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Bayesian joint ordinal and survival
modeling for breast cancer risk
assessment
C. Armero,a*† C. Forné,b,c M. Rué,b,d A. Forte,a H. Perpiñán,a,e

G. Gómezf and M. Barég

We propose a joint model to analyze the structure and intensity of the association between longitudinal meas-
urements of an ordinal marker and time to a relevant event. The longitudinal process is defined in terms of
a proportional-odds cumulative logit model. Time-to-event is modeled through a left-truncated proportional-
hazards model, which incorporates information of the longitudinal marker as well as baseline covariates. Both
longitudinal and survival processes are connected by means of a common vector of random effects.
General inferences are discussed under the Bayesian approach and include the posterior distribution of the

probabilities associated to each longitudinal category and the assessment of the impact of the baseline covariates
and the longitudinal marker on the hazard function. The flexibility provided by the joint model makes possible
to dynamically estimate individual event-free probabilities and predict future longitudinal marker values.
The model is applied to the assessment of breast cancer risk in women attending a population-based screen-

ing program. The longitudinal ordinal marker is mammographic breast density measured with the Breast
Imaging Reporting and Data System (BI-RADS) scale in biennial screening exams. © 2016 The Authors. Statistics
in Medicine Published by John Wiley & Sons Ltd.

Keywords: BI-RADS scale; Latent process; Left-truncated proportional-hazards model; Proportional-odds
cumulative logit model

1. Introduction

The current evidence on benefits and harms supports the personalization of screening as a crucial step to
improve early detection of breast cancer [1, 2]. A number of risk models were designed to measure the
individual probability of developing breast cancer [3–5]. In the context of individualized breast cancer
screening, the utility of these risk models has been questioned because of their low discrimination power
[6]. The inclusion of a baseline measure of breast density – a characteristic of the breast tissue – in the
risk models improved the accuracy of the breast cancer risk estimate [7–10].

Several studies have shown that high breast density is associated with increased breast cancer risk
[7,11–14], with risk estimates in the range four-fold to six-fold for women with very high breast density
compared with women with low breast density [11,12]. Other studies have examined whether changes in
breast density over time are associated to changes in breast cancer risk [15–21] and have suggested that
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monitoring changes in breast density could help to identify women at greater risk of disease. In most of
the cases, the statistical methods used did not account for relevant characteristics of prospective studies
like non-ignorable dropout mechanisms or internal time-dependent covariates [22].

Joint modeling of longitudinal and time-to-event data is an increasingly productive area of statistical
research that assesses the association between longitudinal and survival processes. It enhances longitudi-
nal modeling by allowing for the inclusion of non-ignorable dropout mechanisms and survival modeling
by the inclusion of internal time-dependent covariates [22]. Joint models were introduced during the 90s
[23–25] and since then, have been applied to a great variety of studies in epidemiological and biomedical
areas. Shared-parameter models are a type of joint models where the longitudinal and time-to-event pro-
cesses are connected by means of a common set of subject-specific random effects. These models make
possible to quantify both the population and individual effects of the underlying longitudinal outcome
on the risk of an event and obtain individualized time-dynamic predictions. Recently, Rizopoulos pro-
posed an overview of the theory and applications of joint modeling [26] and developed the JM [27] and
JMbayes [28] R packages for the frequentist and Bayesian shared-effects’ approaches, respectively. Ser-
rat et al. illustrate the application of both statistical approaches to joint modeling longitudinal measures
of prostate specific antigen and prostate cancer detection in men participating in a screening trial [29].

When longitudinal outcomes are ordinal, joint models become more complex. Different approaches,
that use constraints in the probabilities of the categorical outcomes or the discretization of a continuous
latent variable, have been proposed [30–33]. The non-linear and longitudinal nature of the data pro-
duce a complex likelihood function, difficult to maximize under the frequentist paradigm. This could
be a reason why the standard software for joint models does not include longitudinal ordinal vari-
ables yet. Some relevant works on the subject use the frequentist [34–36] and Bayesian [33, 37, 38]
approaches, respectively.

The objective of this paper is to propose a Bayesian joint model for assessing the structure and intensity
of the association between longitudinal measures of an ordinal marker and a time-to-event outcome. In
particular, we use a proportional-odds cumulative logit model [30] for the ordinal measurements and a
proportional hazard model with left-truncation for the time to an event of interest. We have applied the
model to analyze the risk of breast cancer in women attending a population-based screening program
with regard to repeated measurements of mammographic breast density.

Section 2 presents a description of the motivating dataset. Section 3 formulates the joint model and
discusses general inferences for (1) dynamic probabilities associated to the different ordinal categories,
(2) the impact of baseline covariates and the longitudinal marker on the hazard function, (3) dynamic
estimation of survival probabilities, and (4) prediction of future longitudinal outcomes. Section 4 applies
the model developed in Section 3 to study age at diagnosis of breast cancer in women who participate in
a population-based screening program. Finally, Section 5 contains a discussion and some conclusions.

2. Motivating data

2.1. Study design and study population

This is an observational prospective study including 13,760 women that participated for the first time in
the breast cancer early-detection program in the Vallès Occidental Est (BCEDP-VOE) area in Catalonia
(Spain), between October 1995 and June 1998. The BCEDP-VOE invites women aged 50–69 years for
biennial mammographic exams. At study entry, the participants were 50–70 years old and did not have
a personal history of breast cancer. They were followed for vital status or possible diagnosis of breast
cancer until December 2013 [39–41].

Of the initial 13,760 women, we excluded seven without follow-up data, as well as 38 women who were
diagnosed with breast cancer and nine who died within six months of baseline. Twenty-one women were
also excluded for not having breast density measurements within the 50–70 age interval. We analyzed
invasive breast cancer and ductal carcinoma in situ diagnosed during follow-up. The final sample included
13,685 women, with 431 diagnosed with breast cancer.

