OI and survival 
is altered [2, 3]. Another metric commonly used to stratify 
respiratory failure in pediatric and adult patients is PaO2 
to FiO2 (P:F) ratio. Many centers consider ECLS for a P:F 
ratio less than 100, though others use stricter criteria of P:F 
ratio less than 60–80. Hypercapneic respiratory failure (with 
pH persistently less than 7.0–7.25) may also be the primary 
indication for ECMO, for example in the setting of refrac-
tory asthma [4, 5].

Septic shock has long been an indication for ECLS with 
good outcomes in neonates [6]. Very early data on ECLS 
use for the management of septic shock in pediatric patients 
were promising, albeit in small numbers [7–9]. Subsequent 
studies demonstrated opposing results [10, 11]. Perhaps 
because of these later studies combined with the theoretical 

risk of circuit contamination, there has been a slow adop-
tion of ECLS for sepsis, particularly in pediatric patients. 
However, the two largest series to date (45 and 21 children) 
provide strong support for the use of ECLS for septic shock. 
In children with severe multi-organ failure (94% had failure 
of at least three organ systems), survival was 47 and 43%, 
respectively [12, 13]. Furthermore, one group achieved sur-
vival of 78% when using central cannulation for pediatric 
patients with septic shock, thought to be due to the higher 
flow rates afforded by central cannulation resulting in more 
rapid resolution of shock [14]. Another series of 80 patients 
achieved a survival rate of 55%. Of note, 71% of those 
patients underwent central cannulation, which was associ-
ated with significantly improved survival [15]. This study 
suggested that ECLS likely provides a survival benefit to a 
pediatric patient with septic shock whose predicted mortal-
ity exceeds 47%. Taken together, these recent series provide 
robust evidence in support of ECLS use for patients with 
refractory septic shock. The American College of Critical 
Care Medicine has recommended ECLS for pediatric septic 
shock refractory to fluids, vasopressors, and inotropes [16].

Pediatric lung transplant is performed only about 100 
times per year, of which approximately 5% require ECLS 
support as a bridge to transplant [17]. Data in adults dem-
onstrate improved outcomes with the use of V–V ECLS pre-
transplant [17]. Early reports demonstrated poor outcomes 
associated with ECLS use prior to lung transplant [17–19], 
but a recent large series found that outcomes for patients 
supported by ECLS prior to lung transplant were compa-
rable to patients not requiring ECLS [20]. Pediatric lung 
transplants have been successfully performed on ECLS in 
rare cases [21]. Though many cannulation techniques have 
been used pre-transplant, cervical cannulation with a double-
lumen cannula and a compact circuit allow for mobility and 
prehabilitation prior to transplant [20, 22–24]. ECLS can 
also be continued post-operatively in the event of primary 
graft dysfunction [22, 25].

Contraindications

ECLS is a temporary therapy; it does not treat a patient’s 
underlying pathology. Rather, it provides the patient with 
adequate gas exchange and hemodynamic support as a 
bridge to organ recovery or transplant. It follows, then, 
that ECLS does not have a role in the management of any 
patient for whom there is no expectation of recovery from 
organ failure. The other subset of patients for whom ECLS 
is contraindicated are those who stand to suffer more harm 
than benefit from extracorporeal circulation. These patients 
are primarily those who have recent or active bleeding—
specifically intracranial bleeding—such that the addition of 
the requisite systemic anticoagulation would make that risk 

Table 1   Neonatal and pediatric ECLS indications

PaO2 arterial partial pressure of oxygen, FiO2 fraction of inspired 
oxygen, A-aDO2 alveolar-arterial oxygen gradient, Pplat plateau 
pressure, ICH intracranial hemorrhage, EGA estimated gestational 
age

Indications Contraindications

Oxygenation index > 40 Lethal chromosomal or other anomaly
PaO2 to FiO2 ratio < 60 Poor predicted neurologic outcome, 

irreversible brain injury
pH < 7.25 Uncontrolled bleeding
Shock ICH ≥ Grade III
A-aDO2 > 500 mmHg Advanced multi-organ system failure
Pplat > 30 cm H2O Ventilation > 14 days

Weight < 1–1.5 kg
EGA < 30 weeks
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prohibitively high. The risk–benefit balance in these cases 
has a significant subjective component and should be con-
sidered on a case-by-case basis.

Continual advances in ECLS technology and manage-
ment strategies have challenged many of the traditional 
contraindications for ECLS. Estimated gestational age 
(EGA) of at least 34 weeks has typically been the cutoff for 
consideration of ECLS due to increased risk of intracranial 
hemorrhage and overall mortality [26–29]. A review of 752 
ECLS runs in neonates with EGA 29–34 weeks in the ELSO 
registry found that survival was lower in the neonates with 
EGA 29–33 weeks (48%) than neonates with EGA 34 weeks 
(58%, p = 0.05), but there was no difference in ICH rates (21 
vs. 17%) [26]. This mortality difference is modest and may 
be clinically acceptable in select circumstances. Centers are 
now commonly considering patients with  ≥ 30 weeks EGA 
to carry an acceptable risk profile [30].

Another traditional cutoff has been a weight of 2 kg. In 
neonates weighing below 2 kg, it can be technically chal-
lenging to place cannulae large enough to provide adequate 
ECLS flow. Early data suggested that survival was signifi-
cantly decreased in infants weighing less than 2 kg [27]. 
Though later data began to demonstrate improved survival, 
2 kg remained a strong relative cutoff at most centers. Using 
data from the ELSO Registry from 1991 to 2002, Rozmiarek 
et al. estimated that infants weighing as little as 1.6 kg could 
be supported with an expected survival of over 40%, though 
the model did not account for technical challenges of can-
nulation [31]. Cuevas Guamán et al. reported on 3 premature 
neonates (31, 32, and 36 weeks EGA) with CDH weighing 
less than 2 kg (1.5, 1.6, and 1.8 kg) who were offered ECLS 
using 8 Fr arterial and venous cannulae. All 3 survived with 
good functional outcomes at 2 years of age [32]. Our Uni-
versity of Michigan experience includes cannulation of 5 
neonates weighing less than 2 kg. All 5 survived. With the 
advent of more efficient, smaller cannulae, the size cutoff has 
decreased to as low as 1 kg at some centers [30].

