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Cornelian cherry (Cornus mas) is a valuable source of phenolic antioxidants. Flavonoid derivatives as nonenzymatic antioxidants
are important in the pathophysiology of many diseases including neurological disorders (e.g., Alzheimer’s disease) or heart disease.
In this study, we examined the effect of an addition of freeze-dried fruit of cornelian cherry on three types of diets: control diet,
fructose diet, and diet enriched in fats (high-fat diet). This effect was studied by determining the following antioxidant parameters
in both brain tissue and plasma in rats: catalase, ferric reducing ability of plasma, paraoxonase, protein carbonyl groups, and free
thiol groups. Results indicate that both fructose diet and high-fat diet affect the antioxidant capacity of the organism. Furthermore,
an addition of cornelian cherry resulted in increased activity of catalase in brain tissue, while in plasma it caused the opposite effect.
In turn, with regard to paraoxonase activity in both brain tissue and plasma, it had a stimulating effect. Adding cornelian cherry to
the tested diets increased the activity of PON in both tested tissues. Moreover, protective effect of fruits of this plant was observed
in the process of oxidation of proteins by decreasing levels of protein carbonyl groups and thiol groups in brain tissue as well as in
plasma.

1. Introduction

Antioxidant potential of an organism depends on several
factors including, for example, type of diet, quantity of
consumed vitamins and minerals [1]. Consumption of fruits
and vegetables is recommended due to a high content of
antioxidants. However, there is a lack of sufficient evidence
indicating the necessity of applying special supplementation
with antioxidant vitamins [2, 3]. Results of Edwards et al.
[4] have shown that balanced energy diets fully cover the
demand for vitamins and minerals, and the ratio of pro- and
antioxidants in diet remains relatively balanced.

However, a large number of people select products with
a high content of sugars, with saturated fatty acids, or with
the combination of these components, which is associated

with an increased risk of lifestyle diseases. Epidemiologic and
experimental data have indicated that changes in the source
of lipids consumed in diet maymodify fatty acid composition
of many cell types [5].

To effectively protect body cells from oxidative stress
caused by unbalanced life style and environmental pollution,
everyday diet should be enriched with supplements which
would be the most efficient and safest source of antioxidants,
such as fruits and vegetables containing compounds which
decrease the quantity of free radicals generated in the body
and especially in the brain.

Cornus mas as a product with a high content of antiox-
idative components, vitamin C, polyphenols, anthocyanins,
andminerals [6], can be an interesting supplement to the diet,
decreasing systemic oxidative stress.
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The high content of vitamin C in its fruits makes it a
potential candidate to support treatment and/or prevention
of neurological diseases. In fact, the brain is mentioned as
one of the organs with the highest concentration of vitamin
C. Vitamin C is involved in the process of myelination,
and it is also a neuromodulator for neuronal mediators [7].
What is important is that vitamin C is able to penetrate
the blood-brain barrier [8]. In course of epilepsy, vitamin
C reduces neurodegenerative processes by reduction of lipid
peroxidation and, thus, participates in strengthening the
cell membrane [9]. Moreover, fruits of Cornus mas have
numerous health-related properties such as antimicrobial,
antiallergic, antihistamine, or antidiabetic ones [1, 10].

In case of well-balanced diet, the consumption of fruits
and vegetables, rich in flavonoids, provides the organisms
with their sufficient amount 𝑡 (approximately 1 g/day). Nev-
ertheless, most people do not consume a sufficient amount
of such food. Therefore, it is necessary to enrich daily diet
with supplements containing flavonoids. In addition, diet
should also be enriched with elements such as manganese,
copper, zinc, iron, and selenium, which facilitate assimilation
of flavonoids and enhance their properties.

Resveratrol is a polyphenol present in skin of red grapes.
Some results of the research indicated that resveratrol has
neuroprotective properties. Among others, it reduces neu-
ronal damage induced by effects of ethanol [11] and protects
neurons from toxic effects of beta-amyloid-protein which
plays an important role in the development of Alzheimer’s
disease [12]. In addition, resveratrol significantly reduced
kainic acid- (epileptogenous substance-) induced incidence
of convulsions [13] as well as death of neurons in hippocam-
pus [14].

