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Clustering determines the dynamics of complex contagions in multiplex networks
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We present the mathematical analysis of generalized complex contagions in a class of clustered multiplex
networks. The model is intended to understand spread of influence, or any other spreading process implying a
threshold dynamics, in setups of interconnected networks with significant clustering. The contagion is assumed to
be general enough to account for a content-dependent linear threshold model, where each link type has a different
weight (for spreading influence) that may depend on the content (e.g., product, rumor, political view) that is being
spread. Using the generating functions formalism, we determine the conditions, probability, and expected size of
the emergent global cascades. This analysis provides a generalization of previous approaches and is especially
useful in problems related to spreading and percolation. The results present nontrivial dependencies between the
clustering coefficient of the networks and its average degree. In particular, several phase transitions are shown to
occur depending on these descriptors. Generally speaking, our findings reveal that increasing clustering decreases
the probability of having global cascades and their size, however, this tendency changes with the average degree.
There exists a certain average degree from which on clustering favors the probability and size of the contagion.
By comparing the dynamics of complex contagions over multiplex networks and their monoplex projections, we
demonstrate that ignoring link types and aggregating network layers may lead to inaccurate conclusions about
contagion dynamics, particularly when the correlation of degrees between layers is high.
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I. INTRODUCTION

The study of dynamical processes on real-world complex
networks has been an active research area over the past decade.
Some of the most widely studied problems include cascading
failures in interdependent networks [1–6], simple contagions
(e.g., disease propagation in human and animal populations
[7–25], etc.), and complex contagions (e.g., diffusion of
influence, beliefs, norms, and innovations in social networks
[26–29]). Recently, the attention was shifted from sin-
gle, isolated networks to multiplex and multilayer net-
works [17,18,29–43]. This shift is primarily driven by the
observation that links in a network might be categorized
according to the nature of the relationship they represent (e.g.,
friends, family, office mates) as well as according to the social
network to which they belong (e.g., Google+ vs Facebook
links), and each link type might play a different role in the
dynamical process.

In this work, we focus on the analysis of complex contagion
processes that take place on multiplex (or multilayer)
networks. In doing so, we adopt the content-dependent linear
threshold model of social contagions proposed by Yağan
and Gligor [29]. Their framework is a generalization of the
linear threshold model introduced by Watts [28] and is based
on individuals adopting a behavior when their perceived
proportion of active neighbors exceeds a certain threshold;
the key to that modeling framework is that one’s perceived
influence depends on the types of the relationships they have
and the context in which diffusion is being considered. More
precisely, each individual in the network can be in one of the
two states, active or inactive. Each link type i is associated
with a content-dependent weight ci in [0,∞] that encodes the
relative importance of this link type in spreading the given
content. Then, an inactive node with mi active neighbors
and di − mi inactive neighbors via type-i links turns active

only if ∑
i cimi∑
i cidi

� τ,

where τ is the node’s threshold drawn from a distribution
P (τ ). It is assumed that nodes update their state synchronously
and once active, a node stays active forever.

Yağan and Gligor analyzed [29] the content-dependent
linear threshold model in multiplex networks and derived the
conditions, probability, and expected size of global cascades,
i.e., cases where activating a randomly selected node leads to
activation of a positive fraction of the population in the limit of
large system sizes. However, their multiplex network model
was formed by combining independent layers of networks
(one for each link type), where each layer is generated by
the configuration model [44,45]. Although a good starting
point, configuration model is known to generate networks
that can not accurately capture some important aspects of
real-world social networks, most notably the property of high
clustering [46,47]. Informally known as the phenomenon that
“friends of our friends” are likely to be our friends, clustering
has been shown to affect the dynamics of various diffusion
processes [31,48–55] significantly.