Neonates with high-grade ICH are at high risk of exten-
sion when subject to the systemic anticoagulation and hemo-
dynamic changes associated with ECLS; however, grade 1 
and 2 ICH may not share this same risk. One group found 
that only 9% of infants with grade 1 ICH diagnosed on pre-
ECLS head ultrasound experienced evolution of their ICH; 
half of these (4.5% of the total) evolved to grade 3–4 [33]. 
The use of a cephalic venous drainage cannula and reduced 
anticoagulation in neonates on ECLS have been shown to 
diminish the risk of development of a new ICH and evolu-
tion of existing ICH [34].

Patients who are candidates for ECLS typically require 
high ventilator settings. While this aggressive mechani-
cal ventilation is necessary to support gas exchange, it has 
also been associated with ventilator-induced lung injury, 
which can augment chronic lung disease [35] and increase 

mortality [36]. For this reason, extended periods of mechani-
cal ventilation have been considered a contraindication for 
ECLS. An early study showed that a period of mechani-
cal ventilation for 7 or more days prior to ECLS was been 
associated with worse survival as well as an increased risk 
of BPD [37]. More recent studies have suggested that pedi-
atric patients supported by mechanical ventilation up to 
14 days prior to ECLS cannulation have similar survival 
rates to those patients on the ventilator for fewer than 7 days 
prior to cannulation. Survival rates decrease when pre-ECLS 
mechanical ventilation exceeds 14 days [38, 39].

Cardiac arrest requiring CPR has been considered by 
many to be a contraindication to ECLS, as pre-ECLS CPR 
has been associated with worse outcomes [39]. However, 
many centers now consider patients who suffer pre-ECLS 
cardiac arrest candidates for support. In recent years, ECLS 
to support CPR (ECPR) has made up 11% of neonatal and 
22% of pediatric ECLS cases, with survival rates of 67% 
and 56% respectively [40]. A major concern with ECPR is 
that cerebral hypoxia from cardiac arrest would result in 
poor neurologic outcomes for these patients regardless of 
subsequent adequate perfusion from ECLS; however, this 
has not been the case. A single-center review of pediatric 
patients undergoing ECPR found that 84% of the patients 
who survived to discharge had favorable neurological out-
comes [41]. A second center demonstrated similar success 
in a group of pediatric patients: 73% survived to discharge, 
75% of whom had no change in their pediatric cerebral per-
formance category (PCPC) scores [42].

Artificial placenta

Research on an artificial placenta dates back to the earliest 
days of ECLS research [43]. The placenta was perhaps a 
likely starting point, as it naturally provides extracorporeal 
circulation to the developing human fetus. Since that time, 
remarkable progress has been made. There are currently 
multiple groups working to develop an artificial placenta 
system in the lab using premature lamb models. Though 
each system is unique, they share a few defining charac-
teristics: specific design for extremely low gestational age 
newborns (ELGANs), maintenance of fetal circulation, fluid-
filled lungs, and cannulation of the umbilical vein and/or 
artery. One approach uses the umbilical artery drainage 
and umbilical vein reinfusion for pumpless arterio–venous 
(A–V) ECLS, with the fetus submerged in an artificial womb 
[44, 45]. Given its exclusive use of the umbilical vessels, 
the A–V approach would require delivery of the fetus for 
direct cannulation. The other approach uses internal jugular 
vein drainage and umbilical vein reinfusion for pump-driven 
V–V ECLS and maintains the fetus in a typical neonatal ICU 
incubator (Fig. 1). This system could be applied after birth 
to infants failing maximal medical therapy or preemptively 
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after proper risk stratification. Many systems in development 
have been shown to provide adequate respiratory support for 
a developing fetus and promote largely normal development 
of lungs [44, 46, 47], brain [48, 49], spleen [50], and intes-
tine [51, 52]. Early efforts at miniaturization of the circuit 
to support animals weighing 500–800 g—comparable in 
size but more physiologically premature than ELGANs—
have been promising but require further refinement [53, 54]. 
Given these significant advances, clinical translation may be 
on the horizon; however, significant hurdles remain, includ-
ing the consistent recovery of animals after long-term artifi-
cial placenta support, reliable cannulation of 500 g animals 
with adequate support, infrastructure development within 
hospitals, and patient risk stratification.

ECLS for COVID‑19

The COVID-19 global pandemic of respiratory infections 
caused by severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) has taken over 1 million lives [55]. Pediat-
ric patients have been disproportionately spared from the 
infection. Children are estimated to make up 1–5% of diag-
nosed cases [56]. Though children do develop a fever and 
respiratory symptoms, severe pneumonia requiring critical 
care typically occurs in under 5% of diagnosed children and 
deaths are rare [57–62]. ECLS has been used to rescue adult 
patients with refractory respiratory failure due to COVID-
19. Early studies of ECLS use for SARS-CoV-2 infection 
in adults demonstrated poor outcomes in a small number of 
patients [63], creating doubt about the role of ECLS in this 
pandemic. A more recent report from the ELSO Registry 
of 1035 patients over 16 years old with confirmed COVID-
19 supported by ECLS found a 37% mortality rate, similar 
to mortality rates in adults supported by ECLS for other 