Recently, attention has also been paid to green tea
neuroprotective properties due to high concentration of
flavonoids such a catechin and epicatechin. Epigallocatechin-
3-gallate (EGCG) is especially important [15]. Results of
behavioral tests in rats (run time, time spent in the probe test)
indicate that EGCG inhibits cognitive impairment caused
by pentylenetetrazole- (PTZ, epileptogenous substance-)
induced epilepsy. That effect may be related to antioxidant
properties of EGCG which protects brain cells against free
radical damage induced by PTZ. Moreover, this epicatechin
effects delay both myoclonic jerks and generalized tonic
clonic seizures. The results of the research by Xie et al.
demonstrated anticonvulsant properties of EGCG [16].

Another example of a natural substance known as a
source of antioxidants is curcumin, a polyphenol from a
plant,Curcuma longa Linn. Curcumin passes the blood-brain
barrier which facilitates its effect on brain neurons [17]. This
substance reduces neuronal death by inhibiting caspase-3
and expression of reactive astrocyte. Moreover, curcumin
prevents seizures resulting from kainic acid administration
[18].

Similarly to curcumin, hydroalcoholic extract of Embli-
ca officinalis reduced side effects of administration of penty-
lenetetrazole, such as seizures, impaired cognitive functions,
or oxidative stress [19, 20].

In traditional medicine, Glycyrrhiza glabra was used for
treatment of epilepsy and its effects are consistent with

Table 1: The composition of experimental diets.

Components Control diet
(C) %

Fructose diet
(F) %

Fatty diet
(Fa) %

Starch 62 32 32
Casein 20 20 20
Oil 5.0 5.0 5.0
Lard 0 0 30
Fructose 0 30 0
Calcium carbonate 2.8 2.8 2.8
Ca3(PO4)2 2.9 2.9 2.9
Lecithin 1.0 1.0 1.0
NaCl 0.3 0.3 0.3
Cellulose 4.7 4.7 4.7
Minerals and vitamins mix. 1.0 1.0 1.0
MgO 0.07 0.07 0.07
K2SO4 0.23 0.23 0.23

current results of animal studies [21]. Among bioactive
compounds present in the root of Glycyrrhiza glabra L.,
most of pharmacological properties are attributed to 18-𝛽-
glycyrrhetinic acid [22]. Ethanol extract from the root of this
plant is used in relieving effects of PTZ. The results of the
research by Chowdhury et al. demonstrated that polyphenol
substances show anticonvulsant potential and ameliorate
ROS induced neuronal damage [21]. Neuronal death due
to seizures may be the result of excessive production of
reactive oxygen species [23]. Nevertheless, increased activity
of antioxidant enzymes (catalase, superoxide dismutase) and
reduced intensity of lipid peroxidation [21] were observed in
brain tissue under the influence of that extract.

Brain tissue is susceptible to oxidative stress due to the
high demand for energy, a large amount of lipids and iron
as well as catecholamines which are sensitive to oxidation,
and lower levels of endogenous antioxidants. In main parts
of the brain, the location of catalase is uneven. Only a
small part of the whole brain which contains noradrenergic,
dopaminergic, and serotonergic neurons is characterized by
a particularly high activity of catalase [11].

In this study, the effect of a freeze-dried fruit addition
of cornelian cherry to three different diets was evaluated
to verify the hypothesis of a protective impact of cornelian
cherry on antioxidant status.

2. Materials and Method

2.1. Animals and Diets. Twelve-week old male Wistar rats,
weighting 250 ± 15 g, were used in the experiment. Rats
were randomly divided into 6 groups of 6 rats each and
acclimatized for 1 week before the main feeding experiment.
For 5 weeks, all rats were kept in stainless steel cages with
plastic bottom in a room with controlled light for 12 h
light/dark cycles, with temperature (23± 2∘C), humidity (50±
10%) kept constant with water ad libitum.

The animals in C− groupwere given normal rat chow.The
composition of each diet is shown in Table 1. Feed in groups
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C+, F+, and Fa+ was additionally enriched with freeze-dried
fruit of Cornus mas.