With this in mind, our main contribution in this paper is to
provide a thorough analysis of influence spread process in a
class of clustered multiplex networks. In particular, we study
the content-dependent linear threshold model in a multiplex
network model where each link type (or network layer) is
formed by the clustered random network model proposed
by Newman [48] and Miller [56]. We solve for the critical
threshold, probability, and expected size of global cascades
and confirm our analytical results via extensive simulations.
The main observation from our results is that clustering has a
double-faceted impact on the probability and expected size of
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global cascades. Namely, we show that clustering decreases
the probability and size of cascades when average degree in
the network is small, whereas after a certain value of average
degree, clustering is shown to facilitate cascades.

We also compare the dynamics of complex contagions over
multiplex networks and their monoplex projections. There has
been recent interest [30] in understanding whether monoplex
projection of a multiplex network (obtained by ignoring the
colors of edges and aggregating the layers) can still capture
the essential properties (e.g., cascade threshold and size) of a
diffusion process. In the affirmative, this would eliminate the
need for considering the full multiplex structure of real-world
systems in tackling similar problems. We show that even in
the simplest case where all link types have the same influence
weight (i.e., c1 = c2 = · · · ), monoplex theory may not be
able to capture contagion dynamics accurately, reinforcing
the need for studying multiplex networks in its correct setup.
We observe that the accuracy of monoplex theory in capturing
cascade dynamics over multiplex networks depends tightly
on the assortativity (i.e., correlation between the degrees of
connected pairs) of the network. For instance, when assorta-
tivity is negligible, monoplex theory is seen to predict cascade
dynamics very well, while in highly assortative cases its ability
to predict contagion behavior diminishes significantly.

Finally, we proof the possibility of an unforeseen behavior
in the dynamics of complex contagions in multiplex networks,
i.e., that of observing more than two phase transitions in the
cascade size as the mean degrees in network layers increase. It
has been reported [18,28] many times that threshold models of
complex contagion exhibit two phase transitions as the average
degree increases; a second-order transition at low degrees
marking the formation of a giant component of vulnerable
nodes and a first-order transition at high degrees due to in-
creased local stability of nodes. Here, we consider a multiplex
where one layer has degree distribution Poi(λ) while the degree
in the second layer follows Poi(λ/α) with probability α and is
zero with probability 1 − α. In this setting, we observe that in
general there exist two intervals of λ for which cascades are
possible, amounting to four phase transitions as opposed to
two; also, it is seen that only the first transition is second order
while the remaining ones are first order. However, depending
on the value of α, these regions may overlap (with overlap
starting when α exceeds a critical value) resulting again with
only two phase transitions; see Sec. VI C for details.

The paper is organized as follows. We give details of the
models applied in this study and the problem to be considered
in Sec. II. In Secs. III and IV we present the main results of this
work, and confirm it through extensive computer simulations
in Sec. V. In Sec. VI, we make a comparison between complex
contagions in monoplex networks and multiplex networks, and
also demonstrate the phenomenon about the number of phase
transitions. Finally, Sec. VII summarizes our work and gives
future directions.

II. MODEL: STRUCTURE AND DYNAMICS

A. Random graphs with clustering

Our goal is to study complex contagion processes in
synthetic networks that capture some important aspects of

real-world networks but otherwise are generated randomly. It
is known [44,45] that the widely used configuration model [44]
generates treelike graphs with number of cycles approaching
to zero as the number of nodes gets large. However, most
social networks exhibit high clustering, informally known as
the propensity of a “friend of a friend” to be one’s friend. Put
differently, real-world social networks are usually not treelike
and instead have considerable number of cycles, particularly
of size three; i.e., triangles. With this in mind, Miller [57] and
Newman [45] proposed a modification on the configuration
model to enable generating random graphs with given degree
distributions and tunable clustering.

The model proposed in [45,57] is often referred to as
random networks with clustering and is based on the following
algorithm. Given a joint degree distribution {pst }∞s,t=0 that gives
the probability that a node has s single edges and t triangles,
each node will be given s stubs labeled as single and 2t stubs
labeled as triangles with probability pst , for any s,t = 0,1, . . . .
Then, stubs that are labeled as single are joined randomly to
form single edges that are not part of a triangle, whereas pairs
of triangle stubs from three nodes are randomly matched to
form triangles between the three participating nodes; the total
degree of a node is then distributed by pk = ∑

s,t :s+2t=k pst .
As in the standard configuration model, it can be shown that
the number of cycles formed by single edges goes to zero as
n gets large, and so does the number of cycles of length larger
than three [44].