2.2. Variables and data description

At the first mammographic exam, the study participants answered a questionnaire that included infor-
mation on family history of breast cancer, prior breast procedures, age at menarche, age at first birth,
and menopausal status. Family history refers to absence/presence of first-degree relatives with breast
cancer. Prior breast procedures included breast biopsy, fine needle aspiration, cyst aspiration, breast
reconstruction, lumpectomy, and surgical treatment.
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Table I. Baseline risk factors according to breast cancer diagnosis status at
the end of follow-up.

No breast cancer Breast cancer
N = 13,254 (%) N = 431 (%)

Family history of breast cancer
No 12,539 (94.8) 388 (90.2)
Yes 686 (5.2) 42 (9.8)

Prior breast procedures
No 12,318 (92.9) 374 (86.8)
Yes 936 (7.1) 57 (13.2)

Breast density at first examination
(baseline breast density)

a: Almost entirely fatty 2959 (23.4) 56 (13.9)
b: Scattered fibroglandular densities 5353 (42.3) 138 (34.2)
c: Heterogeneously dense 2301 (18.2) 103 (25.6)
d: Extremely dense 2037 (16.1) 106 (26.3)

Breast density at last examinationa

(women with at least two examinations)
a: Almost entirely fatty 2284 (18.1) 35 (9.4)
b: Scattered fibroglandular densities 7957 (63.0) 201 (54.0)
c: Heterogeneously dense 1475 (11.7) 71 (19.1)
d: Extremely dense 919 (7.3) 65 (17.5)

aIf breast cancer was diagnosed within 6 months following the last mammogra-
phy, the last breast density considered was the previous one, whenever it was not
coincident with the baseline measure.

Breast density is a characteristic of the breast tissue that is reflected in mammograms. Breasts are
considered dense if the connective and epithelial tissues predominate over the fatty tissue. At all mam-
mographic exams, breast density was rated and recorded according to the BI-RADS system [40,42] that
categorizes breast density in four groups: a, almost entirely fatty (low density); b, scattered fibroglandular
densities (medium density); c, heterogeneously dense (high density); and d, extremely dense (very high
density). This longitudinal breast density data is a remarkable and unique characteristic of the BCEDP-
VOE among the breast cancer screening programs in Spain. Breast density measures within 6 months
before breast cancer diagnosis could be affected by the presence of preclinical breast cancer; therefore,
they were excluded. The mammographic exams performed before age 50 or after age 70 were excluded
in order to avoid sample biases. A total of 81,621 measures of breast density were included in the lon-
gitudinal analysis, with median [range] 4 [1 to 9] and 6 [1 to 15] measures for women with or without
breast cancer diagnosis, respectively.

We considered that the time origin for the event of interest (diagnosis of breast cancer) was age 50 years,
the lower limit of the screening age interval. We defined the time-to-event as the time elapsed from the
origin to diagnosis of breast cancer. For women without a breast cancer diagnosis at the study end, the
censoring time was obtained as the minimum of time to death and time to the last screening exam plus
2.5 years that correspond to the active follow-up for cancer identification. It is important to remark that
women who entered the program over 50 years had delayed entry times that may induce length biased
sampling or left truncation.

Among 13,685 women aged 50 years and older, 431 developed breast cancer – 336 invasive cancers
and 95 ductal carcinoma in situ –, and 513 died within 2.5 years of the last mammogram. Median follow-
up was 12.7 years for women without breast cancer and 8.2 years for women with breast cancer. Table I
shows the baseline characteristics of women and the breast density measurements at first and last exam-
ination according to their breast cancer diagnosis status at the end of follow-up. High breast density
categories were more prevalent among women with breast cancer, in both the first and the last mammo-
gram. Furthermore, between the first and last exams, the prevalence of low density categories increased,
as described in the literature.

To illustrate the longitudinal breast density measurements, we randomly selected eight women without
and eight women with cancer (Figure 1). A high variability of the breast density trajectories can be
observed: some women experience an increase of breast density, while others remain stable, fluctuate,
or experience a decrease. The plots show the biennial periodicity of the screening exams, as well as the
unbalanced number of measures between women, because of different reasons. Not all women entered
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Figure 1. Subject-specific profiles of BI-RADS measures for 16 randomly selected women. The left panel
corresponds to eight women without breast cancer, and the right panel corresponds to eight women with

breast cancer.

the study at the same age, not all the scheduled screening exams were taken, or not always breast density
was rated.

3. The joint model

We propose a model with two submodels: (1) a proportional-odds cumulative logit model for the lon-
gitudinal ordinal measurements based on the idea of a continuous latent variable [30, 33] and (2) a
left-truncated proportional hazard model for the time-to-event, which incorporates information from the
longitudinal process. Both processes are connected through a shared vector of random effects, which, in
the presence of covariates and parameters, endows them with conditional independence [26].

Let {D1,D2,… ,DK} denote the set of ordinal categories and yij the longitudinal category of individual
i, i = 1,… , n, at time tij, j = 1,… , ni. We assumed an underlying continuous latent variable y∗ij that
determines the ordinal category of individual i at time tij. This latent variable has no interest per se, but
it is useful for motivating and interpreting the cumulative logit model. The relationship between yij and
y∗ij is stated as

yij = Dk ⇔ y∗ij ∈ (𝛾k−1, 𝛾k], k = 1,… ,K,

where −∞ = 𝛾0 < 𝛾1 < · · · < 𝛾K−1 < 𝛾K = ∞ are unknown cut-points. We assumed a logistic
distribution for y∗ij, Lo(mij, s = 1), with location parameter mij (mean) and a common scale parameter
s = 1 for achieving identifiability. The choice of that distribution implies a logit link for the cumulative
probabilities

qijk = P(yij > Dk) = P
(

y∗ij > 𝛾k

)
= 1

1 + exp(𝛾k − mij)
, (1)

and therefore,

logit qijk = log

( qijk

1 − qijk

)
= mij − 𝛾k.