causes of respiratory failure [64]. Reports of ECLS use for 
children with COVID-19 are scarce. The largest case series 
of ECLS use in children diagnosed with SARS-CoV-2 infec-
tion included 7 patients from 4 European countries aged 
54 days to 16 years [65]. Indications for ECLS were hypoxia, 
multisystem inflammatory syndrome in children (MIS-C), 
and septic shock from Staphylococcus aureus. Six initially 
required V-A ECLS, 3 of whom were subsequently con-
verted to V-V ECLS due to cardiac recovery or differential 
hypoxemia. Three patients developed thrombotic complica-
tions (ischemic stroke, right atrial thrombus, and pulmonary 
embolism) despite therapeutic anticoagulation, commonly 
seen in adult patients with SARS-CoV-2 infection. Four of 
7 patients survived to discharge. Oualha, et. al. published 
a series of 27 children admitted to a single pediatric ICU 
with a diagnosis of COVID-19 through April 20, 2020, that 
included 1 patient who required ECLS—a 6-year-old girl 
with no comorbidities who had uncomplicated varicella 
14 days before admission. She developed multiorgan failure 
with S. aureus pneumonia and bacteremia and ultimately 
suffered a fatal intracranial hemorrhage [66]. In another 
series of 48 patients with COVID-19 who were admitted to 
46 North American pediatric ICUs through April 3, 2020, 1 
patient with significant underlying cardiomyopathy required 
V–A ECLS for cardiogenic shock and was continuing ther-
apy at the time of publication [62].

Emerging evidence suggests that children previously 
diagnosed with COVID-19 are susceptible to MIS-C (for-
merly called pediatric inflammatory multisystem syndrome 
temporally associated with SARS-CoV-2 [PIMS-TS]) [67]. 
Patients with MIS-C typically present very ill, with evi-
dence of severe inflammation in multiple organ systems, 
commonly with cardiac involvement, as evidenced by the 3 
patients with MIS-C in the series by Di Nardo, all of whom 

Fig. 1   a Schematic of the artificial placenta with V–V ECLS config-
uration; b Photo of an extremely premature sheep supported by the 
V–V ECLS artificial placenta. Ao: aorta; DV: ductus venosus; IJV: 
internal jugular vein; IVC: inferior vena cava; RA: right atrium; SVC: 

superior vena cava. a Reproduced with permission from  Church 
et al. [46] (License number 4930520731885). b Original unpublished 
image
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presented with cardiac injury requiring V–A ECLS [65]. 
Whittaker et al. [68] published a series of 58 patients diag-
nosed with MIS-C. Half of these patients developed shock 
requiring vasopressors. Three patients required ECLS for 
severe myocardial dysfunction, the outcomes of which were 
not reported. Kaushik et al. [69] published the experience 
of three New York City children’s hospitals with 33 patients 
with MIS-C, including a 5-year-old patient who presented 
with severely depressed left ventricular function requiring 
V-A ECLS but ultimately suffering a fatal ischemic stroke. 
These data suggest that ECLS may be used in children with 
respiratory or cardiac failure associated with COVID-19 or 
MIS-C; however, more data are required prior to determin-
ing the true efficacy and role of ECLS in these patients.

Evolving cannulation strategies

ELSO has published a nomenclature that can help distin-
guish cannulation configurations, which provide information 
about the underlying physiology and the overall function of 
the ECLS circuit. The hyphen indicates the membrane lung, 
the letters to the left of the hyphen indicate drainage and to 
the right of the hyphen indicates return, the letters directly 
on either side of the hyphen are the original cannulae, and 
additional cannulae are placed outside these two letters on 
the appropriate side [70].

Traditional cannulation strategies

The earliest series of neonates supported with ECLS 
involved V-A cannulation—typically in the carotid artery 
and the internal jugular vein [71, 72] (Fig. 2). This remains 
the most common cannulation technique for pediatric and 
neonatal ECLS for non-cardiac indications [73]. V–A 
cannulation provides many benefits. First, it is typically 
a straightforward procedure from a technical standpoint. 
Second, given its historical predominance, surgeons across 
institutions have a large amount of experience with the 
technique. Thirdly, the arterial reinfusion provides hemo-
dynamic support, which can rapidly stabilize an infant who 
is clinically deteriorating. Fourth, the positioning of the 
reinfusion cannula typically allows for stable high flows 
with no recirculation. Finally, by draining from the right 
atrium and reinfusing distal to the aortic valve, the blood 
flow through right heart is significantly decreased, allowing 
for cardiac rest and recovery, which is particularly beneficial 
for patients with pulmonary hypertension, such as those with 
congenital diaphragmatic hernia and persistent pulmonary 
hypertension of the newborn. A major concern with V-A 
cannulation is the hypothetical stroke risk associated with 
ligation of the carotid artery and reinfusion of blood from 
the ECLS circuit into the systemic circulation. A large study 

of the ELSO Registry found that, while overall stroke risk 
was higher with carotid artery cannulation (5.2 vs. 3.7%), 
this difference disappeared after adjusting for factors such as 
age, support type, and underlying disease process [74]. An 
additional study of patients undergoing ECPR support found 
no association between the site of peripheral cannulation 
(i.e., carotid vs. femoral artery) and neurological injury [75]. 
This suggests that carotid artery cannulation may be safer 
than commonly thought. V-A ECLS also causes a decrease 
in coronary artery flow [76] and increases left ventricular 
end diastolic pressure (i.e., afterload), which can decrease 
cardiac output, increase the risk of pulmonary edema, and 
potentially hinder cardiac recovery [77–79].