We quantify the level of clustering using the widely
recognized global clustering coefficient [45], defined via

Cglobal = 3 × (number of triangles in network)

number of connected triples
.

Here, “connected triples” means a single vertex connected by
edges to two others. It was shown in [44] that Cglobal is positive
in the random clustered network model, while it approaches to
zero with increasing network size in the standard configuration
model.

B. Multilayer and multiplex network models

In this paper, we consider a multiplex network where links
are classified into different types, or colors; they are referred
to as edge-colored multigraphs by some authors. For ease of
exposition, we consider the case with only two colors, red
and blue, but the discussion can easily be extended to arbitrary
number of colors. Let R and B denote the subnetworks formed
by red and blue edges, respectively. A possible motivation is
that R models the kinship contact network among individuals,
while the network B stands for the colleagueship network.
Alternatively, we can think of B modeling the physical (e.g.,
face-to-face) relationships among human beings while R
models connections through an online social network (e.g.,
Facebook).

In line with the second motivation, we assume that network
B is defined on the vertices N = {1, . . . ,n}, while R contains
only a subset of the nodes in N to account for the fact that not
every individual participates in online social networks; e.g., we
assume that each vertex in N participates in R independently
with probability α ∈ (0,1], meaning that the set of vertices of
R constitutes α fraction of the whole population. We illustrate
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(a) (b)

FIG. 1. Illustration of multilayer and multiplex network representations of our model. In (a), we see a multilayer network (e.g., a physical
communication layer and an online social network layer) with overlapping vertex sets; vertical dashed lines represent nodes corresponding to
the same individual. In (b), we see the equivalent representation of this model by a multiplex network, i.e., an edge-colored multigraph. Edges
from online social networks are shown in red and edges from the physical network are shown in blue; although not shown in this particular
example, it is possible for a pair of nodes to be connected by both blue and red links, rendering the resulting representation a multigraph.

in Fig. 1 two equivalent representations of this model, first
shown as a multilayer network with overlapping vertex sets,
and second as a multiplex network.

We generate both R and B from the generalized config-
uration model described in Sec. II A, i.e., both are random
networks with clustering. In particular, we let {pr

st ,s,t =
0,1, . . . } and {pb

st ,s,t = 0,1, . . . } denote the joint distributions
for single edges and triangles for R and B, respectively.
Then, both networks are generated independently according
to the algorithm described in Sec. II A, and they are denoted,
respectively, byR = R(n; α,pr

st ) andB = B(n; pb
st ). We define

the overall network H over which influence spreads as the
disjoint unionH = R

∐
B and represent it byH(n; α,pr

st ,p
b
st ).

Here, the disjoint union operation implies that we still
distinguish R edges from B edges in H, meaning that it is
a multiplex network.

We denote the colored degree d of a node in H by

d = (drs,2nrt ,dbs,2nbt ) (1)

meaning that it has drs single edges and 2nrt triangle edges
in network R, and dbs single edges and 2nbt triangle edges
in network B; here, nrt and nbt are defined as the number of
triangles assigned to this node in R and B, respectively. The
distribution of this colored degree is denoted by pd and can be
computed directly from pr

st , pb
st , and α.

C. Content-dependent linear threshold model
for social contagion

The classical linear threshold model by Watts [28] is
based on individuals adopting a behavior when the fraction of
their active neighbors exceed a certain threshold. Namely, an
inactive node i with mi active neighbors and di − mi inactive
neighbors will become active only if mi/di exceeds τi drawn
from a distribution P (τ ). More precisely, nodes update their
states synchronously at discrete time steps t = 0,1, . . . , and
an inactive node will be activated at time t if the fraction of
its active neighbors exceeds its threshold at time t − 1; once
active, a node can not be deactivated. A major concern with this
model is that it assumes all links in the network have the same
importance, irrespective of the context that the spreading is
being considered. However, in real-world contagion processes,
each link type (e.g., co-workership versus family or physical

links versus online social network links) may play a different
role in different cascade processes. For example, in the spread
of a new consumer product amongst the population, a video
game would be more likely to be promoted among high school
classmates rather than among family members; the situation
would be exactly the opposite in the case of a new cleaning
product [58].