Despite the fact that s = 1 in the logistic distribution of the latent variable, the model is overparam-
eterized (any set of k probabilities can be obtained increasing the cut-points in the same quantity). To
obtain an identifiable model, we arbitrarily introduced a reference point on the latent scale, in particular
𝛾K∕2 = 0 if K is even and 𝛾(K−1)∕2 = 0 or 𝛾(K+1)∕2 = 0 if K is odd.

We considered a mixed-effects model to describe the subject-specific time trajectories of the latent
variable

y∗ij = mij + 𝜖ij = x(l)′ij 𝜷 + z′ijbi + 𝜖ij, (2)
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where x(l)ij is a P dimensional vector of covariates relevant to the longitudinal process, as indicated by
superscript (l), for individual i at time tij with regression coefficients (populational) 𝜷; zij the vector of
explanatory variables attached to the vector of random effects bi for the ith individual at time tij; and
𝜖ij an error term for the ith individual at time tij, modeled in terms of a logistic distribution, Lo(0, 1).
The random effects b = (b1,… , bn)T are conditionally i.i.d. (given the hyperparameter vector 𝝓) with
(bi ∣ 𝝓) ∼ f (bi ∣ 𝝓).

Let Ti, i = 1,… , n, be the observed event time for the ith subject, obtained as the minimum between
the true failure time, T∗

i , and the right-censoring time, Ci, Ti = min(T∗
i ,Ci). The event indicator 𝛿i =

I(T∗
i ⩽ Ci) takes the value 1 if the observed time corresponds to a true event time, and 0 otherwise. In

addition, event times corresponding to individuals who enter the study at delayed entry times introduce
left-truncation, thus defining the subsequent hazard function as zero in the period before the entrance
of the individual to the system [43]. In particular, we consider the hazard function of T∗

i in terms of a
left-truncated relative risk regression model

hi(t) = h0(t) exp
{

x(s)′i 𝜼 + 𝛼 mit

}
, t > ai, (3)

and zero otherwise, where h0(t) is the baseline risk function; x(s)i represents the vector of baseline covari-
ates relevant to the survival process, as indicated by superscript (s), with associated coefficients 𝜼; 𝛼
assesses the effect of the longitudinal marker of subject i on the event of interest in terms of the latent
variable mean; ai is the delayed entry time of individual i. It is important to comment that left-truncated
data will add computational complexity to the modeling because the likelihood function corresponding to
this type of data will incorporate conditional probabilities that contain the information that the individual
is alive in the period between their theoretical entrance at time zero and their real entrance to the system.

To complete the Bayesian model, it is necessary to elicit a prior distribution, 𝜋(𝜽) for all the unknown
parameters and hyperparameters of the joint model 𝜽 = (𝜷, 𝜼, 𝛼, 𝜸,𝝓)T . Our joint model contains param-
eters and hyperparameters, 𝜽, and random effects b. From a Bayesian perspective, 𝜋(𝜽, b ∣ D), where
D represents all the data collected from the longitudinal and the survival processes, is the joint poste-
rior distribution of the parameters, hyperparameters, and random effects, which can be obtained by the
hierarchical modeling

𝜋(𝜽, b ∣ D) = L(𝜽, b ∣ D) f (b ∣ 𝝓)𝜋(𝜽). (4)

L(𝜽, b ∣ D) is the likelihood function of 𝜽 and b for data D, f (b ∣ 𝝓) the distribution of the random effects
b given 𝝓 introduced before, and 𝜋(𝜽) the prior distribution for 𝜽. Markov Chain Monte Carlo (MCMC)
simulation methods allow to obtain an approximated random sample from the posterior 𝜋(𝜽, b ∣ D),
which is the key element and the starting point of all relevant inferences.

Finally, it is worth noting that when inference is carried out under the Bayesian formulation, the shared
joint model will induce conditional independence between the longitudinal and the survival processes
given not only the random effects and covariates but also given all the parameters and hyperparameters
in the model, as a result of its stochastic role in Bayesian inference.

3.1. Dynamic probabilities associated to ordinal categories

From expression (1), the probability distribution of the ordinal marker yit for individual i at time t can be
computed in terms of the logistic distribution of their latent variable y∗it as

P
(

yit = Dk ∣ x(l)it ,𝜽, bi

)
= P

(
y∗it ∈ (𝛾k−1, 𝛾k) ∣ x(l)it ,𝜽, bi

)
, k = 1, 2,… ,K. (5)

These probabilities depend on 𝜽, bi, and the relevant covariates associated to that individual. Con-
sequently, we could use the posterior marginal distribution 𝜋(𝜽, bi ∣ D) for computing the posterior
distribution, 𝜋(P(yit = Dk ∣ x(l)it ,𝜽, bi) ∣ D), of all the relevant dynamic probabilities for each individual
in the study.

A complementary and overall perspective of the temporal evolution of the different categories of the
ordinal marker is based on the marginal distribution

P(yit = Dk ∣ x(l)it ,𝜽) = ∫ P
(

yit = Dk ∣ x(l)
it ,𝜽, bi

)
f (bi ∣ 𝝓) dbi, (6)

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5267–5282

5271



C. ARMERO ET AL.

which is computed by integrating out the random effects of the conditional distribution (5). This dis-
tribution only depends on 𝜽. It can be interpreted as the time-specific population distribution of the
longitudinal marker for a generic individual of the population with covariate values x(l)it . Consequently,
we can use our current information about 𝜽 expressed through 𝜋(𝜽 ∣ D) and compute the posterior distri-
bution 𝜋(P(yit = Dk ∣ x(l)it ,𝜽) ∣ D) for each ordinal category Dk. This posterior distribution provides point
estimates of these relevant probabilities such as posterior expectations

E
(

P(yit = Dk ∣ x(l)it ,𝜽) ∣ D
)

= ∫ P
(

yit = Dk ∣ x(l)it ,𝜽
)
𝜋(𝜽 ∣ D) d𝜽 = P

(
yit = Dk ∣ x(l)it ,D

)
, (7)

as well as credible intervals for measuring the uncertainty of the estimation.
Our model also allows to explore the estimated relationship between the ordinal and latent variables.

