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Background. Studies of prognosis-related molecular markers are an important tool to uncover the mechanism of tumour
metastasis. Cancer susceptibility gene testing is an important tool for genetic counselling of cancer risk. However, the impact of
lung cancer susceptibility genes (LCSGs) on lung cancer metastasis and prognosis has not been well studied. Methods. The list
of lung cancer susceptibility genes was retrospectively analysed and updated. After expression profiling and functional analysis,
LCSG-based signatures for prognosis were identified by Cox regression and LASSO regression analyses. For translational
purposes, nomograms integrating LCSGs and clinical characteristics were constructed. Results. A total of 301 LCSGs were
employed for modelling. For lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), 10-gene and 7-gene
signatures were created and independently validated. The LCSG-based risk score could stratify LUAD survival (univariate:
hazard ratio ðHRÞ = 1:076, 95% confidence interval ðCIÞ = 1:049–1.103, P < 0:001; multivariate: HR = 1:066, 95% CI = 1:037–
1.095, P < 0:001) and LUSC survival (univariate: HR = 1:149, 95% CI = 1:066−1.239, P < 0:001; multivariate: HR = 1:129, 95%
CI = 1:038−1.228, P = 0:005). One of the processes affected by differentially expressed genes in both LUAD and LUSC was the
negative regulation of epithelial cell differentiation. Conclusions. Overall, novel LCSG-based gene signatures for LUAD and
LUSC were constructed. These findings could expand the understanding of the impact of LCSG expression on cancer
metastasis and prognosis.

1. Background

Lung cancer is a type of malignant disease of the respiratory
system. Studies of lung cancer susceptibility genes (LCSGs)
are focusing on understanding the aetiology, screening, pre-
vention, and treatment of lung cancer-susceptible popula-
tions. With the development and application of next-
generation sequencing technology, increasing numbers of
LCSGs have been identified [1, 2]. Additionally, previous
studies have shown that some LCSGs are associated with
lung cancer prognosis [3–5]. However, current studies have

not summarized the list of LCSGs, leaving the systematic
assessment of their overall functions and impact on lung
cancer prognosis as an under-researched area.

The mechanism of an LCSG that causes lung cancer var-
ies from gene to gene. For example, X-ray repair cross-
complementing (XRCC) is associated with lung cancer risk
[6, 7] by affecting the ability to repair damage caused by car-
cinogens. In addition, CYP450 family genes, which play crit-
ical roles in processing chemical carcinogens in vivo, are
associated with lung cancer susceptibility [8, 9]. However,
either abnormal metabolism or impaired DNA function
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Figure 1: Expression profiles and functions of the LCSGs. The expression profile of current LCSGs in the (a) TCGA-LUAD cohort, (b)
TCGA-LUSC cohort, and (c) CCLE lung cancer cell line cohort. Functional analysis of the LCSGs by (d) GO, (e) KEGG, and (f)
protein–protein interaction analyses.
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caused by a single gene may not reflect a general mechanism
of lung cancer susceptibility, masking critical targets for
prevention.

Cancer metastasis is an important factor affecting prog-
nosis. Some LCSGs are associated with prognosis, but the
evidence is mostly at the single-gene level. For example,
XRCC1 is reported to be linked to the susceptibility and
prognosis of lung squamous carcinoma [4]. In addition,
LCSG TERT has been linked to the prognosis of early-stage

non-small cell lung cancer (NSCLC) [10]. Currently, the
prognostic role of LCSGs and the impact of metastasis have
not been systematically reported, so their clinical application
is mostly limited in the prediction of cancer risk.

Given the current findings, we first collected a compre-
hensive set of LCSGs to provide an updated list for clinical
genetic counselling. Next, we employed Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses, as well as Gene Set Enrichment Analysis
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Figure 2: Histology-specific functional analysis of the LCSGs. Differentially expressed genes in the (a) TCGA-LUAD cohort and (b) TCGA-
LUSC cohort. GO analysis of the LCSGs in the (c) TCGA-LUAD cohort and (d) TCGA-LUSC cohort. KEGG analysis of the LCSGs in the
(e) TCGA-LUAD cohort and (f) TCGA-LUSC cohort.
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(GSEA), to thoroughly analyse the common functions of the
LCSGs with the goal of identifying general preventive tar-
gets. Finally, in addition to single-gene analysis, Cox propor-
tional hazards regression analysis and the least absolute
shrinkage and selection operator (LASSO) were used to
mine LCSGs related to lung cancer prognosis. Then, a clini-
cally applicable nomogram model was constructed, maxi-
mizing the translational yield of LCSGs.