An alternative to V–A cannulation is V–V cannulation 
with either a double-lumen cannula or, less commonly, two 
single-lumen cannulae [80]. Double-lumen cannulae are 
most commonly placed in the internal jugular vein, though 
they can be placed in the femoral vein in adults and larger 
pediatric patients. Both drainage and reinfusion occur in 
or very near to the right atrium, which produces recircula-
tion—a major disadvantage of V–V ECLS [81]. The effects 
of recirculation can be minimal or profoundly negative, 
depending on the patient’s volume status, their cardiac out-
put, and the position of the cannula [81]. Additionally, V–V 
provides no hemodynamic support, as reinfusion occurs in 
the low-pressure right atrium and passes through the pul-
monary circulation before entering the systemic circulation. 
Despite the lack of hemodynamic benefit, there are many 
advantages to V–V cannulation. First, double-lumen can-
nulae allow for single-vessel access that can be achieved per-
cutaneously, thus limiting the morbidity of the cannulation 
procedure and preserving the patient’s carotid artery, though 
double-lumen cannula placement tends to be avoided in neo-
nates and infants due to a high rate of complications such 
as right atrial perforation [82]. Second, oxygenated blood 
is delivered to the pulmonary vasculature, which has been 
shown to decrease pulmonary artery resistance and reduce 
the potential complications associated with emboli from the 
ECLS circuit [83, 84]. Third, V–V ECLS increases coronary 
artery blood flow [85] and oxygen delivery [86] by increas-
ing the oxygen saturation of native cardiac output, which is 
the primary source of coronary artery perfusion. Lastly, it 
avoids the increase in left ventricular afterload that is seen 
with V–A ECLS [81].

Femoral cannulation

Femoral cannulation is commonly used in adults and can 
be an option for older pediatric patients. Before 5 years of 
age, the femoral vessels are typically too small to accept a 
cannula that can provide adequate venous drainage. For that 
reason, femoral cannulation is avoided in patients younger 
than 5 years old, although cannulation of the iliac vein is an 
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option [73, 80]. In V–V ECLS, the femoral vein can be used 
as drainage along with internal jugular reinfusion. With the 
safety of double-lumen cannulae that can be placed in the 
IJ, this approach is used less commonly [80]. In V–A ECLS, 
both the femoral artery and vein can be used for access. 
While this technique has the benefit of sparing the carotid 
artery, it is associated with a rate of limb complications that 
can reach 50% in children [87]. A number of strategies to 
prevent limb ischemia have been attempted. One approach is 

to insert a distal perfusion catheter into the superficial femo-
ral artery just distal to the cannulation site for anterograde 
flow [88–90] or into the posterior tibial artery for retrograde 
flow [91]. Data are limited and inconclusive on the relative 
benefit of prophylactic versus reactive placement of a distal 
arterial perfusion catheter in the pediatric population [92]. A 
distal venous drainage catheter has also been described as a 
method to decrease tissue edema and further improve perfu-
sion during long-term ECLS [88]. Close monitoring of limb 

Fig. 2   a In veno-arterial (V–A) cannulation, drainage is from the 
superior vena cava (SVC) and right atrium (RA) via the right inter-
nal jugular vein (IJ) and reinfusion is to the right carotid artery (CA); 
b In veno-venous (V–V) cannulation with two cannulae, drainage is 
from the SVC and RA via the right IJ and reinfusion is to the inferior 

vena cava (IVC); c In V–V cannulation with a double-lumen cannula, 
drainage is from the SVC and IVC and reinfusion is into the RA.  
Reproduced with permission from Frischer et al. [176] (License num-
ber 4924341211861)
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perfusion in any patient with femoral cannulation is critical, 
regardless of the presence of a distal perfusion catheter, as 
limb ischemia can occur even after catheter placement [92, 
93]. Alternatively, rather than inserting a distal catheter, a 
prosthetic graft can be sewn to the femoral artery and subse-
quently cannulated (“stovepipe” or “side-arm” cannulation) 
to prevent occlusion of the native vessel with the cannula 
[94]. Limited series demonstrates that this technique leads 
to adequate perfusion—including to the upper body—while 
avoiding limb ischemia altogether [94–96]. Stovepipe can-
nulation requires an open femoral artery cut-down, which 
is time-consuming, limiting its application in patients that 
are actively deteriorating; produces a risk of bleeding in the 
surgical bed; and introduces an additional infectious risk, as 
a short segment of graft is often left in the surgical bed after 
decannulation. The technique should be considered for select 
patients in whom femoral cannulation is being performed in 
a controlled setting.

Indications for additional cannula placement 
(hybrid cannulation)

Another risk of femoral cannulation is North–South Syn-
drome, in which the head and upper extremities are hypop-
erfused relative to the lower extremities. This has been 
referred to as “red legs, blue head”, named for the physi-
cal appearance of the patient experiencing this condition. 
This occurs when a patient with cardiorespiratory failure on 
femoral V–A ECLS begins to recover cardiac function but 
lung function remains poor. Native cardiac output increases, 
but the blood ejected by the heart is relatively hypoxic and 
is preferentially distributed to the head, heart, and upper 
extremities while ECLS oxygen-rich blood flow from the 
femoral cannula only tends to perfuse as high as the distal 
aorta. One option for management of this condition is to 
add an additional venous reinfusion cannula into the internal 
jugular vein, thereby converting the circuit to veno-arterio-
venous (V-AV) ECLS—that is, venous drainage with arte-
rial and venous reinfusion. This continues the hemodynamic 
support of femoral V-A ECLS while providing additional 
oxygenated blood directly into the right atrium—as with V-V 
ECLS—thereby increasing perfusion of oxygenated blood to 
the brain, coronary vessels, and upper extremities. This does 
not increase overall oxygen delivery of the ECLS circuit, but 
rather anatomically redistributes the perfusion. The relative 
flow into the jugular venous and femoral arterial reinfusion 
limbs can be controlled, allowing for close management of 
the relative redistribution of inflow [97].