We could address the posterior distribution of the latent variable y∗it for each time with regard to each
individual in the study or a generic one. The logistic distribution, Lo(mit, s = 1), for the latent variable y∗it
is a conditional distribution with an unknown mean that depends on 𝜽 and bi. The subsequent marginal
distribution f (y∗it ∣ x(l)it ,𝜽) can be obtained as in (6) integrating out the random effects and can be inter-
preted as a time-specific population distribution of the latent variable for a generic individual. Again, this
marginal distribution is also a conditional distribution that depends on the population parameters 𝜽 and
the posterior distribution of the latent variable can be estimated as

f
(

y∗it ∣ x(l)it ,D
)
= ∫ f

(
y∗it ∣ x(l)it ,𝜽

)
𝜋(𝜽 ∣ D) d𝜽. (8)

3.2. Impact of the covariates on the risk of the event

The hazard ratio (HR) of an individual with covariates x having the event as compared with an individual
with covariates x∗ is exp

{∑P
p=1 𝜂p

(
xp − x∗p

)}
, where P is the number of covariates. This hazard ratio

only depends on 𝜼, the vector of regression coefficients in (3). Consequently, its posterior distribution,

𝜋

(
exp

{∑P

p=1
𝜂p

(
xp − x∗p

)}
∣ D

)
, (9)

computed from the approximate MCMC sample from the posterior marginal 𝜋(𝜼 ∣ D), provides all the
relevant information about that HR.

The association parameter 𝛼 allows to assess the relationship of the mean of the latent density with
the hazard function but does not provide a direct link with the ordinal longitudinal variable. To facilitate
an interpretation of the association parameter in terms of the ordinal measurements, we propose the
following ad-hoc procedure:

1 Compute the posterior mean, E(𝛾k ∣ D), of the cut-points 𝛾k and construct the posterior intervals
(E(𝛾(k−1) ∣ D), E(𝛾k ∣ D)), k = 1,… ,K.

2 Define for a given time t a representative value m̃kt, k = 1,… ,K of the mean of each ordinal category
in the latent scale as follows

(a) Compute the median of the posterior distribution (8) in each interval (E(𝛾(k−1) ∣ D), E(𝛾k ∣
D)), and consider them, ỹ∗kt, as the representative value of the latent variable y∗ in each ordinal
category.

(b) For each ỹ∗kt, generate a value m̃kt of the latent mean according to the general formulation (2)
y∗ = m + 𝜖, or equivalently m = y∗ − 𝜖, where 𝜖 is a random error with logistic distribution
Lo(0, 1).

3 Approximate the conditional HR, given 𝛼, of an individual in the ordinal category k having the event
versus an individual in category k′ at time t as e𝛼(m̃kt−m̃k′ t).

4 Compute the posterior distribution of the approximate HR in step 3 from the marginal posterior
distribution of 𝛼 as ∫ e𝛼(m̃kt−m̃k′ t) 𝜋(𝛼 ∣ D) d𝛼.

3.3. Prediction

Bayesian reasoning approaches the estimation of the conditional survival probability of an individual i
with a given history provided by their baseline covariates and longitudinal follow-up Yini

(which guaran-
tees that their survival time is greater than the time, tini

, of their last longitudinal measurement) through
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the posterior distribution 𝜋(P(Ti ⩾ t ∣ Ti > tini
,Yini

, xi,𝜽, bi) ∣ D), t > tini
. This posterior contains all

relevant information about the location and variability of this conditional survival probability over time.
In particular, its posterior mean can be more easily computed as

P(Ti ⩾ t ∣ Ti > tini
,Yini

, xi,D) = ∫ P(Ti ⩾ t ∣ Ti > tini
,Yini

, xi,𝜽, bi)𝜋(𝜽, bi ∣ D,Yini
,Ti > tini

) d(𝜽, bi)

= ∫ P(Ti ⩾ t ∣ Ti > tini
, xi,𝜽, bi)𝜋(𝜽, bi ∣ D,Yini

,Ti > tini
) d(𝜽, bi), t > tini

,

(10)
where the conditional probability P(Ti ⩾ t ∣ Ti > tini

,Yini
, xi,𝜽, bi) does not depend on the particular

longitudinal trajectory, Yini
, as a result of the induced independence of the shared effects joint model, and

𝜋(𝜽, bi ∣ D,Yini
,Ti > tini

) is the marginal posterior distribution of the common parameters’ and random
effects’ vector for individual i, given Yini

and Ti > tini
.