2. Methods

2.1. Identification of LCSGs. LCSGs were identified from 3
independent resources: mapped single-nucleotide polymor-
phisms (SNPs) associated with lung cancer in the genome-
wide association studies (GWAS) catalogue (https://www
.ebi.ac.uk/gwas/), previously annotated LCSGs [11], and lit-
erature review (http://www.ncbi.nlm.nih.gov/pubmed/). For
the literature review, candidate genes associated with lung
cancer were queried with the terms lung cancer (MeSH)
and susceptibility (MeSH). Initially, the titles and abstracts
of these publications were reviewed and genetic association
studies of lung cancer were retained. To obtain reliable genes
with SNPs associated with lung cancer risk, only those with a
significance level of P < 10−8 together with independent lit-
erature support were included in the current study.

2.2. Expression Profiles of LCSGs. Based on the identified
LCSGs, we retrieved gene expression data from The Cancer
Genome Atlas (TCGA) Genomic Data Commons (GDC)

(2019-12-06) and the Broad Institute Cancer Cell Line Ency-
clopedia (CCLE) database (RNA sequencing gene expression
data for 1019 cell lines in fragments per kilobase of exon
model per million mapped reads) [12]. We displayed the
LCSG expression profiles by the R package pheatmap and
the overlapping genes by the online Venn diagrams tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/).

2.3. Functional Enrichment Analysis of the LCSGs. We used
clusterProfiler to analyse the functional enrichment of the
LCSG list [13]. The associated functional categories were
assessed using GO and KEGG. Significant pathways were
defined as GO and KEGG enrichment pathways with P
values and q values less than 0.05. GSEA was also used to
compare the signalling pathways of the high-risk and low-
risk groups.

2.4. Protein–Protein Interactions of LCSGs. The permutation
type of the phenotype was chosen, and the number of per-
mutations was set to 1000. The Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) (https://string-db
.org/) was used to predict the protein–protein interaction
network. In brief, the LCSGs were used as an input list; then,
the multiple protein method was applied under default set-
tings. Finally, Cytoscape software was used for network
visualization.

2.5. Survival Analysis of the LCSGs. Corresponding clinical
information was also retrieved from the TCGA GDC
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Figure 3: The associations of the LCSG-specific signature with clinical characteristics. Univariate Cox regression and multivariate Cox
regression analyses of the (a) TCGA-LUAD and (b) TCGA-LUSC cohorts. The high-risk scores in both the (c) TCGA-LUAD cohort and
(d) TCGA-LUSC cohort were an indicator of poor overall survival. The ROC curves for the (e) TCGA-LUAD cohort and (f) TCGA-
LUSC cohort were used to examine the sensitivity and specificity of the 1-year, 3-year, and 5-year survival predictions.
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(2019-12-06). We applied Kaplan–Meier analysis to each
LCSG and then performed a meta-analysis by the R package
meta. Heterogeneity among genes were evaluated with
Cochran’s Q test and the I2 statistic. For a dataset with I2

≥ 50% (lung adenocarcinoma (LUAD) susceptibility genes
significantly associated with overall survival (OS)), the ran-
dom effects model was applied, while for a dataset with I2

< 50% (lung squamous cell carcinoma (LUSC) susceptibility
genes significantly associated with OS), the fixed effects
model was chosen for the calculation of the combined effect.
The overlapping survival-associated LCSGs of both cancer
types were visualized via a Venn diagram online tool at
http://bioinformatics.psb.ugent.be/webtools/Venn/.

2.6. Prognostic Model. We first used univariate Cox regres-
sion to analyse which LCSGs were related to patient survival
for the preparation of the model. The patients in the TCGA-
LUAD and TCGA-LUSC cohorts were then randomly
divided into training and test sets in a 6 : 4 ratio. Then, using

LASSO regression, genes correlated with prognosis (P < 0:05)
from the univariate Cox regression model in the training set
were chosen to build a prognostic model. The gene expression
of each gene was used to create a risk score formula, which was
then weighted, and patients were separated into two groups:
high risk and low risk. Kaplan–Meier analysis was used to ana-
lyse the differences in survival between the two groups, and the
log-rank test was used to compare them. The accuracy of the
model prediction was investigated using a receiver operating
characteristic (ROC) curve.