A third cannula can also be beneficial for patients on V-V 
support who develop cardiac failure. In these patients, either 
a femoral or carotid cannula is placed to convert to veno-
venoarterial (V–VA) ECLS to provide hemodynamic sup-
port [98]. Use of an additional venous drainage cannula with 

V–A ECLS (VV–A) can provide increased drainage—and 
thus flow—in obese patients, whose body surface area is 
disproportionately larger than their vessel size [99].

Equipment

Simpler circuits

The early years of ECLS were dominated by V–A cannu-
lation requiring open cut-down. The current era of ECLS 
(roughly marked by the H1N1 flu pandemic of 2009) was 
sparked by the development of simpler and safer ECLS 
circuits. The development of magnetically levitated (Mag-
Lev) pumps has allowed the application of centrifugal 
pumps to long-term ECLS with associated safety (mini-
mal application of high negative pressures and high posi-
tive pressures with occlusion of the inlet and outlet of the 
pump, respectively) over traditional roller pumps. As V–V 
ECLS gained acceptance, percutaneous techniques, and 
double-lumen cannulae simplified cannulation. The cur-
rent generation of polymethyl pentene hollow-fiber oxy-
genators is smaller and more efficient with lower resistance 
and smaller priming volumes which is ideal for neonatal 
and pediatric patients [100, 101]. They are also less likely 
to fail, reducing the need for changing out circuit compo-
nents [100]. All of these changes in technology, including 
centrifugal pumps with integrated batteries, are associated 
with more compact circuits, which also facilitate patient 
transport. The ECLS circuit can now be brought to an 
outside facility to stabilize a patient for transfer, rather 
than risking the transfer of an unstable patient to an ECLS 
center [102].

Nonthrombogenic circuits

The exposure of blood to the foreign surfaces of an ECLS 
circuit produces a significant inflammatory response in 
the patient. It triggers a complicated cellular and protein 
response to the circuit characterized by protein adsorp-
tion, activation of the coagulation pathway, platelet and 
leukocyte activation and adhesion, and triggering of the 
complement cascade [103]. The activation of pro-throm-
botic pathways within the circuit drives the need for sys-
temic anticoagulation to maintain circuit patency. Many 
attempts have been made at coating the surfaces of circuits 
to limit inflammation, prevent circuit clotting, and obvi-
ate the need for anticoagulation. Currently, many circuits 
are coated with heparin. This has been shown to limit the 
inflammatory response [104–106], but these circuits have 
not successfully replaced the need for systemic heparin 
[107]. One concern with heparin-coated circuits is the risk 
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of heparin-induced thrombocytopenia (HIT). It is thought 
that modern heparin-coated circuits—with heparin cova-
lently bonded to the surface—do not leach heparin and 
thus would not contribute to the risk of HIT; however, 
there are limited data available to evaluate this [108]. 
The other major circuit coating currently in clinical use 
is phosphorylcholine (PPC). It uses the zwitterionic com-
ponent of the phospholipid bilayer of the cell membrane 
to passively prevent the adhesion of proteins and cells to 
the surface of the circuit [109]. Its use in the literature 
is primarily limited to cardiopulmonary bypass circuits, 
in which it has been shown to reduce inflammation [110, 
111], postoperative bleeding, and heparin dosing [112]. 
Though many other approaches to non-thrombogenic cir-
cuit coatings are in development in the laboratory, one 
of the most promising is the use of coating materials that 
release nitric oxide (NO), mimicking the function of the 
native vascular endothelium. NO prevents platelet aggre-
gation and adhesion and inhibits leukocyte activation. This 
effect lasts milliseconds, allowing for normal hemostatic 
function within the patient and making it an ideal model 
for local anticoagulation of ECLS circuits. Many NO-
releasing compounds are currently in development, some 
of which have demonstrated efficacy for 4 h in a rabbit 
model of an arterio-venous shunt circuit [113, 114]. The 
addition of a direct thrombin inhibitor to the NO-releasing 
coating helps prevent fibrin deposition [115]. One limita-
tion of NO-releasing materials is that only a limited num-
ber of NO donors can be incorporated into the coating, 
which may limit the duration of its non-thrombogenic 
effect. Studies have demonstrated continued NO flux for 
7 and 11 days [114, 116] in a coated intravenous cath-
eter in vivo. Another found sustained NO release after 
125 days in phosphate-buffered solution [117], but the 
long-term NO release of these coatings has yet to be dem-
onstrated in extracorporeal circuits. In addition to circuit 
coating, NO has also been blended into the circuit sweep 
gas to attenuate platelet consumption and activation within 
the membrane lung [118] and limit the inflammatory effect 
of cardiopulmonary bypass [119] as well as post-bypass 
ischemia-reperfusion injury [120].

Servo regulation

Automation will be a key component of the ECLS circuit of 
the future. Roller pumps rely on a siphon of venous blood 
driven by the vertical drop from the patient down to the 
pump (typically 100–150 cm H2O). If the siphon pressure 
drops (due to hypovolemia, pneumothorax, etc.) the pump 
will apply a negative pressure through the venous cannula 
on the right atrium. A pressure transducer—connected either 
directly to the circuit or to a small bladder—positioned at 
the lowest point of the circuit provides servo regulation to 

the pump, triggering it to slow or stop whenever it senses 
negative pressure [121]. Similar servo regulation can only 
be achieved with centrifugal pumps through the use of a 
bladder on the inlet side of the pump, which increases prim-
ing volume [121]. Servo regulation can also be used on the 
outlet side of the pump to slow the pump when pressures 
exceed a set threshold and on the sweep gas to ensure the 
sweep flow pressure does not exceed blood pressure within 
the oxygenator and produce an air embolus [122]. The cir-
cuits of the future will have the ability to regulate pump 
speed to achieve a set flow in a variety of patient conditions 
as well as to titrate pump speed and sweep flow to achieve 
target arterial blood gas values [123].

