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Abstract

Motivation: Recent experiments have provided Hi-C data at resolution as high as 1 kbp. However,

3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible

using existing methods.

Results: We have developed miniMDS, an approximation of multidimensional scaling (MDS) that

partitions a Hi-C dataset, performs high-resolution MDS separately on each partition, and then

reassembles the partitions using low-resolution MDS. miniMDS is faster, more accurate, and uses

less memory than existing methods for inferring the human genome at high resolution (10 kbp).

Availability and implementation: A Python implementation of miniMDS is available on GitHub:

https://github.com/seqcode/miniMDS.

Contact: mahony@psu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Hi-C is a high-throughput method for genome-wide analysis of

chromosome conformation. The Hi-C protocol begins by crosslinking

protein–DNA interactions, with the goal of crosslinking together pairs

of chromosomal loci that are proximal to one another in 3D space.

Crosslinked chromatin is then fragmented (typically using restriction

enzymes), and the ends of the resulting fragments are marked with

biotin. A random ligation reaction results either in intermolecular li-

gations that join two distinct DNA molecules together (also referred

to as a contact) or self-ligations, which join the two ends of a single

DNA molecule. After further shearing, ligation products are immuno-

precipitated via the biotin label and paired-end sequenced.

The number of contacts between two loci observed in a popula-

tion of cells is referred to as the contact frequency, which is inversely

proportional to the average in vivo 3D distance between the loci in

the cell population (Lieberman-Aiden et al., 2009). Contact fre-

quency data are typically presented as a matrix, which can be ana-

lyzed using methods such as eigenvector decomposition (Imakaev

et al., 2012). However, for the purposes of structural comparison

and visualization, it is often useful to convert the matrix to a 3D

structure or ensemble of structures.

There are two types of methods for 3D structural inference from

Hi-C data (Park and Lin, 2016). Modeling-based methods assume

that contact frequencies are related to distances via a probabilistic

function, such as a Poisson distribution. These methods aim to

maximize the likelihood of the inferred 3D structure using algo-

rithms such as Markov Chain Monte Carlo (Hu et al., 2013; Park

and Lin, 2016; Rousseau et al., 2011; Varoquaux et al., 2014; Zou

et al., 2016). Optimization-based methods infer a function to con-

vert the contact frequency matrix to a distance matrix. A 3D struc-

ture is initialized (typically at random), and an objective function is

used to quantify the difference between the inferred 3D structure

and the distance matrix. The 3D structure is iteratively updated to

minimize the objective function, using multidimensional scaling

(MDS) (Adhikari et al., 2016; Ba�u and Marti-Renom, 2012; Duan

et al., 2010; Lesne et al., 2014; Szałaj et al., 2016; Zhang et al.,

2013).

Recent experiments have provided Hi-C data at resolutions as

high as 1–5 kbp for several human cell lines (Rao et al., 2014).

However, existing structural inference methods have not been

applied to mammalian whole-genome Hi-C data with a resolution

greater than 40 kbp (Hu et al., 2013). High resolution creates

unique challenges for structural inference, because computational

requirements increase exponentially with the number of loci in

the dataset. The sparsity of the contact matrix also increases with

resolution (Park and Lin, 2016). Long-range contacts are particu-

larly sparse, because the contact frequency between two loci

decreases exponentially with the linear separation between the loci

(Lieberman-Aiden et al., 2009). The excess of zeroes can be cor-

rected using interpolation (Lesne et al., 2014) or a statistical adjust-

ment (Park and Lin, 2016). On the other hand, zeroes provide little

or no information for structural inference. Removing zeroes would

thus have little informational cost and would reduce the memory

and computations associated with large datasets.
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We propose a structural inference method for high-resolution

Hi-C data that partitions the contact matrix using a method similar

to topologically associating domain (TAD) identification and per-

forms MDS individually on each partition. This algorithm is some-

what similar to the subsampling used by other MDS approximation

algorithms (Platt, 2005). Because loci preferentially interact with

loci within the same TAD (Dixon et al., 2012), this approach min-

imizes the number of zeroes in the data. It also reduces the amount

of data that must be stored in memory at any given time and allows

for parallelization of analysis. The partitions are then assembled

into a global structure using low-resolution data. Our method is

faster, more memory-efficient and more accurate than alternative

methods and can solve a 3D structure for the human genome at

kilobase-resolution in <5 h.