We could also approach prediction of a future longitudinal measurement of an individual in the study
[44]. The posterior predictive distribution of a new longitudinal measurement yi,ni+1 at the time ti,ni+1 of
a future scheduled appointment for individual i with covariates xi and longitudinal ordinal history Yini

is
given by

P(yi,ni+1 = Dk ∣Ti > ti,ni+1,Yini
, xi,D) = P

(
y∗i,ni+1 ∈ (𝛾k−1, 𝛾k] ∣ Ti > ti,ni+1,Yini

, xi,D
)

= ∫ P
(

y∗i,ni+1 ∈ (𝛾k−1, 𝛾k] ∣ Ti > ti,ni+1,Yini
, xi,𝜽, bi

)
𝜋(𝜽, bi ∣ D,Yini

,Ti > ti,ni+1) d(𝜽, bi)

= ∫ P
(

y∗i,ni+1 ∈ (𝛾k−1, 𝛾k] ∣ xi,𝜽, bi

)
𝜋(𝜽, bi ∣ D,Yini

,Ti > ti,ni+1) d(𝜽, bi)
(11)

where

P
(

y∗i,ni+1 ∈ (𝛾k−1, 𝛾k] ∣ xi, 𝛉, bi

)
= e𝛾k−mi,ni+1 − e𝛾k−1−mi,ni+1

(1 + e𝛾k−mi,ni+1)(1 + e𝛾k−1−mi,ni+1)

is obtained from (1), with mi,ni+1 = (𝛽0 + bi0) + (𝛽1 + bi1)ti,ni+1. The conditional probability P(y∗i,ni+1 ∈
(𝛾k−1, 𝛾k] ∣ Ti > ti,ni+1,Yi, xi,𝜽, bi) is independent on the survival history, Ti > ti,ni+1, as a consequence
of the shared random effects joint model. Note also that the different longitudinal measurements of the
same individual are independent given (𝜽, bi).

The previous two posteriors both apply to individuals in the study and to individuals of the population
that could be involved in the study in the future. In this framework, some discussion about the posterior
distribution 𝜋(𝜽, b ∣ D,Yini

,Ti > tini
) becomes necessary. If the interest concentrates on a specific indi-

vidual in the study, such as individual i, for whom we want to estimate the conditional probability (10)
or the predictive distribution (11) from the current data D, the information provided by Yi and Ti > tini

is already included in D. Consequently, 𝜋(𝛉, b ∣ D,Yini
,Ti > tini

) = 𝜋(𝛉, b ∣ D). If the interest focuses on
sequentially estimate (10) or/and predict (11) as a result of their follow-up, we would need to sequentially
update the current posterior distribution 𝜋(𝜽, b ∣ D) with all that new relevant follow-up information, in
particular new longitudinal measurements and the updated survival time.

Dynamic posterior estimation and prediction for individuals of the population who have not partici-
pated in the study are also possible. Let us consider now a new subject i′ who initially has not participated
in the inferential process and enters the study at time ai′ with given values xi′ of the baseline covariates.
The posterior distribution of their unconditional survival probability is 𝜋(P(Ti′ ⩾ t ∣ Ti′ > ai′ , xi′ ,𝜽, bi′ ) ∣
D) with posterior mean

P(Ti′ ⩾ t ∣ Ti′ > ai′ , xi′ ,D) = ∫ P(Ti′ ⩾ t ∣ Ti′ > ai′ , xi′ ,𝜽, bi′ )𝜋(𝜽, bi′ ∣ D,Ti′ > ai′ ) d(𝜽, bi′ )

= ∫
P(Ti′ ⩾ t ∣ xi′ ,𝜽, bi′ )

P(Ti′ > ai′ ∣ xi′ ,𝜽, bi′ )
𝜋(𝜽, bi′ ∣ D,Ti′ > ai′ ) d(𝜽, bi′ ),

(12)
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Prediction of their first longitudinal measurement planned at a fixed time ti′1 > ai′ is

P(yi′,1 = Dk ∣Ti′ > ai′ , xi′ ,D) = P
(

y∗i′,1 ∈ (𝛾k−1, 𝛾k] ∣ Ti′ > ai′ , xi′ ,D
)

= ∫ P
(

y∗i′,1 ∈ (𝛾k−1, 𝛾k] ∣ Ti′ > ai′ , xi′ ,𝜽, bi′

)
𝜋(𝜽, bi′ ∣ D,Ti′ > ai′ ) d(𝜽, bi′ )

= ∫ P
(

y∗i′,1 ∈ (𝛾k−1, 𝛾k] ∣ xi′ ,𝜽, bi′

)
𝜋(𝜽, bi′ ∣ D,Ti′ > ai′ ) d(𝜽, bi′ )

(13)

If as a consequence of the follow-up of this individual, we would like to compute posterior probabili-
ties of the type (10) and/or (11), the subsequent marginal posterior distribution will come from the joint
posterior distribution 𝜋(𝜽, b, bi′ ∣ D,Yi′ni′

,Ti′ > ti′ni′
), which includes the common parameters and hyper-

parameters 𝜽, the vector of random effects b associated to the original individuals in the study and those
of that new individual considered, bi′ .

From a Bayesian point of view, the incorporation of sequential information from an individual who is
already involved in the study or from the follow-up of a future subject implies the need of sequentially
update the posterior distribution 𝜋(𝜽, b ∣ D). In the case of studies based on samples with large sample
size, we would expect a minimal change in the estimation of the common parameters but possibly not in
the subject specific random effects. The process of updating a posterior distribution for which we only
have an approximate random sample and not an analytical distribution is conceptually easy but not so in
practice. The main tools to carry out this computational process are based on sequential MCMC methods
[45,46] and although are beyond the scope of this paper are a current aim of our research team. Rizopoulos
[47] proposes, as an approximation of the subsequent posterior distribution, updating the specific random
effects associated with individuals. In particular, the author uses empirical Bayesian estimation for the
random effects and an asymptotic normal distribution, based on maximum likelihood estimation, for the
common population parameters. Taylor et al. [48] also separately update the vector of random effects
by using a quick MCMC based on a prior distribution for the population parameters coming from the
marginal posterior 𝜋(𝜽 ∣ D).

4. Joining longitudinal breast density and age at breast cancer detection

Let {D1,D2,D3,D4} denote the set of BI-RADS breast density categories {a, b, c, d}, which represent
low, medium, high, and very high density, respectively, yij the breast density category of woman i, i =
1,… , n, at time tij (age 50 + tij), j = 1,… , ni and y∗ij her subsequent underlying continuous latent value.

