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ABSTRACT: A series of five isostructural 3D lanthanide-based
coordination polymers [LnIII

2(H2O)6(glu)(SO4)2]n [Ln = Pr(1),
Nd(2), Sm(3), Eu(4), and Gd(5)] was effortlessly obtained within
a few minutes via the microwave-heating method. The employ-
ment of auxiliary bases, that is, sodium hydroxide, 4,4′-bipyridine,
and 1,4-diazabicyclo[2.2.2]octane, led to the formation of the title
complex, whereas base-free synthesis yielded a three-dimensional
inorganic coordination polymer, [Ln2(H2O)4(SO4)3]n·nH2O, Ln =
Nd (2a). The robustness of the synthetic method was illustrated as
both microwave-heating and conventional hydrothermal techni-
ques also enabled the formation of a high-crystalline phase-pure
complex 1−5. In the structure of 1−5, glutarato (glu2−) and sulfato
ligands link dinuclear Ln(III) building units into three-dimensional frames. The glu2− ligands act as tethering linkers, expanding the
structure into a neutral 3D coordination network. Hydrogen bonds were found to be the predominant intermolecular interactions in
the crystal structures. Photoluminescence of the complex 1−5 was studied.

■ INTRODUCTION
Coordination polymers (CPs) and metal−organic frameworks
(MOFs) have been attracted by materials chemists, especially
in the recent two decades, because of their provable and
tunable potential applications1 such as catalysis,2,3 gas
adsorption and separation,4,5 magnetism,6 sensing,7−9 photo-
luminescence,10−13 and so on. Among these functional CPs
and MOFs, coordination polymers of the not-so-rare earth14

lanthanides (Ln-CPs) are of great interest due to their fantastic
coordination diversity and potentially applicable magnetic,
catalytic, and photoluminescence properties.15−19 Also, the
rational synthesis of Ln-CPs and MOFs with desired
functionality is, indeed, a great challenge because their
crystalline phase formations depend on the coordination
chemistry of metal centers, coordination as well as the acid−
base nature of linkers, synthetic technique, and synthetic
parameters such as solvent, temperature, pH, and stoichiom-
etry.20,21 The synthetic methods can be one of the key factors
that contribute to the formation of the aimed structures.20 In
this work, we employed the microwave-heating method proven
as an alternative route toward new coordination polymeric
compounds compared with the conventional hydrothermal
method, using water as a green solvent. Due to the fact that the
ionic radii of lanthanide cations are relatively larger than those
of first-row transition metals, they can offer accessible
coordination sites with diverse coordination geometries that

allow the formation of fascinating new architecture with
intrinsic photoluminescence and/or magnetic properties.22−25

The luminescence of trivalent lanthanide (Ln3+) cations is
offered by intraconfigurational f−f transitions, which often
show luminescence in the regions of visible or near-infrared
light upon irradiation with ultraviolet radiation.26−30 The
photoluminescence properties of Ln3+ are intrinsically
emerging due to their electronic configuration [Xe] 4fn,
which carries a large set of electronic energy levels. Because the
core 4f levels are shielded by the filled 5s25p6 subshells, these
energy levels are thus defined. Each Ln3+ cation has, therefore,
a sharp fingerprint photoluminescence spectrum. Lanthanide-
based coordination polymers may enable potential applications
in sensing for stimuli, such as temperature and chemicals, that
influence the luminescence properties.31,32 In the context of
crystal engineering, the intrinsic nature of organic linkers, such
as molecular flexibility, coordination modes, connectivity,
point of extension, size, and functional factors, such as
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aromaticity functional groups, are crucial for linker selec-
tion.33,34 Glutarate (glu2−) anion is a flexible linker from the
full deprotonation of glutaric acid (HOOC(CH2)3COOH,
H2glu) that can adopt different coordination modes.35−37 The
flexibility in the molecular conformation of the chain-like
aliphatic carboxylate, like glu2−, leads to an unprecedented
topological structure that, sometimes, leads to fascinating
properties.38 There are several Ln-CPs with glutarate as a key
organic linker reported up-to-date, such as {[Nd(H2O)4(glu)]-
Cl}n