2.7. Statistical Analysis. R was used to conduct all statistical
analyses (version 3.6). All statistical tests were two sided,
and statistical significance was defined as P < 0:05.

3. Results

3.1. Updated List of LCSGs. Based on the current findings
from the GWAS catalogue and literature review, a total of

Table 1: The full name, genomic location, other associated diseases, and gene coefficients in the model.

Cancer
type

Gene
symbol

Full name
Genomic
location∗

Other associated diseases
Risk

coefficient

LUAD

EPHX1 Epoxide hydrolase 1 Chr 1 Hypercholanaemia, familial, and eclampsia −0.16790078
PRDM2 PR/SET domain 2 Chr 1 Retinoblastoma, Wilms tumour 5 −0.02219008

ABHD16A
Abhydrolase domain

containing 16A
Chr 6 Coronary artery aneurysm and lynch syndrome −0.76723529

VEGFC
Vascular endothelial growth

factor C
Chr 4 Lymphatic malformation 4 and hereditary lymphedema id 0.28424844

EXO1 Exonuclease 1 Chr 1 Werner syndrome and Aicardi-Goutieres syndrome 0.06614392

ABCA1
ATP binding cassette
subfamily A member 1

Chr 9 Tangier disease and Hypoalphalipoproteinemia −0.07512348

DNAJB4
DnaJ heat shock protein

family (Hsp40) member B4
Chr 1 Oculopharyngeal muscular dystrophy 0.16479705

KRT8 Keratin 8 Chr 12 Liver cirrhosis and cryptogenic cirrhosis 0.17566034

HLA-DOB
Major histocompatibility
complex, class II, DO Beta

Chr 6 Duodenal obstruction and systemic lupus erythematosus −0.24952808

REXO4 REX4 homologue, 3′-5′
exonuclease

Chr 9 Conjunctival pigmentation and uterine inversion 0.35525721

LUSC

DCBLD1
Discoidin, CUB and LCCL

domain containing 1
Chr 6 — 0.3994102

HYKK Hydroxylysine kinase Chr 15 Tobacco addiction −0.1806394

SLC17A8
Solute carrier family 17

member 8
Chr 12

Deafness, autosomal dominant 25 and autosomal
dominant nonsyndromic sensorineural deafness type

DFNA
1.38588891

HNF1B HNF1 Homeobox B Chr 17
Renal cysts and diabetes syndrome and Hnf1b-related
autosomal dominant tubulointerstitial kidney disease

0.13164075

ACE
Angiotensin I converting

enzyme
Chr 17

Microvascular complications of diabetes 3 and renal
tubular dysgenesis

0.36932781

DAB2IP DAB2 interacting protein Chr 9 Medulloblastoma and arteriosclerosis 0.05801815

FOXE1 Forkhead box E1 Chr 9
Hypothyroidism, thyroidal, or athyroidal, with spiky hair

and cleft palate and thyroid cancer
−0.0386071

∗Chr: chromosome. Information on genomic location and associated diseases were retrieved from the GeneCards (https://www.genecards.org).
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301 genes were reported as LCSGs after unification. The
genes, predisposed lung cancer subtypes, and sources of evi-
dence are reported in Table S1. We observed a subset of
genes with low expression across lung cancer cell lines and
tissues (Figure 1(a), LUAD cohort; Figure 1(b), LUSC
cohort; and Figure 1(c), CCLE lung cancer cell line
cohort). Next, an LCSG-specific network revealed that a
majority of the genes have close internal crosstalk.
Functional enrichment analysis of these genes showed that
the GO terms were enriched in DNA binding, peptide
antigen binding, acetylcholine-gated cation-selective
channel activity, and excitatory extracellular ligand-gated
ion channel activity (Figure 1(d)). KEGG analysis showed
that these genes were associated with multiple immune
diseases, such as rheumatoid arthritis, autoimmune thyroid
disease, inflammatory bowel disease, and asthma
(Figure 1(e)). The diverse functions of these genes reveal
the complexity of genetic factors predisposing individuals
to lung cancer. Our protein–protein interaction analysis
indicated that a complex network is affected by lung
cancer–susceptible genetic factors (Figure 1(f)).