Fruits of this plant came from an experimental orchard
of Agricultural University located in Garlica Murowana.
From these fruits, stones were mechanically removed and the
obtained part pressed to pulp. The processed material was
lyophilized in the LIOGAM factory specializing in freeze-
drying of fruits and vegetables. The lyophilisate Cornus
mas powder was added in an amount of 10% by weight of
feed which contained all necessary ingredients for proper
development of the rats. It has been assumed that the amount
of lyophilisate can cover daily demand for raw fruits in
humans. These studies were conducted with an approval
of I Local Ethics Committee for Animal Experiments of
Jagiellonian University number 80/2009 17.09.2009.

2.2. Sample Collection and Analysis. At the end of the
experiment, after a 16-hour fast, all rats were weighed and
euthanized by intraperitoneal injection of sodium thiopental
(60mg/kg) in compliance with requirements of the I Local
Ethics Committee. Blood samples were taken from aorta into
heparinized tubes and then centrifuged (at 3000×g for 15
minutes at 4∘C) to obtain plasma which was immediately
analyzed or kept frozen (at −80∘C) until further analy-
ses. Similarly, brain tissue was rapidly removed, weighed,
immediately frozen in liquid nitrogen, and stored at −80∘C
until further analyses. Then, before the analysis, tissues were
homogenized with phosphate buffer (pH 7.4).

2.3. Antioxidant Parameters of Rat Brain Tissues and Plasma.
The activity of catalase (CAT; EC 1.11.1.6) was determined
using the kinetic method by Aebi [24] and estimated in
both plasma and brain tissues. The absorbance was read at a
wavelength of 240 nm and enzymatic activity was presented
as U/g protein. One unit of CAT activity was defined as the
amount of enzyme decomposing 1 𝜇mol of H

2
O
2
per minute.

Paraoxonase enzyme activity (PON; EC 3.1.8.1) was deter-
mined byEckerson’smodifiedmethod. Paraoxonase activities
measurements were performed in the presence of NaCl (salt-
stimulated activity).The rate of paraoxon hydrolysis (diethyl-
p-nitrophenylphosphate) was measured by monitoring the
increase of absorbance at 412 nm at 25∘C. The amount
of generated p-nitrophenol was calculated from the molar
absorptivity coefficient at pH 8.0, which was 18290M−1 cm−1.
Paraoxonase activity was expressed as U/mg protein in both
plasma and brain tissues [25].

The activity of FRAP (ferric reducing ability of plasma)
in plasma and brain tissue was measured at 37∘C and pH
3.6. Absorbance was measured after 30 minutes and it was
proportional to the combined ferric reducing/antioxidant
power of the antioxidants in protein. The final results were
expressed in mmol Fe2+/mg protein [26].

Levels of protein carbonyl groups (PCG) were deter-
mined according to the method of Levine [27]. 2,4-
Dinitrophenylhydrazine was used as carbonyl group reagent.
The absorbance was read at a wavelength of 370 nm.The level
of PCGwas expressed as nmol/mgprotein in both plasma and
brain tissue.

Determination of the concentration of free thiol groups
(SH) was performed by Hu [28]. The absorbance was read
at a wavelength of 412 nm. The level of SH was expressed as
mmol/mg protein in both plasma and brain tissue.

2.4. Statistical Procedure. Values are given as mean ± stan-
dard deviations (SD). Shapiro-Wilks test was applied to check
statistical evaluations of biochemical parameters. Statistical
differences between the diets (control diet, fructose diet, and
high-fat diet) and Cornus mas were analyzed by a “two-way
ANOVA” test with biochemical parameters difference as the
dependent variables and Diet, Cornus and Diet with Cornus.
The critical significance level was set as 𝑃 < 0.05. “Tukey’s
honestly significant difference” (HSD) test was applied to
assess significant differences (𝑃 < 0.05) between samples.The
statistical analysis was conducted using the STATISTICA 10
PL software (StatSoft, Inc.).