39,40 and {[Nd2(H2O)2(glu)3]·2H2O}n.
41 Auxiliary organic

ligands are often introduced into the coordination entity in
order to promote the antenna effect, which directly coordinates
to Ln3+ cation and enhances Ln3+ emission by using their
intrinsic chromophore nature of the π-conjugated aromatic
system,26,42,43 such as in [EuIII(BSA)(glu)(H2O)2]n [Ln = Eu,
Sm, Ce, Pr, Nd; HBSA = benzenesulfonic acid],44 [LnIII(glu)-
(pic)(H2O)2]n [Ln = Sm, Tb and Eu]; Hpic = picolinic
acid],45 [LnIII

2(H2O)2(ip)(glu)2]n [Ln = Gd, Dy, Y; H2ip =
isophthalic acid], and [Sm2(H2O)2(ip)(glu)2]n.

46 The lantha-
nide and group 3 element coordination polymers with glu2−

and 1,10-phenanthroline as auxiliary chelating ligands [Ln-
(phen)(glu)Cl]n [Ln = Y, Tm; phen = 1,10-phenanthroline],
[Ln2(phen)2(g lu)3] n [Ln = Ce , Tb , Ho] , and
[La2(glu)3(H2O)3]n exhibited the effects of auxiliary organic
ligands on their photoluminescence properties.26 Divalent
sulfate anion was found to be one of the inorganic building
blocks and auxiliary ligand for the supporting strength of the
inorganic layer structure in the ionic coordination polymers of
{[4,4′-bipyH2][La(SO4)2]·2H2O}n,

47 [Eu3(2,6-pdc)3(2,6-
Hpdc)(SO4)(H2O)3]n, [Ln2(2,6-pdc)2(SO4)(H2O)2]n [Ln =
Ce, Pr, Nd, Sm], and [Ce5(2,6-pdc)6(SO4)2(H2O)3·
(Me2NH2)]n [2,6-pdcH2 = pyridine-2,6-dicarboxylic acid].48

Herein, we report a synthetic exploration of new
lanthanide−sulfate−glutarate coordination polymers of the
early lanthanides using a flexible chain-like glu2− as an organic
spacer. The influences of the base, as well as various synthetic
techniques, on the phase formation were studied. From the
identical synthetic conditions with only the presence/absence
of a base, two coordination polymers, formulated as
[Ln2(H2O)6(glu)(SO4)2]n [Ln = , Pr(1), Nd(2), Sm(3),
Eu(4), Gd(5)] and [Nd2(H2O)4(SO4)3]n·nH2O, 2a, emerged.
Photoluminescence of the reported Ln-CPs has also been
studied and reported herein.

■ RESULTS AND DISCUSSION
Synthesis and Structural Description of 1−5. Five

isostructural lanthanide-based coordination polymers
[Ln2(H2O)6(μ4-glu)(μ3-SO4)2]n (Ln = Pr, 1; Nd, 2; Sm, 3,
Eu, 4; Gd, 5) were successfully and effortlessly synthesized
using the microwave-heating method. As a representative of
the series, a single crystal of [GdIII

2(H2O)6(μ4-glu)(μ3-SO4)2]n,
5, was selected for X-ray single-crystal structure analysis. The
crystallographic information and structural refinements of 5,
compared to its reported congener, [NdIII

2(H2O)6(μ4-glu)(μ3-
SO4)2]n, discovered by our group,49 are listed in Table 1. Note
that the unit cell parameters of 5 (Gd) are relatively smaller
than that of 2 (Nd) due to lanthanide contraction found in
ordinary lanthanide CPs and MOFs.26 The X-ray crystal
structure revealed that the titled coordination polymers
crystallize in the monoclinic P21/c space group. Unambigu-
ously, there are two crystallographically independent trivalent
Gd(III) atoms in the asymmetric unit; both are coordinated to
nine crystallographically unique oxygen atoms: three glutarate

ligands, three different sulfate anions, and three aqua ligands
adopted in the distorted tricapped trigonal-prismatic coordina-
tion geometry, TPRS-{GdIIIO9}. The Gd−O bond distances
are 2.331(5)−2.825(7) Å, comparable to the related reported
polymeric structures.50,51 These are relatively shorter than
those Nd−O bonds found in its neodymium congener, 2
(Nd), that is in the range of 2.383(2)−2.785(2) Å, since Gd3+