To address the aforementioned drawbacks, Yağan and
Gligor [29] proposed a content-dependent linear threshold
model for social contagion in multiplex networks. In this
model, each link type is associated with a content-dependent
parameter ci in [0,∞] that measures the relative bias type-i
links have in spreading the content. Then, an inactive node with
mi active neighbors and di − mi inactive neighbors through
link type i will turn active if

∑
i cimi∑
i cidi

� τ .
In this work, we will analyze complex contagions in H un-

der the content-dependent threshold model introduced in [29].
Consider a node with colored degree d = (drs,2nrt ,dbs,2nbt )
and active degree

m = (mrs,mrt1,mrt2,mbs,mbt1,mbt2),

where mrs (resp. mbs) gives the number of active neighbors
connected through red single edges (resp. blue single edges),
and mrt1 and mrt2 (resp. mbt1 and mbt2) give the number of
red (resp. blue) triangles with one and two active neighbors,
respectively; see Fig. 2 for demonstration of three cases
counted as mrs , mrt1, and mrt2, respectively. Next, for a given
content to spread overH, let cr and cb denote the weight of red

and blue edges, respectively, in spreading this content. Without

(a) (b) (c)

FIG. 2. Illustration of three cases that would be counted as mrs ,
mrt1, and mrt2, respectively, for the number of active nodes. Nodes
shown in filled (green) circles are active while those shown in
nonfilled circles are inactive.
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loss of generality, we set c := cr

cb
. Then, the probability that an

inactive node with degree d and active degree m turns active
is given by

F (m,d)

= P

[
c(mrs +mrt1 +2mrt2)+ mbs + mbt1 +2mbt2

c(drs + 2nrt ) + dbs + 2nbt

� τ

]
.

(2)

Hereafter, the function F (m,d) will be referred to as the
neighborhood response function [52,59].

D. Problem

We consider the diffusion of influence over H that is
initiated by a node selected uniformly at random. Our main
goal is to derive the conditions, probability, and expected size
of global cascades, i.e., cases where influence starts from
a single individual and reaches a positive fraction of the
population in the large n limit. Of particular interest will be
to reveal the effect of clustering coefficient Cglobal and content
parameter c on these quantities.

III. CONDITION AND PROBABILITY
OF GLOBAL CASCADES

In this section, we derive the condition and probability of
global cascades in clustered multiplex networks; expected size
of global cascades is handled separately in Sec. IV. As men-
tioned in Sec. II B, we restrict our attention to networks with
only two link types, labeled as blue and red edges, respectively.
Distinguishing further the edges based on whether or not they
are part of a triangle, we obtain four types of edges in our
clustered multiplex network model, labeled as red single edges,
red triangle edges, blue single edges, and blue triangle edges;
these are denoted by rs−, rt−, bs−, and bt−, respectively.

To analyze the influence diffusion process, we consider a
branching process [60] that starts by activating a node selected
uniformly at random from among all nodes. Starting with the
neighbors of the seed node, we explore and identify all nodes
that are reached and activated, continuing recursively until the
branching process stops. Since the contagion model considered
here is monotone, i.e., nodes that are activated stay active
forever, the branching process is guaranteed to stop, and the
resulting number of nodes reached gives the cascade size.