2 Materials and methods

2.1 Data source
We used GM12878 Hi-C count matrices (MAPQ �30) from Rao

et al. (2014) for all analyses, which were normalized using the

Knight–Ruiz normalization (Knight and Ruiz, 2013) factors pro-

vided (GEO accession number: GSE63525).

2.2 Algorithm
miniMDS infers detailed whole-genome 3D structures by progres-

sively solving and integrating structures at three resolution levels.

High-resolution local structures are first solved within each parti-

tion. Lower-resolution structures are then inferred for each whole

chromosome, and the high-resolution partitioned structures are

overlaid onto these chromosomal structures after solving the

optimal transformations. For inter-chromosomal analysis, a low-

resolution inter-chromosomal structure is inferred, and the high-

resolution intra-chromosomal structures are overlaid onto this.

2.2.1 Partitioning

To solve local high-resolution structures, the contact matrix is first

partitioned, with the average size of partitions determined by a user-

defined smoothing parameter. Larger partitions may produce more

accurate results but have greater computational requirements.

Our algorithm to partition the genome was derived from a

method for identifying TADs, which used a directionality index that

describes whether a locus preferentially interacts with loci upstream

or downstream (Dixon et al., 2012). Loci near the beginning of a

TAD preferentially interact downstream, and those near the end

preferentially interact upstream. The existing method uses a hidden

Markov model to identify large regions of upstream or downstream

bias in Hi-C data. However, this method produces only one parti-

tioning of the genome. To partition the genome at different length

scales, we propose a modification of the directionality index

method, in which directionality indices of individual loci are binned

to identify large regions of bias. Partition boundaries are defined by

the occurrence of a downstream-biased bin, followed by an

upstream-biased bin. Partitions are then defined as the regions be-

tween boundaries. An adjustable smoothing factor determines the

size of the bins (the smoothing factor multiplied by the total number

of loci on a chromosome equals the bin size used in partitioning).

Larger smoothing factors result in larger partitions. Given a certain

smoothing factor, our method produces partitions that approxi-

mately correspond to the TADs identified by Dixon (Fig. 1). By ad-

justing the smoothing factor, we observed a hierarchy of genome

organization (Fig. 2), suggesting that there may not be a single TAD

definition for a chromosome. This is consistent with recent results

demonstrating a hierarchy of genome folding, in which TADs have

functional importance but no particular structural importance

(Zhan et al., 2017).

2.2.2 Assembling the global structure

The contact matrix for each partition is converted to a distance ma-

trix using the following equation (zero-distances are ignored by the

MDS algorithm):

dij ¼
ca

ij; cij > 0

0; cij ¼ 0

(
(1)

We used a¼�0.25, which was found to best fit Hi-C data in re-

sults from fluorescence in situ hybridization (FISH) experiments

(Wang et al., 2016).

Inference of each partition’s structure is performed independ-

ently of every other partition, and thus is trivially parallelizable by

splitting partition computations across processors. Three-

dimensional metric MDS (mMDS) is performed on each partition’s

distance matrix in parallel, producing a high-resolution structure for

each partition (Fig. 3A). To infer the spatial relationships between

partitions, a global structure is inferred from low-resolution data,

using mMDS without partitioning (Fig. 3C). High-resolution parti-

tions are then assembled in parallel, using the low-resolution struc-

ture as a guide. By taking the average coordinates of multiple loci,

each high-resolution partition structure is approximated at the same

resolution as the global low-resolution structure (Fig. 3B). As a re-

sult, each low-resolution locus in a partition structure has an analog

in the global low-resolution structure. The optimal transformation

(translation, rotation and reflection) to align each low-resolution

Fig. 1. Partitions identified by the simplified algorithm with a particular

smoothing factor approximately correspond to the previously identified

TADs. (A) TADs identified by Dixon et al. for mouse embryonic stem cell chr6.