has smaller atomic radii than Nd3+ (see Tables S1 and S3).
There are two crystallographically unique μ3-sulfato ligands
with identical coordination modes, μ3-sulfato-κ1O:κ1O′:κ1O″ or
[3.1110], present in the structure, as shown in the asymmetric
unit (see Figure 1a,c). The inorganic assembly by edge-sharing
TPRS-{GdIIIO9} polyhedrons linked with the μ3-sulfate ligands
ends up w i th an infin i t e po l ymer i c l a y e r o f
{Gd2(H2O)6(SO4)2}n

2n+ cation that paralleled to the (011)
layers. These cationic sheets comprise large inorganic {Gd-
(SO4)}4 rings that are stabilized by hydrogen-bonding
interactions between the ligating aqua and the bridging sulfato
ligands (see Figure 2). The hydrogen-bonding interaction
parameters of 5 are given in Table S4. The formation of a
three-dimensional coordination network is eventually enabled
by connecting the adjacent cationic {Gd2(H2O)6(SO4)2}n

2n+

sheets by the bridging glutarato ligands (see Figure 3). The
bridging glutarate anion is bound in the uncommon chelating
bridge mode of μ4-glutarato-κ1O:κ2O′:κ1O″:κ2O‴, as depicted
in Figure 1c. The conformation of glutarate ligands about C−C
bonds is all staggered with an anti−anti conformation and with
torsion angles of about C1−C2−C3−C4, 155.9(2)°, and C2−

Table 1. Crystal Data and Structure Refinement for 2a and 5
Compared with Those of 2 as Reported in the Referencea

identification
code 2 (ref 49) 2a (this work) 5 (this work)

CCDC No. CCDC 2107848 CSD 2303320 CCDC 2302504
empirical
formula

C5H18Nd2O18S2 H10Nd2O17S3 C5H18Gd2O18S2

temperature/K 298(2) 293(2) 298(2)
crystal system monoclinic monoclinic monoclinic
space group P21/c P21/c P21/c
a/Å 15.5461(1) 13.8068(4) 15.4247(2)
b/Å 12.6621(1) 9.5985(3) 12.5175(2)
c/Å 8.8883(1) 10.2682(4) 8.8101(2)
β/° 95.287(1) 100.050(3) 95.513(2)
volume/Å3 1742.19(3) 1339.91(8) 1693.17(5)
Z 4 4 4
crystal size/
mm3

0.3 × 0.3 × 0.1 0.39 × 0.38 × 0.3 0.33 × 0.3 × 0.18

radiation MoKα
(λ = 0.71073)

MoKα
(λ = 0.71073)

MoKα
(λ = 0.71073)

2θ range for
data
collection/°

4.156 to 54.888 5.196 to 54.702 4.198 to 54.912

reflections
collected

38711 27754 22904

independent
reflections

3830[Rint =
0.0667, Rsigma =
0.0381]

2796[Rint =
0.2200, Rsigma =
0.0824]

3660[Rint =
0.0454, Rsigma =
0.0849]

goodness-of-fit
on F2

1.061 1.039 1.037

final R indexes
[I ≥ 2σ (I)]

R1 = 0.0240, wR2
= 0.0502

R1 = 0.0761, wR2
= 0.1880

R1 = 0.0638, wR2
= 0.0500

final R indexes
[all data]

R1 = 0.0282, wR2
= 0.0536

R1 = 0.0944, wR2
= 0.2409

R1 = 0.0764, wR2
= 0.0683

aR1 = ∑||F0| − |Fc||/∑|F0| and wR2 = [∑w(F0
2 − Fc

2)2/∑wFo
4]1/2 for

F0
2 > 2σ(F0

2).
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C3−C4−C5, 173.8(1)°. As depicted in Figure 3b,c, the
bridging glutarato ligand cross-linked the adjacent inorganic
gadolinium-sulfato-{Gd2(H2O)6(SO4)2}n

2n+ sheets that were
solely made from crystallographically related trivalent
gadolinium (Gd1 or Gd2), causing the packing of the cationic
layers in ABAB··· fashion along the b- and c-axes of the unit
cell.