Paracorporeal lung‑assist devices

Mobilization and physical therapy on ECLS has been shown 
to be associated with survival to lung transplantation [124] 
and a high rate of discharge home in adult patients [125]. 
Cervical cannulation with double-lumen cannulae has facili-
tated ambulation on ECLS. Continued compaction of cir-
cuits and circuit components will improve the safety and 
feasibility of ambulation on ECLS. Multiple groups are 
developing an integrated pump-lung device to maximally 
compact the ECLS circuit into a single wearable or, ideally, 
implantable device [126, 127]. The one model specifically 
designed for children is the pediatric pump-lung (PediPL), 
implanted in the aorta and right atrium. It has been shown 
to provide the average blood flow of 1.14 L/min and arterial 
oxygen saturation of 95% over 30 days [127]. In a model of 
respiratory failure, the PediPL provided respiratory stabili-
zation over 4 h in a V–V configuration [128].

For patients with adequate cardiac function and hemo-
dynamic stability, a low-resistance, pumpless artificial 
lung may be the preferred method of long-term support. 
Such devices would be simpler and potentially cause less 
blood trauma than integrated pump-lungs. Typical cannu-
lation would be direct to the pulmonary artery for inflow 
and to the left atrium for outflow, using the patient’s right 
ventricle as the pump. While femoral cannulation has been 
used, central cannulation would facilitate ambulation and 
rehabilitation. An ideal population for this device would be 
children and adolescents with end-stage lung disease. These 
patients typically spend over 100 days on the transplant wait-
ing list [129], which makes ECLS a poor option for routine 
management due to its cost and complexity. Artificial lungs 
could also be used as a bridge to recovery for patients with 
end-stage lung disease and primary or secondary pulmonary 
hypertension (e.g., BPD, lung hypoplasia from CDH, fibro-
sis from pneumonia or ARDS). The artificial lung would 
not only provide gas-exchange support to these patients but 
also protection for the right ventricle from the continuously 
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high afterload associated with pulmonary hypertension. The 
artificial lung would serve as an alternative low-resistance 
circuit, thus offloading the right ventricle and receiving pref-
erential blood flow.

There are limited case reports of existing models of poly-
methyl pentene oxygenators being used as artificial lungs as 
bridges to transplant or recovery. One group out of Washing-
ton University in St. Louis has supported four children (ages 
23 days to 2 years old) with the Quadrox iD or Novalung 
in a PA-to-LA configuration [130]. All patients had supra-
systemic PA pressures before device implantation, which 
were reduced upon initiation of flow through the artificial 
lung. In fact, the majority of RV output flowed through the 
device rather than the native lungs. One child recovered after 
23 days of support, one child underwent lung transplant 

after 5 days of support, and two children were transitioned 
to comfort care due to severe intracranial hemorrhages after 
54 and 74 days of support. The only other published pediat-
ric case of artificial lung use involves a 15-year-old girl with 
pulmonary veno-occlusive disease and suprasystemic RV 
pressures who was supported for 30 days on the Novalung 
interventional lung assist (iLA) as a successful bridge to 
lung transplant [131].

While these cases of existing oxygenators demonstrate the 
feasibility of support with a pumpless artificial lung, current 
artificial lungs are not designed for this use. Multiple labs 
are developing gas exchange devices specifically designed 
as pumpless, low-resistance implants for pediatric patients 
with lung failure and pulmonary hypertension. The Univer-
sity of Michigan is developing the Pediatric MLung, which 

Fig. 3   The University of Michigan Pediatric MLung. a Computer-
aided design (CAD) drawing of pediatric MLung, top view. Arrows 
depict the blood flow pattern; b Top view of the pediatric MLung. 
Red lines depict the blood flow pattern. Solid yellow lines depict con-
centric gates. Key features of the MLung include: (1) Blood inlets; 
(2) outer fiber bundle; (3) inner fiber bundle; (4) blood outlet; c 

Pediatric MLung empty housing (left) and housing with fiber bun-
dle installed (right); d. MLung in vivo immediately after cannulation 
and connection. Key features of the circuit include: (1) inlet cannula 
(from PA); (2) MLung; (3) outlet cannula (to LA); (4) sweep gas 
inlet; (5) gas outlet with suction tubing. b Reproduced with permis-
sion from Thompson et al. [132] (License number 4924370285770)
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is associated with a resistance less than half that of current 
commercially available oxygenators [132] (Fig. 3). A team 
at the University of Pittsburgh has successfully supported 
six sheep for 4–6 h with the Pittsburgh Pediatric Ambulatory 
Lung (P-PAL) with good gas exchange and flow rates and 
without significant hemolysis [133]. While progress is prom-
ising, such devices are not yet ready for clinical application.

Patient management on ECLS

Anticoagulation and monitoring

The current standard of care for anticoagulation for pedi-
atric and neonatal ECLS is a continuous heparin infusion. 
It is well documented that heparin activity varies by age, 
though data to help understand this variation are lacking; 
therefore, dosing and monitoring protocols are largely insti-
tution-specific and guided by minimal evidence [134]. As 
antithrombin III (ATIII) is required for heparin to work as an 
anticoagulant, many institutions monitor and replace ATIII 
in children on ECLS. Some studies have found ATIII admin-
istration to be associated with increases in activated clotting 
time (ACT), ATIII activity, or anti-factor Xa (anti-Xa), but 
these have not demonstrated decreases in heparin infusions 
or improvements in clinical outcomes [135–137]. In fact, 
one study found an increase in the rate of circuit failure in 
patients receiving recombinant ATIII [136]. A recent multi-
center, retrospective review of ATIII use in ECLS found that 
patients who received ATIII during ECLS had a higher rate 
of thrombotic and hemorrhagic events without a difference 
in mortality [138].