Let H (x) denote the generating function [61] for the “finite
number of nodes that are reached and influenced” by the
branching process [60] initiated by a node selected uniformly
at random. We will derive an expression for H (x) using hrs(x),
hrt (x), hbs(x), and hbt (x), where hrs(x) [resp. hbs(x)] stands
for the generating function for the “finite number of nodes
reached by following a randomly selected red single (resp.
blue single) edge”; hrt (x) and hbt (x) are defined similarly for
red triangle and blue triangle edges, respectively. Then, H (x)
takes the form

H (x) = x
∑

d

pdD(drs,nrt ,dws,nwt ), (3)

where

D(y,z,m,�) := hrs(x)yhrt (x)zhbs(x)mhbt (x)�. (4)

The validity of (3) can be seen as follows. The term x stands
for the node that is selected randomly and set active to initiate
the cascade. This node has a degree d = (drs,2nrt ,dbs,2nbt )
with probability pd. The number of nodes reached by each of
its drs (resp. dbs) red single edges (resp. blue single edges) has a
generating function hrs(x) [resp. hbs(x)]. Considering its trian-
gle edges in a similar manner, we see from the powers property
of generating functions [44] that when the initial node has
degree d, the number of nodes influenced in this process has a
generating function hrs(x)drs hrt (x)nrt hbs(x)dbs hbt (x)nbt . Taking
the expectation over the degree d of the initial node, we get (3).

For (3) to be useful, we shall derive expressions for the
generating functions hrs(x), hrt (x), hbs(x), and hbt (x). As will
become apparent soon, there are no explicit equations defining
these functions. Instead, we should seek to derive recursive
equations to define each generating function in terms of the
others. These steps are taken in the next sections where we
first focus on deriving hrs(x) and hbs(x) (Sec. III A) followed
by derivations of hrt (x) and hbt (x) (Sec. III B).

Given that random networks with clustering are free of
cycles of size larger than three, it is clear that the initial
stages of the branching process will expand largely because of
vulnerable nodes that can get activated either by one or two
active neighbors. In our formulation, the multiplex nature of
the network calls for defining the notion of the vulnerability
with respect to link types as well [29]. Throughout, we say
that a node is R-vulnerable (resp. B-vulnerable) if it gets
activated by a single active connection through a red link
(resp. blue link). We define ρd,rs and ρd,bs as the probability
that a node is R-vulnerable and B-vulnerable, respectively.
We also define ρd,rt (resp. ρd,bt ) as the probability that a
node gets activated by having two active neighbors via red
(resp. blue) edges. In other words, ρd,rt (resp. ρd,bt ) gives
the probability that a node gets activated by having a red
(resp. blue) triangle with both neighbors being active; see
Fig. 2. More precisely, we set ρd,rs = F [(1,0,0,0,0,0),d],
ρd,rt = F [(0,0,1,0,0,0),d], ρd,bs = F [(0,0,0,1,0,0),d], and
ρd,bt = F [(0,0,0,0,0,1),d].

A. Influence propagation via red single edges

We start by deriving recursive equations for hrs(x) and
hbs(x) by focusing on the number of nodes reached and
influenced by following one end of a single edge in R and
B, respectively. In what follows, we only derive hrs(x) since
the computation of hbs(x) follows in a very similar manner.
In order to compute hrs(x), consider picking a red single edge
uniformly at random (among all red single edges in H) and
assume that it is connected at one end to an active node. Then,
we compute the generating function for the number of nodes
influenced by following the other end of the edge, and obtain
the following expression for the generating function hrs(x):

hrs(x) = x
∑

d

drspd

〈drs〉 ρd,rsD(drs − 1,nrt ,dbs,nbt )

+ x0
∑

d

drspd

〈drs〉 (1 − ρd,rs), (5)

where D is as defined at (4).