The X-ray crystal structure of [Gd2(H2O)6(μ4-glu)(μ3-
SO4)2]n, 5, as described above, can be definitely a
representative of the well-washed and dried bulk crystalline
solids obtained from the rapid microwave-heating synthesis as
the well-indexed powder X-ray diffraction (PXRD) pattern
compared with the calculated patterns of 5, as shown in Figure
4a and supported by elemental microanalysis. The presence of
glutarate and sulfate in the structure was affirmed by Fourier
transform infrared (FTIR) spectroscopy (see Figure S1). The
asymmetric and the symmetric stretching bands, νas(C�O)
and νs(C�O), of carboxyl groups in 5 (Gd) are at 1538 and
1443 cm−1, respectively, whereas the stretching band of sulfate
(νas(SO4

2−)) is at 1104 cm−1.52 These ν(C�O) bands are
slightly blue-shifted compared to the stretching bands found in
the neodymium congener (complex 2, νas(C�O) at 1533
cm−1 and νs(C�O) at 1431 cm−1).

The identical microwave-heating synthetic conditions were
applied to the early lanthanide congeners, that is, praseody-
mium (Pr), neodymium (Nd), samarium (Sm), and europium
(Eu), using their prepared hydrated sulfate salts as starting
materials. From the PXRD patterns unambiguously illustrated
in Figure 4c, it is proved that the rapid microwave-heating
synthesis leads to isostructural crystalline structures of
[Ln2(H2O)6(μ4-glu)(μ3-SO4)2]n, where Ln = Pr(1), Nd(2),
Sm(3), Eu(4), and Gd(5). Note that the PXRD patterns were
compared to the theoretical PXRD patterns of 2 (Nd) and 5
(Gd) that were calculated against the atomic position, unit cell
composition, and lattice parameters of the X-ray structures of 2
(Nd, reported by our group)49 and 5 (Gd, this work). The
isostructural lanthanide coordination polymers can emerge due
to the similarity in the ionic radii of the trivalent Ln3+ cations,
as found in the other related lanthanide−glutarate series.26,51

Since the availability of the starting materials, the neodymium
coordination polymer [Nd2(H2O)6(μ4-glu)(μ3-SO4)2]n was
selected for further studies on synthetic technique, the effect
of bases, and thermal stability.

As the crystalline-phase purity is well indicated by PXRD
patterns, thermogravimetric analysis (TGA) of 2, as a
representative example, was done in order to fulfill the
chemical composition of the materials, especially the
composition of combustible organic moiety and water

Figure 1. (a) Extended asymmetric unit of [Gd2(H2O)6(glu)-
(SO4)2]n, 5, showing the coordination environment with displace-
ment ellipsoids at the 50% probability level. (b) Polyhedral
representations illustrating coordination geometries of the two
crystallographically unique TPRS-{GdIIIO9}, Gd1 and Gd2, in 5. (c)
Coordination modes of glutarato and sulfato ligands in 5.

Figure 2. (a) Twelve crystallographically dependent hydrogen-bonding interactions (green dashed line) in [Gd2(H2O)6(glu)(SO4)2]n, 5. (b) O−
H···O hydrogen-bonded in a cationic 2D-{Gd2(H2O)3(SO4)2}n

2n+ layer in 5 viewed along a-axis.
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contents. TGA/DTA has been carried out under air
atmosphere in the range of 40−1000 °C (see Figure S2).
The net weight loss of 53.17%, which occurred at 193, 595,
645, and 927 °C, corresponds to the chemical formula
[Nd2(H2O)6(C5H6O4)(SO4)2]n (calcd 53.19%). Three endo-
thermic (193, 595, and 927 °C) peaks and one exothermic
(645 °C) peak appeared in the DTA. The weight losses are
due to the removal of water, sulfate, and gaseous products of
the combustion of organic moieties, as the 46.83% residue is
Nd2O3 (confirmed by PXRD, calcd 46.81%).