There is growing interest in direct thrombin inhibitors 
(e.g., bivalirudin, argatroban) as alternative anticoagulants 
to heparin. Direct thrombin inhibitors function independent 
of ATIII, so they theoretically could provide more stable 
anticoagulation than heparin. They also eliminate the risk 
of heparin-induced thrombocytopenia (HIT). The half-life 
of bivalirudin is about 25 min, owing in part to its rapid 
cleaving by proteolytic enzymes. As a result of this short 
half-life (heparin 1–2 h), static blood—such as in a severely 
dilated atrium with poor drainage or a poorly ejecting ven-
tricle—is at particularly higher risk of thrombosis than when 
on heparin; therefore, echocardiographic monitoring is rec-
ommended for such patients on bivalirudin with a transition 
to heparin if such thrombosis is found [139]. Additionally, 
argatroban is cleared by the liver and bivalirudin is par-
tially renally cleared, so dose adjustments are necessary for 
hepatic and renal dysfunction, respectively.

At the current time, there is limited evidence compar-
ing direct thrombin inhibitors to heparin. Sanfilippo et al. 
[140] performed a literature review on the use of bivaliru-
din in children on ECLS and found only four publications 

that included a total of 24 pediatric patients. Only one of 
these studies compared bivalirudin to heparin, observing 
that bivalirudin was associated with more stable coagu-
lation profiles, lower blood loss, and administration of 
a smaller volume of platelets, fresh frozen plasma, and 
ATIII. The rate of thromboembolic events was similar 
between the groups [141]. These results were not ana-
lyzed separately in adults and children. In a more recent 
study, Hamzah et al. [142] retrospectively compared 16 
pediatric patients on ECLS receiving bivalirudin with 16 
receiving heparin and found fewer bleeding events and 
lower hospital costs in the bivalirudin group. There was 
no difference in the rate of thrombotic events. The largest 
series of pediatrics ECLS patients managed with bivali-
rudin found the direct thrombin inhibitor to be a feasible 
anticoagulation option for patients with a contraindication 
to heparin [143].

Argatroban is far more commonly used and available 
than bivalirudin, with 45% of respondents of an inter-
nal survey of ECLS centers responding that they can/do 
use argatroban versus 9% citing use of bivalirudin [144]. 
Despite this, evidence for its use in pediatric and neonatal 
ECLS is limited to small case reports or case series, nearly 
all due to suspicion of HIT [145]. Kawada et al. [146] 
used argatroban as first-line anticoagulation for two neo-
natal patients on ECLS for 6 and 78 days with no hemor-
rhagic or thromboembolic events. Though direct thrombin 
inhibitors show promise, further trials are needed before 
they can be recommended as first-line anticoagulants for 
children on ECLS.

Monitoring of anticoagulation on ECLS is critical, as 
these patients walk a fine line between thrombosis and 
hemorrhage. The primary options for monitoring anti-
coagulation for children on ECLS receiving a systemic 
heparin infusion are ACT, activated partial thromboplas-
tin time (aPTT), and anti-Xa, with thromboelastography 
(TEG) being less frequently used. ACT is the most com-
monly used monitoring test. Its benefits are that it is cheap, 
fast, and can be done at the bedside with very little blood. 
It measures the clotting of whole blood, which provides 
insight into the patient’s overall coagulation status, rather 
than the heparin-specific effects. APTT measures the 
intrinsic coagulation pathway; as such it can identify other 
factor deficiencies in the presence of heparin using Hepa-
rinase which, therefore, allows a more specific assessment 
of the effect of heparin on the patient. Anti-Xa is the most 
specific of these tests, directly measuring the inhibition of 
clotting factor Xa by heparin-ATIII complexes. The use 
of these tests to guide the management of heparin antico-
agulation varies widely across institutions, as there is no 
consensus on which test is most effective and practical. A 
recent meta-analysis comparing the use of ACT, aPTT, 
TEG and Anti-Xa to manage heparin anticoagulation in 
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children on ECLS found that none of the tests correlated 
with thrombotic or hemorrhagic complications. Anti-Xa 
levels correlated more strongly with heparin dose than any 
of the other tests [147].

Awake ECLS

In the earliest days of ECLS, patients were continued on 
their pre-cannulation ventilator settings during ECLS sup-
port. Despite adequate gas-exchange support from ECLS, 
patient mortality was still high. Bartlett realized early suc-
cess by turning down the ventilator and allowing the mem-
brane lung to carry a larger burden of gas exchange while 
the native lungs rested [148], which has now become the 
standard approach [149]. Despite low ventilator settings, 
patients supported by ECLS may still require sedation to 
tolerate endotracheal intubation. However, sedation can 
delay the identification of strokes and put patients at risk of 
deconditioning and ventilator-associated pneumonia. Fur-
thermore, extubation while on ECLS can minimize sedation 
requirements and promote rehabilitation and wakefulness. 
This approach has been called “awake ECLS”. Its use has 

grown among adult patients but reports in pediatric patients 
are limited [23–25, 150–152]. Recent series have demon-
strated the feasibility of awake ECLS in pediatric patients 
as young as 2 days old as both a bridge to recovery and a 
bridge to transplant [153–155] (Fig. 4). Costa et al. noted a 
particular benefit of extubation for neonatal patients with 
persistent air leaks, avoiding positive pressure, and expedit-
ing the healing of the leak without the need for tube thora-
costomy [155]. Cannulation for ECLS can also be done in an 
awake, non-intubated patient, which is a valuable approach 
to the management of impending respiratory failure due 
to airway obstruction [156, 157]. Alternatively, if a longer 
ECLS course or post-ECLS respiratory support is expected, 
a tracheostomy can be performed during ECLS support to 
achieve those same goals [149, 158].