3. Results and Discussion

Dietary antioxidants are elements which play a particularly
important role in decreasing brain damage. Epidemiological
data provides information about benefits of the diet rich in
antioxidant compounds, whichmay play an important role in
preventingmany lifestyle diseases, such as cardiovascular dis-
ease, cancer, diabetes, Alzheimer’s disease, certain immune
disorders, and aging [29, 30]. Anthocyanins are considered
as potential scavengers of reactive oxygen species in vivo [31].
The plant particularly rich in these molecules is Cornus mas
[32, 33]. Numerous descriptions of neuro- and cytoprotective
activity of anthocyanins, in conditions such as Alzheimer’s
disease, stroke, and heart attack, can be found in the literature
[31].

To find out anti-/prooxidative properties of cornelian
cherry in brain tissue and plasma, in our research model
standard, fructose and high-fat diet enriched with freeze-
dried fruit of cornelian cherry were used (Table 1). What
is worth emphasizing is that the effect of an addition of
cornelian cherry on oxidative changes, for example, proteins,
has not been studied yet. An analysis of this issue may be
useful for evaluating the state of cell membrane, particularly
in brain tissue.

The basic function of CAT in cells is participation in
disproportionation reaction of hydrogen peroxide. Effective
removal of excess of peroxide can protect the system from
proteins, lipids, and carbohydrates damage.

In our experiment, it was observed that an addition of
cornelian cherry to control (C+) and high-fat (Fa+) as well
as fructose (F+) diet increased the activity of CAT in the
brain in a significant way (𝑃 < 0.05) (Table 2, Figure 1).
In the group with a control diet without cornelian cherry
(C−), the activity of this enzyme was significant (𝑃 < 0.05)
and higher than in the fructose (F−) and high-fat (Fa−)
groups. Combining fructose with cornelian cherry in the feed
caused the reduction of the catalase activity in the brain in
comparison to the control diet. The same effect was observed
in case of the combination of saturated fats with cornelian
cherry.
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Table 2: Activity of oxidative stress markers (CAT, PON1, FRAP, PCG, and SH) marked in brain tissue homogenates in Wistar rats. Data are
presented as means from independent measurements ± standard deviation (SD). Different letters in the same columns indicate significant
differences according to Tukey’s test (𝑃 < 0.05).

Diet Cornus CAT-brain
U/mg protein

PON1-brain
U/mg protein

FRAP-brain
mMFe2+/mg protein

PCG-brain
nM/mg protein

SH-brain
nM/mg protein

C− No 65.4 ± 17.9B 31.8 ± 14.3AB 0.112 ± 0.015A 3.4 ± 1.47AB 0.225 ± 0.091A

F− No 53.5 ± 20.6AB 20.7 ± 6.5A 0.168 ± 0.044AB 4.28 ± 1.37AB 0.317 ± 0.089A

Fa− No 32.2 ± 13.7A 17.1 ± 7.2A 0.226 ± 0.017C 4.71 ± 1.51A 0.092 ± 0.013B

C+ Yes 129.2 ± 21.2C 45.8 ± 8.4B 0.189 ± 0.041BC 4.47 ± 1.23A 0.254 ± 0.084A

F+ Yes 108.1 ± 8.5C 32.9 ± 11.6AB 0.132 ± 0.018A 2.24 ± 0.82B 0.222 ± 0.035A

Fa+ Yes 55.3 ± 16.6AB 24.7 ± 4.4A 0.196 ± 0.038BC 3.13 ± 0.73AB 0.077 ± 0.021B

C−: control; F−: fructose; Fa−: high fat; C+: Cornus with control; F+: Cornus with fructose; (Fa+): Cornus with high fat.
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Figure 1

In plasma of the animals fed with the high-fat diet,
the activity of CAT decreased statistically (Table 3, Figure 1).
Adding fructose to the feed also resulted in the statistically
significant decrease of the CAT activity in comparison to the
control group. An addition of cornelian cherry to the control
and high-fat diets statistically decreased the activity of CAT
as compared to that parameter in the C− and Fa− diets.

Comparing results of activity of CAT in brain tissue and
plasma, the opposite effect of an addition of cornelian cherry
was observed. In brain tissue, activity of this enzyme was
increased in the presence of cornelian cherry while in plasma
it decreased significantly. It can be assumed that cornelian
cherry contains substances which increase protection of the
nervous system against oxidative stress.