Following (3), the connection between both processes is

yij = Dk ⇔ y∗ij ∈ (𝛾k−1, 𝛾k], k = 1, 2, 3, 4,

where −∞ = 𝛾0 < 𝛾1 < 𝛾2 < 𝛾3 < 𝛾4 = ∞ are unknown cut-points, with 𝛾2 = 0, and Lo(mij, s = 1)
represents the corresponding logistic distribution for y∗ij.

Considering the evidence of a decreasing trend of breast density with age and a linear trajectory for
the longitudinal latent breast density of woman i(

y∗i (t) ∣ mit

)
= mit + 𝜖it = (𝛽0 + bi0) + (𝛽1 + bi1)t + 𝜖it, (14)

where (𝛽0, 𝛽1)T and (bi0, bi1)T are the fixed (population) and random effects (individual) for the inter-
cept and the slope term, respectively, and 𝜖it the error term. Random effects (b0, b1)T , where b0 =
(b01,… , b0n)T and b1 = (b11,… , b1n)T , are assumed conditionally i.i.d. with (bi0 ∣ 𝜎0) ∼ N(0, 𝜎0) and
(bi1 ∣ 𝜎1) ∼ N(0, 𝜎1).

The hazard function of age at breast cancer diagnosis is defined in terms of the left truncated relative
risk regression model

hi

(
t ∣ 𝐱i, 𝛉is, t

∗
i > ai

)
= h0(t ∣ 𝜆, 𝜂0) exp{𝜂1Famhisti + 𝜂2Brstproci + 𝛼 mi(t)}, t > ai, (15)

where h0(t ∣ 𝜆, 𝜂0) = 𝜆t𝜆−1 e𝜂0 is the baseline risk function of a Weibull distribution, We(𝜆, e𝜂0); family
history of breast cancer (Famhist) and prior breast procedures (Brstproc) are dychotomous baseline
covariates with associated coefficients 𝜂1 and 𝜂2, respectively; 𝛼 assesses the effect of the individual
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trajectory of breast density on breast cancer risk in terms of the latent breast density mean; and ai is the
age over 50 at which woman i enters the screening program, thus providing the left truncated time [43].

We assumed prior independence among all the parameters and hyperparameters as a default specifi-
cation and, with the aim of giving all inferential prominence to the data, we elicited wide proper prior
distributions. For the parameters in the longitudinal submodel, we followed Lunn et al. [30] except for
the standard deviations. In particular, we selected N(0, 100) for the 𝛽’s regression coefficients. The ordi-
nal constraint for the cutpoints of the latent scale, −∞ < 𝛾1 < 𝛾2 = 0 < 𝛾3 < 𝛾4 = ∞, was expressed by
truncating the subsequent prior distributions in the appropriate parametric subspace

𝛾1 ∼ N
(
−log(3), 𝜎𝛾1

= 100
)
I(−∞, 𝛾2 = 0),

𝛾3 ∼ N
(
log(3), 𝜎𝛾3

= 100
)
I(𝛾2 = 0,∞),

where I(−) is the indicator function. Prior means for 𝛾1 and 𝛾3, respectively, correspond to the first and
third quartiles of a logistic distribution Lo(0, 1) in order to provide the same prior probability to each
response category. For the standard deviations 𝜎0 and 𝜎1, we choose a uniform distribution, Un(0, 10).
In the case of the survival submodel, we selected N(0, 100) for the 𝜂’s regression coefficients as well as
for the association coefficient 𝛼, and a gamma distribution Ga(1, 1) for the parameter 𝜆 of the baseline
hazard function because it mimics a constant baseline hazard function [49].

4.1. Posterior distribution

The posterior distribution 𝜋(𝜽, b ∣ D) was computed in terms of the hierarchical modeling (4) and approx-
imated using MCMC simulation methods through the JAGS software [50]. In particular, we run three
MCMC chains with 100,000 iterations, 10,000 of which were used for the burn-in period. The chains
were thinned by only storing every 270th iteration in order to reduce autocorrelation in the saved sam-
ple. Trace plots of the simulated values of the three chains appear overlapping one another indicating
stabilization. Convergence of the chains to the posterior distribution was assessed through the potential
scale reduction factor, R̂ , and the effective number of independent simulation draws, neff , [51] and [52],
respectively. R̂ compares the within-chain variance to the estimated variance of the posterior distribution
in such a way that R̂ values near 1 indicate that the simulated process has reached the posterior distribu-
tion. neff deals with the level of autocorrelation of the chains simulated values, so that neff > 100 indicates
that sufficient MCMC samples have been obtained.

Table II summarizes the approximate MCMC random sample from the marginal posterior distribution
𝜋(𝜽 ∣ D) through the mean, median, standard deviation, 2.5% and 97.5% percentiles. The last column
of Table II contains the probability that the corresponding parameter is positive: a 0.5 probability would
indicate that a positive value of the parameter is equally likely that a negative one, hence indicating little
relevance of the corresponding variable (given the remaining covariates). This is not the case for the
parameters of our model with probabilities that show a clear preference for being above or under zero.

The marginal posterior distribution associated to the population intercept 𝛽0 and slope 𝛽1 of the mean
of the latent breast density clearly states that both are negative, P(𝛽0 < 0 ∣ D) = P(𝛽1 < 0 ∣ D) = 1,
indicating decreasing values over time of the true latent breast density and therefore a higher probability

Table II. Posterior summaries of the parameters and hyperparameters
of the breast cancer joint model.