Synthetic Method-Independent Synthesis of 2 (Nd).
The identical stoichiometric compositions of starting materials
were analyzed, and then different synthetic methods were
applied such as microwave-heating (identical to the above
procedure) and conventional hydrothermal method at 120 °C
for 24 h. As the PXRD patterns of the obtained products from
both synthetic methods were well indexed against the unit cell
parameters and the atomic position in the crystal structure of

2, as shown in Figure 4, the conventional hydrothermal
synthesis (24 h) and microwave-heating technique (several
minutes) yielded the identical compound. Note that the
average yield of the microwave-heating method (56 ± 3%
yield, 10 min) was superior to that of the conventional
hydrothermal method (34 ± 2% yield, 24 h). This obviously
indicates that this microwave-heating method can be an
alternative synthetic method for lanthanide coordination
polymers that shortens the reaction time from 24 h to several
minutes. Moreover, this rapid synthesis employs water, a green
solvent, and can save much time and energy in coordination
polymer synthesis.

Base-Directed Formation of 2 and Structural De-
scription of 2a. In the first blueprint of crystal engineering,
we honestly aimed to introduce the extended N-donor
bidentate ligand such as 4,4′-bipyridine (4,4′-bipy) or
diazabicyclo[2.2.2]octane (DABCO) into the polymeric
structure. However, no such organic base is presented in the

Figure 3. Graphical representation of the X-ray structure of [Gd2(H2O)6(glu)(SO4)2]n, 5, viewed along the (a) a-, (b) b-, and (c) c-axis.

Figure 4. PXRD pattern of (a) as-synthesized [Gd2(H2O)6(glu)(SO4)2]n, 5, and [Nd2(H2O)4(SO4)3]n·nH2O, 2a (black), compared and indexed
to the calculated patterns (red); (b) as-synthesized [Ln2(H2O)6(glu)(SO4)2]n, where Ln = Pr (1), Nd (2), Sm (3), Eu (4), Gd (5), compared to
the calculated patterns; (c) bulk solid obtained from the synthesis using microwave-heating and the conventional hydrothermal method; and (d)
bulk solid obtained from the synthesis with/without different base addition.
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final structures, as described above. Therefore, the synthesis
was modified by removing the base from our synthetic recipe,
and we found that the synthesis without base addition led to
the formation of a new inorganic coordination polymer of
[Nd2(H2O)4(μ4-SO4)3]n·nH2O, 2a, as evidenced from the
PXRD pattern in Figure 4b (top). Apart from the organic base
4,4′-bipy and DABCO, an ordinary inorganic base NaOH can
also direct the phase formation of 2. This exhibits the role of
bases in the context of carboxylic acid deprotonation that
drives and promotes the coordination polymer formation very
well. The base-directed synthesis can be summarized in
Scheme 1.

The single crystals from the synthesis without base addition
were selected for further X-ray crystal analysis. Crystallographic
information and structural refinements of [Nd2(H2O)4(μ4-
SO4)3]n·nH2O, 2a, are listed in Table 1. The X-ray crystal
structure shows that 2a also crystallizes in the monoclinic P21/
c space group and comprises two crystallographically unique
trivalent Nd(III) in the asymmetric unit (see Figure 5a). NdIII

is surrounded by nine crystallographically unique oxygen
atoms, seven of μ4-sulfato oxygens and two oxygens from the
two ligating waters. The Nd−O bond distances are, as listed in
Table S2, found to be in the range 2.400(8)−2.782(9) Å.
There are three crystallographically dependent μ4-sulfato
ligands with two types of coordination modes, that is, μ4-
sulfato-κ1O:κ2O′:κ1O″:κ2O‴ or [4.2211] and μ4-sulfato-
κ1O:κ1O′:κ1O″:κ1O‴ or [4.1111] in the crystal structure, as
shown in Figure 5a,b. The edge-sharing of {NdIIIO9} building
unit that is linked with the μ4-sulfato ligands leads to an infinite
polymeric 3D structure of [Nd2(H2O)4(μ4-SO4)3]n that allows
the formation of 1D channel along the [001] direction (see
Figure 5d) for a crystallographically disordered waters of
crystallization (O17W and O17W′). The crystal framework of
2a is also hydrogen-bonding-rich as there are 14 crystallo-
graphically independent hydrogen-bonding interactions in the
crystal structure (see Figure 5c). The hydrogen-bonding
interaction parameters of 2a are listed in Table S5.