Prolonged ECLS

In the early decades of ECLS, maximum acceptable run 
times were typically  < 14 days because it was considered 
that lung recovery would not occur beyond that time period. 
We have since come to realize that the lungs in fact can 
remodel and recover if support is provided for weeks to 
months on ECLS. A 7-year-old girl with 35% total body 
surface area full-thickness burns and severe inhalational 
lung injury amazingly recovered after support with ECLS 
for 605 days (> 1.5 years) [159]. Her story and other cases of 
prolonged ECLS with good outcomes highlight this potential 
for lung recovery months after the initial onset of lung dis-
ease and raise ethical issues around when ECLS is futile in 
patients with respiratory failure. A review of the ELSO Reg-
istry experience with 974 adult patients with respiratory fail-
ure from 1989 to 2013 with ECLS courses  > 14 days and a 
median course of 21 days (range 14–208 days) demonstrated 
a survival of 45%, which did not vary with ECMO dura-
tion [160]. Likewise, analysis of pediatric patients receiving 
ECLS for 21 or more days for respiratory indications dem-
onstrated a 38% survival [161]. Unlike with the adult experi-
ence, survival in these pediatric patients was inversely corre-
lated with ECLS duration, although survival never decreased 
below 27% even in runs of over 6 weeks. It should be noted, 
however, that morbidity following prolonged ECLS courses 
is high: nearly all patients included in the study by Brogan 
et al. experienced at least one morbid complication, with 
57% experiencing over 3 such complications [161]. Another 
series of 22 pediatric patients supported on ECLS for over 
4 weeks found that 4 patients (19%) survived to discharge, 
but 1 subsequently died and the 3 survivors were suffering 
from chronic lung disease (3), severe neuro-developmental 
delay (2), and renal failure (1) [162].

Patient heterogeneity and variable disease processes make 
it challenging to identify which patients will benefit from 
extending a course of ECLS and which patients have reached 

Fig. 4   Patient ambulating on a treadmill while on V–V ECLS.  
Reproduced with permission from Hayes et al. [25] (License number 
4930510559332
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the point of futility. Interestingly, a 1995 study of 382 pedi-
atric patients in the ELSO Registry found that ECLS support 
was electively terminated for the futility of pulmonary recov-
ery or other reasons in 25% of all patients at a median ECLS 
duration of 282 h (~ 12 days); however, simultaneously, 25% 
of all survivors had courses longer than 12 days, suggesting 
that 25% of those that were electively terminated may have 
survived [163]. Data on accurate predictive factors are lim-
ited. Brogan et al. found that acidosis and inotropic support 
were associated with mortality in prolonged ECLS courses, 
suggesting that continued hemodynamic instability despite 
full ECLS support portends a poor outcome [161]. Green 
found that peak ventilator inspiratory pressure and duration 
of intubation before ECLS, patient age, and the occurrence 
of several complications were all associated with mortality 
on ECLS [163]. The P-PREP [164], Ped-RESCUERS [165], 
and Neo-RESCUERS [166] tools have been developed to 
estimate the risk of mortality prior to the initiation of ECLS. 
Though both scoring systems are imperfect, they can serve 
as a starting point to inform important conversations with 
parents and family members.

Nutrition

Nutrition is a crucial aspect of the management of critically 
ill pediatric patients. This is equally true for patients on 
ECLS, as underweight status is an independent predictor of 
mortality for pediatric patients on ECLS [167]. Enteral nutri-
tion for critically ill pediatric patients has been associated 
with numerous advantages compared to parenteral nutrition, 
including improved intestinal immunologic and absorptive 
function, reduced risk of hepatic injury, and reduced sepsis-
associated complications [168]. However, as is the case with 
most critically ill patients, there is significant variation in 
nutritional management for ECLS patients. In a survey of 
96 different centers providing neonatal or pediatric ECLS, 
Desmarais et al. found that 71% of centers typically provide 
enteral nutrition to patients on V-V ECLS, but that number 
dropped to 54% for patients on V-A ECLS [169]. Reasons 
cited for avoiding enteral feeding included vasopressor use 
and certain diagnoses such as CDH. Though a number of 
studies exist in adults, the early pediatric literature was 
sparse. The 2010 ASPEN guidelines supported enteral feed-
ing on ECLS, though they were based on limited data [168, 
170]. A number of recent studies have provided stronger 
evidence in support of enteral feeding on ECLS. They have 
shown good success with routine enteral feeding despite 
inotrope support [171, 172] with potentially improved sur-
vival [172] and no major complications [171–173]. When 
combined with awake ECLS, neonatal patients can actually 
bottle feed to promote normal oral intake [155].

Staffing models

As ECLS continues to grow in its utilization and more 
centers gain experience and comfort with the technology, 
the clinical management of a patient on ECLS is evolv-
ing. Currently, patients supported by ECLS are in an ICU 
with both an ICU nurse and an ECLS specialist at the 
bedside full-time and a respiratory therapist is frequently 
present for ventilator management. This staffing model is 
resource-intensive and may not be sustainable as ECLS 
utilization grows. In the future, ECLS management—par-
ticularly for respiratory failure—may be as commonplace 
as management of ventilator or renal replacement ther-
apy. With a moderate amount of additional training, ICU 
nurses can manage the ECLS circuit with the guidance of 
an ECLS specialist who is overseeing multiple patients, 
which has been demonstrated to save costs while having no 
detrimental effect on outcomes [174]. An additional model 
could be that of an ECLS step-down unit, in which a group 
of patients on ECLS are managed by a team of ICU nurses 
and ECLS specialists, allowing for a higher patient-to-staff 
ratio [175]. With continued progress in the simplification 
and safety of ECLS circuits, the intensive bedside manage-
ment of these patients by multiple providers will no longer 
be necessary. Awake ECLS and wearable extracorporeal 
devices may even allow for the management of stable, 
long-term ECLS patients to be managed on the ward or at 
home, as has been achieved for patients with pacemakers, 
defibrillators, and ventricular assist devices.
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