Mean SD 2.5% Median 97.5% P(⋅ > 0|D)

𝛽0 −1.4262 0.0346 −1.4964 −1.4251 −1.3608 0.0000
𝛽1 −0.0524 0.0018 −0.0560 −0.0524 −0.0489 0.0000
𝜎0 2.6067 0.0227 2.5643 2.6059 2.6534
𝜎1 0.0053 0.0018 0.0015 0.0053 0.0087
𝛾1 −4.6994 0.0269 −4.7521 −4.6998 −4.6489
𝛾3 1.7362 0.0156 1.7060 1.7364 1.7675

𝜆 1.5366 0.1044 1.3287 1.5387 1.7386
𝜂0 −7.6066 0.3369 −8.2476 −7.6011 −6.9337 0.0000
𝜂1 0.6227 0.1716 0.2747 0.6308 0.9517 0.9984
𝜂2 0.4535 0.1440 0.1644 0.4600 0.7210 1.0000
𝛼 0.1490 0.0207 0.1089 0.1496 0.1887 1.0000
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of being in the lower breast density categories with age. The variability associated with the random
intercept is important, E(𝜎0 ∣ D) = 2.6067, as a sign of high population heterogeneity with regard to
initial breast density. In contrast, there is small variability in the subject-specific slopes, E(𝜎1 ∣ D) =
0.0053, which denotes that subject-specific trajectories of the true latent breast density do not differ much
from the population trend. The estimation of the cut-points 𝛾1 and 𝛾3 is very stable and accurate. The
posterior means of the coefficients associated to the baseline covariates, family history of breast cancer,
and prior breast procedures, 0.6227 and 0.4535, respectively, indicate an increase of risk of breast cancer
detection when women have one or both of these risk factors. These values are consistent with the ones
reported in the literature. The strength of the association between the breast density and age at breast
cancer diagnosis is assessed through their posterior expectation E(𝛼 ∣ D)=0.149 and 95% credible interval
(0.1089, 0.1887). In addition, the posterior probability 1 for that coefficient being positive provides strong
support on the connection between breast density and breast cancer risk.

4.2. Probabilities associated to breast density BI-RADS categories

Figure 2 (top) shows the posterior mean and 95% credible interval of the posterior distribution 𝜋(P(yit =
Dk ∣ 𝛉) ∣ D) associated to each BI-RADS category for a generic woman in the study. Probabilities
associated to category BI-RADS b are always higher than 0.5, and grow slightly with age. Probabilities
for categories a, c, and d are initially very similar, but categories c and d decrease with age following
a similar pattern while category a increases (see Table S1 in Appendix). The information provided by
credible intervals is very valuable, thus indicating high precision in the estimated means.

Figure 2 (bottom) shows a violin plot (a combination of a kernel density plot and a boxplot) of the pos-
terior marginal distribution of the latent breast density at ages 50, 55, 60, 65 and 70. The four categories
of the ordinal breast density are marked with regard to the posterior mean of the cut points 𝛾1 and 𝛾3, and
𝛾2 = 0. The visual comparison between real and latent results is very interesting. We clearly appreciate
that the posterior marginal distribution of the latent breast density tends towards lower values with age. In

Figure 2. Age-specific population distribution of breast density. Posterior mean and 95% credible interval of the
probability associated to each BI-RADS category with respect to age (top) and violin plot of the posterior marginal
distribution of the latent breast density of an average woman at ages 50, 55, 60, 65, and 70 (bottom). Horizontal
dotted lines represent the posterior mean of the cut-points, thus approximately indicating the region of the latent

density corresponding to ordinal BD categories a, b, c, and d (from bottom to top).
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addition, the bottom tail of the distributions increase with age in detriment of the top tail, thus indicating
the general decreasing of breast density with age.

4.3. Assessment of the impact of the study variables on breast cancer risk

Relevant HRs arise from the combination of baseline covariate categories. Figure 3 shows the posterior
distribution of the HRs of a breast cancer diagnosis for family history of breast cancer, prior breast pro-
cedures, and both risk factors, with posterior means 1.864, 1.574, and 2.934, respectively. The marginal
effects of each covariate are relevant, with posterior probabilities 0.998 and 1.000 associated to HR values
greater than 1 for family history of breast cancer and prior breast procedures, respectively.

Following the ad-hoc procedure presented in Section 3.2, Figure 4 shows the posterior mean and 95%
credible intervals with regard to age of the approximate HR of a breast cancer diagnosis for women with
breast densities b, c, and d compared with women with the same covariate values and breast density
a. Changes in breast density from category a towards more dense categories have a strong effect on
breast cancer risk. We observe posterior means of the HR around four for category d versus a, and HRs
greater than 1 (around 1.7 and 2.6) when comparing categories b and c versus a, respectively. A gently
wavy behavior for the posterior distributions and credible intervals of the HRs with respect to age can be
appreciated, as a consequence of the simulation of the logistic error in the procedure.

4.4. Prediction

Figure 5 shows the posterior mean (10) and 95% credible band for four of the women without cancer in
Figure 1, at the end of follow-up. As expected, breast cancer-free probabilities are very high and decrease
with age. It is worth noting the narrowness of the bands corresponding to women with a higher number
of density measurements, possibly because of the precision of the random effects estimates. Women with
high breast density values seem to have lower breast cancer-free survival probabilities. However, we must

Figure 3. Posterior distribution of the hazard ratios associated to family history of breast cancer and prior
breast procedures.

Figure 4. Approximate posterior mean and 95% credible interval with regard to age of the HRs of a BC diagnosis
forwomenwithbreastdensityb, c, and d ascomparedwithwomenwith thesamecovariatesandBDmeasurement a.

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5267–5282
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Figure 5. Posterior mean and 95% credible band of the probability of a breast cancer-free diagnosis for women
with IDs 942; 5318; 9672; and 17540 without breast cancer at the end of the follow-up. The value of the probability

at the lower right of each graphic is the subsequent posterior mean at 70 years.