We used Kaplan–Meier analysis based on the median
expression level of the retrievable LCSGs to more deeply

study the link between LCSGs and lung cancer survival.
After analysing the impact of LCSG expression on lung can-
cer survival, a meta-analysis was performed to investigate
the general effect. As expected, not all LCSGs were associ-
ated with prognosis, with 31 out of 195 (15.9%) genes in
LUAD and 19 out of 196 (9.7%) genes in LUSC, and overall,
these genes did not have an impact on prognosis (Figure S1a:
LUAD and S1B: LUSC). Furthermore, in both LUAD and
LUSC, a minor overlap of LCSGs was linked to survival
(Figure S1c). Since the impact of LCSGs on survival is
different in terms of pathohistological categories, we
developed separate prognostic prediction models for
NSCLC patients.

3.2. Functions of the Differentially Expressed LCSGs. All
LCSGs were first subjected to differential expression analy-
sis, which showed that 28.2% and 36.1% of the LCSGs were
differentially expressed in LUAD and LUSC, respectively
(Figure 2(a), LUAD, and Figure 2(b), LUSC). Then, the
identification of genes significantly associated with the OS
of TCGA-LUAD and TCGA-LUSC was performed by univar-
iate Cox regression analysis, which resulted in 21 and 13 genes,
respectively (Table S2). Functional enrichment analysis was
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Figure 4: Genetic characteristics and functional analysis of the LCSG-specific signature. Gene expression profiles of the LCSG-specific
signature for (a) TCGA-LUAD and (b) TCGA-LUSC. Genetic alteration profiles of the LCSG-specific signature for (c) TCGA-LUAD
and (d) TCGA-LUSC. Gene set enrichment analysis for (e) TCGA-LUAD and (f) TCGA-LUSC.
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applied to study gene function. We noticed that regulation of
epithelial cell differentiation, excitatory extracellular ligand-
gated ion channel activity, acetylcholine-gated cation-
selective channel activity, and acetylcholine receptor activity
in the GO term molecular function (Figure 2(c)) and
rheumatoid arthritis in KEGG (Figure 2(e)) were shared in
the abovementioned analysis, suggesting that these pathways
play an essential role in LCSG-induced LUAD prognosis.
Similarly, the CSGs in LUSC were enriched in acetylcholine-
gated cation-selective channel activity, acetylcholine receptor
activity, and excitatory extracellular ligand-gated ion channel
activity (overlapping with LUAD as well) in GO term
molecular function (Figure 2(d)) and asthma, autoimmune
thyroid disease, allograft rejection, type I diabetes mellitus,
rheumatoid arthritis, and IBD in KEGG (Figure 2(f)).
Notably, negative regulation of epithelial cell differentiation
is one of the common pathways affected by differentially
expressed genes in both LUAD and LUSC.

3.3. Development of LCSG-Based Prognostic Signatures. Next,
the regression coefficients from LASSO Cox regression anal-
ysis were applied to establish an LCSG prognostic signature.
We narrowed the prognostic genes down to 10 and 7 genes
for TCGA-LUAD (Figure S2a and S2b) and TCGA-LUSC
(Figure S2c and S2d), respectively. Figure S2e depicts the
distribution of the patients’ risk scores for LUAD and S2F
for LUSC. As shown by univariate and multivariate
analyses, the prognostic risk score was associated with
LUAD survival (univariate: hazard ratio ðHRÞ = 1:076, 95%
confidence interval ðCIÞ = 1:049−1.103, P < 0:001;
multivariate: HR = 1:066, 95% CI = 1:037−1.095, P < 0:001;

Figure 3(a)) and LUSC survival (univariate: HR = 1:149,
95% CI = 1:066−1.239, P < 0:001; multivariate: HR = 1:129,
95% CI = 1:038−1.228, P = 0:005; Figure 3(b)). In both the
TCGA-LUAD and TCGA-LUSC cohorts, patients with low
risk scores survived longer than those with high risk scores
in the Kaplan–Meier survival analysis (Figure 3(c): LUAD
and Figure 3(d): LUSC). According to the ROC curves, the
LCSG-specific risk score was effective in predicting 1-, 3-,
and 5-year prognosis for lung cancer patients and the
highest area under the curve (AUC) values of the risk score
were 0.718 for 1-year LUAD prognosis and 0.679 for 3-year
LUSC prognosis (Figure 3(e): LUAD and Figure 3(f): LUSC).