Photoluminescence Properties of 1−5. As shown in
Figure 6d, it can be clearly seen that Eu3+ in
[EuIII

2(H2O)6(glu)(SO4)2]n, 4, can show intense characteristic
emissions from 5D0 →7FJ (J = 0, 2, 4). For Pr3+ in 1, and Nd3+

in 2, only weak emissions can be observed, that is, 3P0 →3HJ (J
= 3, 5) (see Figure 6a,b), and for Sm3+ in 3, no emission peaks
were observed (see Figure 6c). As expected, the photo-
luminescence spectrum of Gd3+ in 5 exhibits 8S →6P7/2, as

shown in Figure 6e. The remarkably high energies of the
excited states of Gd3+ ion were reported to be due to the
exceptional stability of the half-filled f-shell that prevents
energy transfer from ligands, which consequently causes any f−
f transition unachievable.53,54

■ CONCLUSIONS
Five isostructural lanthanide-based coordination polymers,
[LnIII

2(H2O)6(glu)(SO4)2]n [Ln = Pr(1), Nd(2), Sm(3),
Eu(4), and Gd(5), were successfully and rapidly synthesized
by using the microwave-heating method. The phase formation
of the reported coordination polymer series is found to be
synthetic-method-independent and base-directed. The syn-
thesis of 2 without base addition leads to a polymeric inorganic
coordination polymer of [NdIII

2(H2O)4(SO4)3]n·nH2O. This
exhibited the role of the base in the context of the protonation
state of the polycarboxylic acids as organic linkers in the
synthesis of lanthanide-based coordination polymers. The
photoluminescence properties of the five complexes were
studied.

■ EXPERIMENTAL SECTION
Physical Measurements. Powder X-ray diffraction

(PXRD) patterns were investigated with a Rigaku SmartLab
diffractometer (Mo Kα). The FT-IR spectrum was collected
using a Frontier PerkinElmer FT-IR spectrometer with a
universal ATR sampling accessory in the range of 4000−400
cm−1. Thermogravimetric/differential scanning calorimetric
analyses (TGA/DSC) were conducted using a Rigaku Thermo
Plus EVO2 system. The photoluminescence spectra were
collected by using an Avantes spectrophotometer (AvaSpec-
2048TEC-USB2-2) with a 255 nm excitation source.

Synthesis of 1−5. Lanthanide (III) sulfate hydrate salts
Ln2(SO4)3·nH2O were prepared by dissolving Pr6O11 (1) or
Ln2O3 (Ln = Nd, 2 and 2a; Sm, 3, Eu, 4; Gd, 5) in 6.0 M
sulfuric acid and then recrystallizing and washing the obtained
sulfate salts by deionized water. Glutaric acid (C5H8O4, Sigma-
Aldrich, 99%) was then added into a 0.020 M Ln2(SO4)3
solution (5.00 mL, 0.100 mmol) in a 50 mL glass reactor or 40
mL Teflon-lined Parr autoclave. A 0.020 M base in DI water
[prepared from sodium hydroxide (NaOH, Loba Chemie,
98%), 4,4′-bipy (C10H8N2, Sigma-Aldrich, 98%), or DABCO
(Sigma-Aldrich, >99%)] solution (5.00 mL, 0.100 mmol) was
then added into the beaker. The solution was then heated by
800 W microwave irradiation for 10 min or an electric oven at
120 °C for 24 h. Crystals of 1−5 were crystallized from the
reaction with base addition and then collected and stored in
the mother liquor. Crystals of 2a were crystallized from the
reaction without a base addition. [Pr2(H2O)6(C5H6O4)-
(SO4)2]n (1) Yield: 31%. FT-IR (ATR, ν, cm−1): 3600 (m),
3547 (m), 3501 (m), 3463 (m), 3309 (m), 3241 (m), 3167
(m), 3081 (m), 2975 (m), 2376 (w), 2189 (w), 2034 (w),
1894 (w), 1658 (m), 1528 (s), 1458 (s), 1361 (m), 1305 (m),
1207 (s), 1154 (vs), 1060 (vs), 992 (vs), 766 (s), 729 (m),
655 (s), 605 (vs), 586 (vs), 502 (s), 444 (m);
[Nd2(H2O)6(C5H6O4)(SO4)2]n (2) Yield: 56% with micro-
wave-heating or 34% with the conventional hydrothermal
method. FT-IR (ATR, ν, cm−1): 3560 (w), 3510 (w), 3464
(w), 3375 (m), 3203 (m), 3058 (w), 2932 (w), 2350 (w),
2114 (w), 2082 (w), 1918 (w), 1613 (m), 1533 (s), 1431 (s),
1354 (w), 1262 (w), 1104 (vs), 1095 (vs), 954 (m), 790 (w),
749 (w), 652 (s), 593 (vs), 499 (s), 456 (s);