(B) Partitions created by the partitioning algorithm applied to the same data

Fig. 2. Partitions created using various smoothing factors applied to data

from Figure 1
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partition to its analog in the global structure (Fig. 3D) is calculated

using the Kabsch algorithm (Kabsch, 1976). Each transformation is

then applied to the corresponding high-resolution partition structure

(Fig. 3F) to create a global high-resolution intra-chromosomal struc-

ture (Fig. 3G). To infer inter-chromosomal structures, a global inter-

chromosomal structure is inferred at very low resolution, analogous

to Figure 3C. miniMDS is applied to each chromosome in the struc-

ture individually. Then the high-resolution miniMDS intra-

chromosomal structures are aligned to the inter-chromosomal

structure.

2.3 Implementation
The miniMDS algorithm is implemented in Python. MDS steps are

performed using scikit-learn with default parameters (Pedregosa

et al., 2011). Parallelization was performed using pymp. miniMDS

is released under an MIT open source license. miniMDS source code

is available on GitHub: https://github.com/seqcode/miniMDS.

2.4 Comparison with alternative approaches
We attempted to test the performance of BACH (Hu et al., 2013),

MOGEN (Trieu and Cheng, 2014), 3D-GNOME (Szałaj et al.,

2016), ChromSDE (Zhang et al., 2013), tREX (Park and Lin, 2016),

MCMC5 (Rousseau et al., 2011), PASTIS (Varoquaux et al., 2014),

TAD-bit (Ba�u and Marti-Renom, 2012), HSA (Zou et al., 2016),

Chromosome3D (Adhikari et al., 2016) and InfMod3DGen (Wang

et al., 2015) (Table 1). We also tested classical MDS (cMDS), which

is used by ShRec3D (Lesne et al., 2014), and standard mMDS.

We were unable to install PASTIS, because it requires the IPOPT

package, which must be built from source and has many additional

dependencies. We were unable to test MCMC5 because it requires

the standard deviation of contact frequencies, which was not avail-

able for the datasets we used. We were unable to test tREX because

it requires fragment length, which was not available for the datasets

we used. PASTIS, MCMC5 and tREX are modeling-based methods.

Because modeling-based methods must probabilistically explore par-

ameter space, they have large computational requirements. Thus, it

is unlikely that they would have been able to analyze high-resolution

data if we had been able to run them. BACH and InfMod3DGen

were excluded from further testing due to errors. BACH produced

an error for chr22 100-kbp-resolution data. InfMod3DGen pro-

duced an error when tested on its sample data for yeast chrXVI at

100-kbp resolution. A quadratic solver was used for ChromSDE.

Defaults were used for all other parameters.

Table 1 summarizes the results of Hi-C structural inference

methods applied to chr22 kilobase-resolution data. The only algo-

rithms that were able to infer structures at kilobase-resolution were

miniMDS, 3D-GNOME and ShrRec3D. We were unable to evaluate

the accuracy of 3D-GNOME because it provides only graphical out-

put, rather than 3D coordinates, so it was excluded from further

testing. ShRec3D is represented in further testing by cMDS.

3 Results

3.1 miniMDS is more efficient than other structural

inference methods
We tested the computational time required for miniMDS, standard

mMDS, cMDS, TAD-bit, MOGEN, Chromosome3D and

ChromSDE to analyze chr22 Hi-C data at 10-kbp resolution (Fig. 4)

and 100-kbp resolution (Supplementary Fig. S1). TAD-bit did not

produce output in a reasonable amount of time (i.e. several days)

and thus was excluded from further analysis. HSA was excluded

from the 10-kbp analysis because of the large amount of time

required for the 100-kbp resolution (over 60 h), which we assumed

would be significantly greater for 10-kbp resolution. miniMDS had

the lowest time requirements of all remaining methods at both

resolutions.