3.4. Genetic Functions of the LCSGs in the Prognostic Model.
The full name, genomic location, associated disease other
than lung cancer [14], and risk coefficients of the genes in
the model are shown in Table 1. After profiling the expres-
sion heat map of the prognostic LCSGs in the LUAD cohort
(Figure 4(a)) and LUSC cohort (Figure 4(b)), the genetic
alteration rate of the prognostic LCSGs was also studied,
showing rates from 0.8% to 7% in LUAD and (Figure 4(c))
1.3% to 6% in LUSC (Figure 4(d)). GSEA showed that altered
signature genes were mainly associated with cell cycle function
in LUAD (Figure 4(e)), while the enriched signalling path-
ways were more heterogeneous in LUSC (Figure 4(f)).
These findings reveal the different roles of LCSGs in lung
cancer survival and further support that the genetic liability
contributed by the LCSGs of the different pathohistological
lung cancer subtypes should also be considered.

3.5. Validation of the LCSG-Specific Prognostic Signatures.
We further evaluated the predictive power of our model in
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Figure 5: Validation of the LCSG-specific signature. Kaplan–Meier survival curves of overall survival in the high- and low-risk groups
defined by the LCSG-specific model for the (a) TCGA-LUAD cohort and (b) TCGA-LUSC cohort were plotted. The areas under the
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the TCGA-LUAD and TCGA-LUSC validation sets. By using
the constructed equation, the risk score of each patient in the
validation set was calculated (Figure S3a: LUAD and S3b:
LUSC), and then, the patients were grouped based on their
risk score to verify its association with survival status. Both
the TCGA-LUAD (Figure 5(a)) and TCGA-LUSC
(Figure 5(b)) cohorts revealed that patients with low-risk
scores had better survival than those with high-risk scores.
ROC analyses were used to evaluate the model (Figure 5(c):
LUAD and Figure 5(d): LUSC).

3.6. LCSG-Specific Nomogram Model. To suggest a transla-
tional application of LCSG expression in lung cancer sur-
vival, we constructed LCSG-specific nomogram prediction
models for LUAD and LUSC, incorporating age, sex, and
tumour-node-metastasis (TNM) stage to quantitatively
determine individual risk. As shown in the nomograms,
the 3- and 5-year OS probabilities can be calculated based
on the selected variables for LUAD and LUSC
(Figures 6(a) and 6(b)). The actual and predicted values of
3- and 5-year OS were measured by calibration curves,
showing acceptable consistency in both the LUAD and
LUSC (Figures 6(c) and 6(d)) cohorts.

4. Discussion

Some genes have a biological role in the development or
prevention of cancer, and their abnormal functions can
increase the risk of cancer in affected individuals; these
genes are known as CSGs. We named genes associated
with the risk of lung cancer LCSGs. Genes associated with
susceptibility to NSCLC have been identified in previous
studies. According to a GWAS, the SNP rs2736100 local-
izes to CLPTM1 L-TERT and is linked to the risk of lung
cancer [15, 16]. Another case–control study showed that
ERCC3 could be regarded as an LCSG [17]. Hundreds of
genes are considered to be associated with lung cancer
susceptibility. However, how the expression of these genes
affects lung cancer prognosis is unknown. Further mining
the role of LCSGs in treatment could extend the role of
CSGs in translational medicine, for example, multiple
gene-based lung cancer prognosis.

In this study, we analysed the gene expression of the cur-
rently identified LCSGs in the TCGA-LUAD and TCGA-
LUSC cohorts and their correlation with clinical data.
Among the LCSGs, 21 genes and 13 genes were related to
the survival of TCGA-LUAD and TCGA-LUSC, respec-
tively. We further used LASSO regression to develop prog-
nostic markers for the TCGA-LUAD and TCGA-LUSC
cohorts, resulting in 10 genes and 7 genes, respectively. We
divided patient survival outcomes into high-risk and low-
risk groups based on the risk score established by integrating
each patient’s mRNA expression levels. This model was val-
idated. Currently, gene signatures related to the clinical out-
comes of NSCLC have been reported. Li et al. [18] developed
a four-gene prognostic marker for LUSC, and LUAD has a
sixteen-gene predictive marker, as reported by Ma et al.
[19]. Beyond genes selected only by survival data, gene sig-
natures have been developed integrating biological factors.