Figure 6. Posterior predicted mean of the breast density in the BI-RADS scale over age for women with IDs with
IDs 942; 5318; 9672; and 17540 without breast cancer at the end of the follow-up.

also consider the baseline risk factors. Thus, disease-free survival is higher for woman 942, who has a
stable very high breast density, than for woman 9672, who experiences a decrease in density. This result
can be attributed to presence of prior breast procedures in woman 9672 and absence of them in woman
942. Both women do not have family history of breast cancer.

Figure 6 shows the posterior predictive distribution of the ordinal breast density categories for the
women in Figure 5. We appreciate a great variability among the predicted BI-RADS trajectories, and
for most of the selected women, category b has the highest probabilities over age. But, for woman 5318
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category a is always the most prevalent with an increasing trend over age, followed by categories b, c
and d. These results are in line with the observed breast density trajectory for this woman: three breast
density measurements with values b, a and a at late ages 65, 67, and 69, respectively. In contrast, for
woman 942 category d is always the most prevalent with a decreasing trend over age. These results are
also consistent with the observed breast density trajectory for this woman, stable with very high breast
density at relatively late ages 61, 63, 65, 67, and 69.

5. Discussion

We propose a Bayesian joint model that combines the information provided by a longitudinal ordinal pro-
cess and a left-truncated time-to-event outcome. The joint density of both processes is approached through
a shared-parameter model which generates a structure of association and conditional independence
between both outcomes by means of a vector of common random effects.

We chose a latent variable formulation for the longitudinal process which translated the ordinal scale to
the framework of linear mixed models, with a logistic distribution for the measurement error. The latent
variable approach facilitates the computational implementation of the model but introduces complexity
in the interpretation of results. We assume a logistic distribution for the latent variable that implies the
logistic link for cumulative probabilities. Other models might be also appropriate. The most usual alter-
natives are the normal and the extreme value distributions, which result in the probit and complementary
log-log regression links, respectively. It is widely accepted that probit and logit links produce similar
results. This also occurs in our study (results not shown), where we have implemented the probit link to
assess the robustness of the model. This is not the case for the extreme value distribution that, unlike the
logistic and normal ones, is not symmetrical.

We consider that the cut-points that relate the ordinal and latent variables are common for all individu-
als and time. This assumption may produce some stiffness in the longitudinal model. Thus, individual or
time-specific cut-points might endow of more flexibility to the longitudinal latent variable at the expense
of a more complex model. Dealing with more than four categories in the ordinal variable is not straight-
forward. One of the reasons for this is that one or both of the endpoints of the truncated intervals in
which the marginal prior distribution of each unknown cut-point is defined can be also unknown [53].
The estimation of these models involves important computational issues in the MCMC sampling that
have provided many discussion and proposals, such as hybrid Metropolis–Hasting algorithms to sample
from the subsequent posterior distribution [54, 55].

Robustness is a major statistical concern in Hierarchical Bayesian models because it can be affected
by an inappropriate choice of hyperprior distributions for hyperparameters. We have tested the sensitivity
of the model using other prior specifications for the hyperprior distribution of the random effects scale
parameter. In particular, we have considered a wide uniform distribution, Un(0, 100), as an alternative to
the elicited Un(0,10) in the paper and inverse-gamma hyperdistributions, IGa(0.01, 0.01) and IGa(0.001,
0.001), because of their common use in Bayesian applications. All of them provided almost identical
results (not shown in the paper), possibly because of the large sample size.

Our proposal could be applied to a variety of real problems devoted to analyze time-to-event outcomes
with temporal ordinal endogeneous covariates. We explored the role of death prior to breast cancer diag-
nosis as a competing risk. The cumulative incidences estimated with the Kaplan–Meier method or the
competing risks with cause-specific hazards approach are very similar, even at older ages (See Figure A1
in the Supplementary file). Therefore, even though the censoring due to the competing risk “death” was
informative, it would hardly affect our estimates. Event times have been modeled in terms of relative risk
models with left-truncation as a corrective mechanism for the delayed entry bias. Left truncation is com-
mon in observational studies of risk factors, where not all the participants enter the study at time zero. We
select the Weibull distribution as baseline risk function because it is a traditional model for survival data
with a great flexibility in representing different types of risk. The exploration of more sophisticated base-
line risk functions, which include multimodality and heavy tailed distributions, in the area of Bayesian
joint modeling is a relevant subject with strong connections with the specification of prior distributions.
See [56] for a detailed explanation of piecewise constant hazard models and Gamma processes. In addi-
tion, the latent linear mixed model is a flexible model that can accommodate heterogeneous trajectories,
from linear to complex functions. This is the case of linear models expressed in terms of spline bases to
accommodate non-linear profiles [57].

We have used our joint model for analyzing the relationship between mammographic breast density and
breast cancer risk in women attending a public screening program. A linear subject-specific trajectory of
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the latent variable is included in a relative risks survival model together with two of the most known breast
cancer risk factors, family history of breast cancer and previous breast procedures. Our joint model for
breast cancer and breast density is a good starting point that provides results consistent with the literature
[16, 18, 19, 21]. They are the basis for a rationale for extending the model and assessing its adequacy
and accuracy. Evaluating the ability of breast density to predict time to breast cancer diagnosis, under
our joint model, by means of calibration and discrimination measures [58] is a major concern of our
research. The discriminative power of our model should offset its complexity. Discrimination measures
based on receiver operating characteristic curves are commonly used for assessing predictive accuracy.
We are currently exploring a general latent variable approach that could be appropriate.

In contrast to studies published to date, our study is the first to have used the complete longitudinal
history of breast density for assessing breast cancer risk over time, at population and individual level.
Potential benefits of the proposed joint model include obtaining individual predictions of time-free of
breast cancer at age u > t, given the observed responses up to age t, and also individual longitudinal
predictions of future breast density values. Thus, a joint model similar to that shown here could be used for
surveillance of breast cancer risk over time, for scheduling screening exams based on individual dynamic
predictions, and also in discussing prevention strategies for those at high risk [16].
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