We also tested the amount of RAM required for miniMDS,

standard mMDS, cMDS, MOGEN, Chromosome3D and

ChromSDE to analyze chr22 data at 100-kbp resolution

(Supplementary Fig. S2). Though the full benefits of miniMDS are

not demonstrated at low resolution, miniMDS had the lowest mem-

ory requirements. MOGEN, Chromosome3D and ChromSDE

required orders of magnitude more memory.

3.2 miniMDS is robust
We performed two iterations of Chromosome3D, mMDS,

miniMDS, MOGEN, HSA and ChromSDE on chr22 at 100-kbp

resolution. cMDS was excluded because it does not use a random

seed, so it produces the same output from every iteration. We cre-

ated a distance matrix from each set of output coordinates and cal-

culated the Pearson correlation between the distance matrices for

each pair of iterations (Fig. 5). MDS-based methods,

Fig. 3. Overview of the miniMDS algorithm, demonstrated on GM12878 chr22

at 10-kbp-resolution. MDS is applied to each partition individually, creating

high-resolution local structures, such as the structure shown in (A). The struc-

ture is approximated at low-resolution (B). MDS is performed on a low-reso-

lution dataset, creating a global low-resolution structure (C). The low-resolution

partition has an analog in the global structure (D). The optimal transformation

to align the low-resolution approximation with its analog is calculated. For illus-

tration, (E) shows the transformation applied to the low-resolution approxima-

tion. The transformation is applied to the high-resolution partition (F). When

this process is repeated for all partitions, a global high-resolution structure is

created (G)
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Chromosome3D and ChromSDE produced the same output from

both iterations, resulting in correlations of 1. The correlation be-

tween different iterations was lower for HSA and MOGEN.

3.3 Performance on 10-kbp-resolution data
3.3.1. Time and memory requirements

To determine how computational requirements changed with the

number of loci, we tested MOGEN, miniMDS, mMDS and cMDS

on all chromosomes at 10-kbp resolution. Chromosome3D,

ChromSDE and HSA were excluded from these analyses because the

time costs were prohibitive. MOGEN was the fastest on average,

with miniMDS performing almost as well (Fig. 6). However, given

that MOGEN is not robust (see Section 3.2), its speed may be be-

cause the algorithm does not converge. Both methods were signifi-

cantly faster than standard mMDS and cMDS, with a lower rate of

increase of time requirements with the number of loci. miniMDS

had the lowest memory requirements, with minimal increase in

memory requirements for increasing number of loci (Fig. 7).

3.3.2 Correlation between input and output

We calculated the correlation between input distances and distances

inferred from the output 3D structure for MOGEN, miniMDS,

mMDS and cMDS applied to each chromosome at 10-kbp reso-

lution. For the MDS methods, accuracy was calculated as the correl-

ation between the input distance matrix and the distances calculated

from output coordinates. For MOGEN, we inferred a by fitting an

exponential curve to distances, which were calculated from output

coordinates, as a function of contact frequencies. We then

transformed contact frequencies to inferred distances using the

inferred value of a and calculated the correlation between inferred

distances and output distances.

The correlation was highest for miniMDS for every chromosome

(Fig. 8), demonstrating that miniMDS infers 3D structures that are

more consistent with the underlying Hi-C data. The structures

inferred for chr22 using mMDS and cMDS are collapsed globules

with few discernable features (Fig. 9A and B). MOGEN produces a

fairly unfolded structure dominated by outliers, with little evidence

of TAD structure or the hierarchical organization hypothesized by

Table 1. Comparison of Hi-C structural inference methods

Name Type Results from 1-kbp-resolution data Inter-chromosomal?

miniMDS Optimization Success Yes

BACH Modeling Bug No

ShRec3D Optimization Success No

MOGEN (Trieu and Cheng, 2014) Optimization Exceeds maximum input size No

3D-GNOME (Szałaj et al., 2016) Optimization Success (graphical output only) Yes

ChromSDE (Zhang et al., 2013) Optimization Failed to produce output in reasonable time No

tRex (Park and Lin, 2016) Modeling Requires fragment length No

MCMC5 (Rousseau et al., 2011) Modeling Requires standard deviation No

PASTIS (Varoquaux et al., 2014) Modeling Failed to install IPOPT Yes

TAD-bit (Ba�u and Marti-Renom, 2012) Optimization Failed to produce output in reasonable time Yes