Catalase activity in the brain may be related to high
heterogeneity and location of this enzyme in the central
nervous system as well as a high level of its activity related to
physiologically important structures, for example, aminergic
neurons. Hydrogen peroxide (H

2
O
2
) may be generated in the

process of oxidative deamination of biogenic amines under
the influence of monoamine oxidase. The ability to produce
H
2
O
2
is also shown by a nitric oxide synthase and ascorbic

acid which are present in high concentrations in the brain
[34]. However, the yield of synthesis of hydrogen peroxide
in these paths is different. Still, another source of H

2
O
2
can

also be a superoxide anion formed with the participation of
superoxide dismutase, mitochondrial electron-transporting
chain, or cytochrome P450 [35].

Another enzyme the activity of which determines eval-
uation of oxidative status is paraoxonase-1 (PON1) [36].
It is extracellular esterase linked to high density lipopro-
tein (HDL) molecules through apolipoprotein A-1 (ApoA1)
[37, 38]. PON1 is responsible for anti-inflammatory and
antiatherogenic properties of HDL molecules in blood [39].
Low density lipoproteins (LDL), particularly their modified
forms, such as oxidized LDL, have proatherogenic properties
[40].

PON is an enzyme from the group of hydrolases, which
inhibits oxidation of lipoproteins [39]. PON activity may
be beyond genetics, also regulated by environmental factors
including diet and availability of antioxidants. Furthermore,
it was demonstrated that high-cholesterol-rich diet reduces
concentration of PON-1 [41]. Similarly, in our study, a
significant (𝑃 < 0.05) decrease activity of PON in brain tissue
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Table 3: Activity of oxidative stress markers (CAT, PON1, FRAP, PCG, and SH)marked in plasma inWistar rats. Data are presented as means
from independent measurements ± standard deviation (SD). Different letters in the same columns indicate significant differences according
to Tukey’s test (𝑃 < 0.05).

Diet Cornus CAT-plasma
U/mg protein

PON1-plasma
U/mg protein

FRAP-plasma
mMFe2+/mg protein

PCG-plasma
nM/mg protein

SH-plasma
nM/mg protein

C− No 467.1 ± 56C 336.3 ± 71.6AC 0.326 ± 0.065A 6.57 ± 1.94AB 2.554 ± 0.265A

F− No 272.9 ± 21.7A 263.1 ± 73BC 0.388 ± 0.075A 6.93 ± 1.96A 4.017 ± 1.226A

Fa− No 248 ± 23.4AB 186.6 ± 23.1B 0.417 ± 0.146A 5.85 ± 0.64AB 2.44 ± 0.642A

C+ Yes 304.1 ± 69.4A 423.7 ± 98.8A 0.413 ± 0.028A 6.78 ± 0.85A 2.179 ± 0.968A

F+ Yes 283.2 ± 41.8A 407.6 ± 64.7A 0.421 ± 0.085A 4.12 ± 1.01B 3.356 ± 2.697A

Fa+ Yes 188.6 ± 55.4B 388.8 ± 58.1A 0.406 ± 0.042A 5.54 ± 1.85AB 2.026 ± 0.85A

C−: control; F−: fructose; Fa−: high fat; C+: Cornus with control; F+: Cornus with fructose; Fa+: Cornus with high fat.
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and plasma was observed (Tables 2 and 3, Figure 2) in both
the fructose (F−) and the high-fat (Fa−) groups compared to
the control (C−).

The increase of PON1 activity has a protective effect
with regard to the LDL fraction and prevents its oxidation
caused by oxidative stress. In addition, Jarvik et al. showed
a significant effect of plant components on paraoxonase
concentrations in humans [42].

Diet rich in fruits and vegetables increased levels of PON1
in plasma, due to presence of natural antioxidants (vitamins
C and E) [42]. Addition of cornelian cherry fruits (“Cornus
Yes” in the figures) which are rich in polyphenols and vitamin
C to each diet also resulted in a significant (𝑃 < 0.05)
increase activity of PON1 both in plasma and in brain tissue.
In our research, adding lard to the control feed statistically
decreased the value of PON1 both in the brain and in the
plasma.