Scheme 1. Synthesis of Lanthanide−Glutarate−Sulfate
Coordination Polymers Reported in This Work
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Figure 5. (a) Asymmetric unit of [Nd2(H2O)4(SO4)3]n·nH2O, 2a. (b) Coordination modes of three crystallographically unique sulfato ligands in
2a. (c) Fourteen crystallographically dependent O−H···O hydrogen-bonding interactions in 2a. (d) Polyhedral representation of 2a, viewed along
the c-axis.

Figure 6. Photoluminescence spectra (λexcitation = 255 nm) of the as-synthesized [Ln2(H2O)6(glu)(SO4)2]n, (a) Ln = Pr (1), (b) Nd (2), (c) Sm
(3), (d) Eu (4), and (e) Gd (5).
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[Nd2(H2O)4(SO4)3]n (2a) Yield: 40%. FT-IR (ATR, ν, cm−1):
3375 (vs), 2349 (w), 2122 (w), 2085 (w), 1727 (m), 1647 (s),
1637 (s), 1341 (w), 1228 (m), 1197 (s), 1127 (vs), 1091 (vs),
1048 (vs), 1041 (vs), 1021 (vs), 971 (vs), 887 (s), 582 (vs),
535 (vs), 466 (m); [Sm2(H2O)6(C5H6O4)(SO4)2]n (3) Yield:
39%. FT-IR (ATR, ν, cm−1): 3781 (w), 3719 (w), 3477 (m),
3373 (m), 3242 (m), 3064 (m), 2947 (w), 2349 (w), 2112
(w), 1981 (w), 1898 (w), 1621 (m), 1536 (s), 1434 (s), 1356
(m), 1264 (m), 1110 (vs), 1098 (vs), 958 (m), 792 (m), 750
(m), 645 (s), 599 (s), 567 (s), 502 (s), 493 (s), 444 (s);
[Eu2(H2O)6(C5H6O4)(SO4)2]n (3) Yield: 44%. FT-IR (ATR,
ν, cm−1): 3377 (m), 3233 (w), 2945 (w), 2838 (w), 2353 (w),
2306 (w), 2082 (w), 1622 (m), 1538 (s), 1442 (s), 1356(m),
1331 (w), 1264 (m), 1258 (w), 1108 (vs), 1104 (vs), 792 (m),
790 (w), 745 (w), 645 (s), 598 (vs), 503 (s), 493 (s), 474 (s);
[Gd2(H2O)6(C5H6O4)(SO4)2]n (3) Yield: 38%. Analysis calcd
for complex 3: C, 8.06%; H, 2.44%; found: C, 8.05%; H,
2.46%. FT-IR (ATR, ν, cm−1): 3377 (m), 3235 (m), 2948 (w),
2854 (w), 2353 (w), 2301 (w), 2212 (w), 2188 (w), 2082 (w),
2071 (w), 1984 (w), 1917 (w), 1623 (m), 1538 (s), 1443 (s),
1356 (m), 1332 (w), 1265 (m), 1229 (w), 1108 (vs), 1084
(vs), 964 (m), 870 (w), 792 (m), 752 (m), 646 (s), 598 (s),
493 (s).

Crystal Data Collection and Refinement. Suitable
crystals of 2a and 5 (Gd) were selected and collected on a
Rigaku XtaLAB diffractometer (Mo Kα) with a HyPix 6000HE
detector. The crystals were kept at 293 K for 2a and at 298 K
for 5 during data collection. Using Olex2, the structure was
solved with the ShelXT structure solution program using
Intrinsic Phasing and refined with the ShelXL refinement
package using least-squares minimization.55−57
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