For example, a glycolysis-related nine-gene signature [20]
and immune-related fourteen-gene signature [21] for
LUAD, an autophagy-related six-gene prognostic signature
for both LUAD and LUSC [22, 23], and a seven-gene signa-
ture for lung cancer linked to smoking [24] have been
reported. These genetic traits explain the importance of dis-
tinct biological processes in lung cancer prognosis, yet there
are limited studies on LCSGs in lung cancer prognosis.
Given the maturity of LCSG detection, we first constructed
a lung cancer prognostic model based on LCSGs, which is
expected to extend the translational value of LCSG testing
at the time of secondary prevention.

The potential systematic impact of LCSGs on tumour
metastasis and prognosis is unknown. We applied bioin-
formatics approaches to reveal the main biological signal-
ling pathways affected by LCSGs. Interestingly, in the
independent functional analysis of LUAD and LUSC,
“acetylcholine-gated cation-selective channel activity,” “ace-
tylcholine receptor activity,” and “excitatory extracellular
ligand - gated ion channel activity” in the GO term molecu-
lar function category and “rheumatoid arthritis” in KEGG
were shared in both groups. Tobacco usage is the most com-
mon cause of lung cancer, and nicotinic acetylcholine recep-
tors are key components involved in cancer signalling [25].
This finding suggested that environmental cigarette smoking
plus the vulnerability of the ion channel of an individual
could be a powerful trigger for both LUAD and LUSC.
Another KEGG term suggests that rheumatoid arthritis-
related gene dysfunction may increase the risk of lung
cancer, which is consistent with prior studies [26–28]. The
conversion of epithelial cells to mesenchymal cells or
mesenchymal-epithelial transition is a biological process that
is often involved in carcinogenesis and metastasis. Negative
regulation of epithelial cell differentiation was found to be
one of the common pathways affected by differentially
expressed genes in both LUAD and LUSC, suggesting that
LCSGs could affect metastasis-associated pathways. These
findings provide potential methods for LCSG-targeting
drugs in cancer prevention and early metastasis intervention
in populations harbouring this category of LCSGs.

A clinical nomogram is a graphical calculation tool for
quantitatively assessing an individual’s risk by assigning
points to various factors from clinical information and sum-
ming all the points to a value representing the possibility of
an outcome [29–31]. For further potential clinical applica-
tion of the CSGs, we developed nomograms based on the
LCSG risk scores and clinical information to predict indi-
vidual prognostic outcomes. Our models show that in addi-
tion to traditional clinicopathological characteristics (e.g.,
age, sex, TNM stage, and tumour size), risk scores based
on the LCSGs can be included as predictors of lung cancer
prognosis. We show that nomograms containing the risk
score generated by the expression of 10 and 7 LCSGs can
predict the possibilities of 3- and 5-year survival in patients
with LUAD and LUSC, respectively. This suggests that
CSGs could be used to improve clinical prognostication.

There are some limitations to this study. Oncogenetic
counselling usually involves monitoring peripheral blood
for gene mutations and does not involve gene expression.
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Therefore, unless an additional test is performed, the model
cannot be used based on routine information. Second,
genetic alteration of LCSGs may not affect gene expression.
Third, the link between germline mutation in normal tissue
and gene expression in cancer needs further study. The con-
tribution of the risk score to lung cancer risk is limited.
Although this model needs to be validated in an indepen-
dent dataset, it is the first analysis of how LCSG expression
potentially mediates metastasis and affects prognosis. Estab-
lishment of a model or biological experiment validation of
how genetic germline mutation links to gene expression
could add more translational value of the presented studies.

5. Conclusions

In summary, using the data from TCGA-LUAD and TCGA-
LUSC cohorts, we created a risk score based on LCSG
expression. Our findings suggest that a set of LCSGs can
be used as an independent predictor of the risk of metastasis
and prognosis, a component of clinical nomograms, and tar-
gets for personalized cancer prevention.
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