Most enzymes that are involved in oxidation contain iron
ions in the structure of heme or iron-sulfur centers. Breach
of iron homeostasis and excessive accumulation of those ions
in the brain is considered to be a cause of neuronal damage.
Changes in oxidation-reduction potential of cells may be the
result of chelate metal ions reactions (Cu2+, Fe3+) [43]. Total

antioxidant capability expressed as the ability to reduce the
Fe3+ to Fe2+ was determined by FRAP.

In brain tissue of the animals fed with the fructose or
high-fat (lard) diet (Table 2, Figure 3), a statistically signifi-
cant increase of the FRAP value was observed in comparison
to the control group. Adding cornelian cherry to the fructose
or high-fat diet caused a statistically significant decrease
of the FRAP value in comparison to the groups which
did not receive the cornelian cherry addition. The results
were different in the control group where the addition of
cornelian cherry caused a statistically significant increase of
the discussed parameter in comparison to the control diet
without this addition. In plasma, the addition of cornelian
cherry caused a statistically significant increase of the FRAP
value in the control and fructose diet groups.

Measurement of carbonyl groups (PCG) was used as a
marker of protein damage. Elevated levels of PCG occur in
a number of chronic disorders of the central nervous system
(CNS), for example, in Alzheimer’s disease, Parkinson’s in
bipolar disorder [44, 45]. One of the proposed mechanisms
of increasing the level of PCG is overproduction of a hydroxyl
radical which reacts with amino acids, resulting in forma-
tion of these groups [46]. In our experiment, a significant
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(𝑃 < 0.05) decrease of PCG was observed in the group of
rats with F+ in both brain tissue and plasma (Tables 2 and 3,
Figure 4). Similar significant dependence (𝑃 < 0.05) was also
observed in brain tissue of rats fed the high-fat feed with
an addition of cornelian cherry (Fa+). Polyphenols, antho-
cyanins, and vitamin C contained in the fruits of cornelian
cherry may have a neuroprotective effect on proteins in brain
tissue as they reduce the proteins proliferation.

Another marker for evaluation of peroxidation of pro-
teins is concentration of sulfhydryl groups (SH). SH groups
are constituents of compounds with antioxidant properties
(e.g., glutathione, melatonin, and albumin) undergoing oxi-
dation to disulfide bond (disulfhydryl groups) which reflects
the loss of compensatorymechanisms of antioxidant capacity.
In this study, in brain tissue (Table 2, Figure 5), a significantly
(𝑃 < 0.05) increased SH groups level was observed in rats fed
with fructose diet (F−) compared to the C− and Fa− groups.

In turn, in this study, we observed a significant (𝑃 < 0.05)
decrease of this parameter in the Fa− group as compared to
the control and fructose diets. Addition of cornelian cherry
induced a significantly (𝑃 < 0.05) decreased SH groups level
in rats fed with the fructose diet (F+).

In plasma (Table 3, Figure 5) of rats fed with a fructose
diet (F−), a significant increase in levels of SH groups
occurred in comparison to the animals of the C− and F−
group. Adding cornelian cherry decreases the value of this
parameter in all groups but not in a significant way. Based
on the obtained results, it can be assumed that a content of
SH groups in plasma is affected by the type of diet but not by
an addition of cornelian cherry.

Oxidative modifications of proteins are the fastest emerg-
ing indicator of oxidative damage in cells, demonstrating
disorder of redox balance.This is due to the fact that proteins
are not only chemical reactants, but also catalysts for many
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processes in body. Therefore, changes in their structure and
function modifications are much larger than in case of other
biomolecules. All this confirms the validity of the selection of
oxidative damage markers for proteins (carbonyl groups, SH
groups).

4. Conclusion

Thedisruption of antioxidant balance of the body system is an
important factor in development of many diseases, including
neurologic ones, due to the fact that brain tissue is very
sensitive to oxidative stress. Cornelian cherry contains many
substances with antioxidant properties. Moreover, based on
the results of our study, it can be assumed that an addition
of cornelian cherry advantageously stimulates PON1 activity
both in brain tissue and in plasma and increases protection
of the nervous system from oxidative stress by increasing
activity of CAT. At the same time, it protects proteins against
peroxidation as can be shown by the level of PCG. Thus,
the above results indicate that cornelian cherry may be a
natural source of neuroprotection. However, it is necessary
to continue this research.
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