HSA (Zou et al., 2016) Modeling Memory error No

Chromosome3D (Adhikari et al., 2016) Optimization Failed to produce output in reasonable time No

InfMod3DGen (Wang et al., 2015) Modeling Bug (error was corrected while the current manuscript was in press) No

Fig. 4. Time required to analyze chr22 data at 10-kbp resolution Fig. 5. Correlation between the output of two iterations of the same method

applied to the same chr22 100-kbp-resolution dataset

Fig. 6. Time required to analyze each chromosome at 10-kbp resolution
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the fractal globule model (Rao et al., 2014) (Fig. 9D). miniMDS pro-

duces a structure that is densely clustered but still displays discern-

able structures (Fig. 9C).

MOGEN and MDS-based methods are optimization-based. We

were interested in whether a modeling-based method would offer

advantages for accuracy. HSA was the only modeling-based method

that we were able to test (see Section 2.4), so we evaluated its per-

formance on 100-kbp-resolution chr22 data, even though it is not

robust (see Section 3.2). We calculated its correlation between input

and output using the analysis described for MOGEN. The correl-

ation was lower for HSA than for MDS-based methods applied to

the same data (Supplementary Fig. S3).

3.4 miniMDS performs whole-genome structural infer-

ence at high resolution
We used miniMDS to infer a global conformation for all GM12878

chromosomes using 10-kbp-resolution Hi-C data (Rao et al., 2014)

(Fig. 10). We used a smoothing factor of 0.05 and a minimum parti-

tion size of 1% of the matrix. Intermediate low-resolution structures

for each whole chromosome were inferred from 100-kbp-resolution

data. Inference of the entire whole-genome structure required 4 h

21 min.

4 Discussion

We have presented miniMDS, a method for inferring 3D structures

from Hi-C experiments that is suitable for high-resolution data. It

uses genome partitioning and parallelization to achieve greater

speed and lower memory requirements compared with alternative

methods. Theoretically, the memory requirements of miniMDS

could always be maintained below a certain threshold by increasing

the number of partitions, regardless of the size of the dataset. As

measured by the correlation between input distances and output dis-

tances, miniMDS is more accurate than other methods that are able

to efficiently analyze large, high-resolution datasets. However, we

note that Chromosome3D and ChromSDE, which do not scale well

to large datasets, perform better on this metric for smaller datasets.

These algorithms use different optimization algorithms, which could

be made more efficient using a partitioning strategy similar to

miniMDS.

Comprehensive identification of chromatin loops, which play an

important role in gene regulation, requires high-resolution Hi-C

data (Rao et al., 2014). Detection of co-localization of DNA-

binding proteins would also be improved by high resolution.

Though Hi-C data can be analyzed in two dimensions, the dynamics

of chromosome conformation are easiest to understand in three di-

mensions. For example, 3D structures from multiple time points or

cell types could be compared using a structural alignment algorithm

(Hasegawa and Holm, 2009) to determine how the localization of

genomic regions changes. It is possible that dynamic genomic re-

gions are correlated with changes in gene regulation. High-

resolution 3D chromosome conformation inference will thus con-

tribute to exploration of the “4D nucleome” (Chen et al., 2015).

miniMDS is the only method currently available that can accurately

solve whole-genome 3D structures from the highest-resolution Hi-C

datasets.

Fig. 7. Memory required to analyze each chromosome at 10-kbp resolution

Fig. 8. Accuracy of methods for each chromosome at 10-kbp resolution

Fig. 9. Chr22 10-kbp-resolution structures produced by mMDS (A), cMDS (B),

miniMDS (C) and MOGEN (D)

Fig. 10. GM12878 chromosome conformation at 10-kbp resolution
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