012312-4



CLUSTERING DETERMINES THE DYNAMICS OF COMPLEX . . . PHYSICAL REVIEW E 95, 012312 (2017)

We now explain each term appearing at (5) in turn. The
explicit factor x stands for the initial vertex that is arrived at
by following the randomly selected red single edge. The term
drspd
〈drs 〉 gives the normalized probability that the arrived vertex
has colored degree d. Since the arrived node is reached by a red
link, it needs to be red-vulnerable to be added to the vulnerable
component. If the arrived node is indeed red-vulnerable, which
happens with probability ρd,rs , it can activate other nodes via
its remaining drs − 1 red single edges, dbs blue single edges,
nrt red triangles, and nbt blue triangles. Because the number of
vulnerable nodes reached by each of its red single edges and
triangles (resp. blue single edges and triangles) are generated in
turn by hrs(x) and hrt (x) [resp. hbs(x) and hbt (x)], respectively,
we obtain the term hrs(x)drs−1hrt (x)nrt hbs(x)dbs hbt (x)nbt by the
powers property of generating functions. Averaging over all
possible colored degrees d gives the first term in (5). The
second term with the factor x0 accounts for the possibility that
the arrived node is not red-vulnerable and thus is not included
in the cluster. An analogous expression can be obtained for
hbs(x) via similar arguments.

B. Influence propagation via red triangles

We now derive hrt (x), i.e., the generating function for
the number of nodes influenced by following a red triangle
selected at random; similar arguments hold for hbt (x). We
consider the situation where nodes u, v, and w form a triangle
and the top vertex u is active, while others are not. We are
interested in computing the generating function for the total
number of nodes that will be influenced by nodes v and w. We
will compute the generating function hrt (x) by conditioning
on the following events:

(i) If neither of nodes v and w are R-vulnerable, then
the number of nodes influenced will be zero. Node v has
degree d with normalized probability nrtpd

〈nrt 〉 , in which case it
is not R-vulnerable with probability 1 − ρd,rs . Similarly, the
probability that node w has degree d′ and not R-vulnerable is
( n′

rt pd′
〈n′

rt 〉 )(1 − ρd′,rs). Summing over all possible cases, we obtain

the first term in (7) with x0 (meaning that zero nodes will
be influenced by following the red triangle in this case).

(ii) Consider the case where only one of v and w is
influenced, leading to a term with the factor x1 in (7). Without
loss of generality, consider the case where v is activated while
w is not. If node v has degree d, then it is R-vulnerable with
probability ρd,rs , and can influence other nodes in the usual
manner. Then, the event that node w, with degree d′, will not be
activated despite having two active neighbors (nodes u and v)
has probability 1 − ρd′,rt . By symmetry and exchangeability
of nodes v and w, an equivalent term will be obtained for
the case where w is activated but v is not. Summing over all
possibilities we obtain the second term in (7).

(iii) Finally, we consider the case where both v and w

become active giving rise to term with factor x2. There are
two possible scenarios:

(a) Both of v and w are activated by u. The probability
that v is activated by u is ρd,rs as already discussed
during the computation of the first term. By symmetry,
the probability for w is the same as for v. Multiplying the
two probabilities leads to the third term in (7).

(b) Only one of v and w is made active immediately by
u while the other is not; e.g., say v is activated but not w.
However, w also gets activated by the joint influence from
u and v. With d and d′ denoting the degree of v and w, this
happens with probability (ρd,rs)(ρd′,rt − ρd′,rs). Here, the
second term accounts for the fact that w gets activated only
if it has two (or, more) active neighbors. Summing over all
possibilities as before, and multiplying by two for the case
where v and w are replaced, we obtain the last term in (7).

C. Deriving the condition for global cascades

The discussion given in Secs. III A and III B leads to a set
of recursive equations for hrs(x), hrt (x), hbs(x), and hbt (x).
Recursions for hrs(x) and hrt (x) are given in (6) and (7),
respectively; the expressions for hbs(x) and hbt (x) are very
similar and omitted here for brevity. With these four recursive
equations in place, it is possible to determine the generating
function H (x) of the finite number of nodes activated in the
contagion process. Namely, for a given x, we shall find a fixed
point of these recursive equations, and then use the resulting
values of hrs(x), hrt (x), hbs(x), and hbt (x) in (3) to get H (x):

hrs(x) = x
∑

d

drspd

〈drs〉 ρd,rsD(drs − 1,nrt ,dbs,nbt ) + x0
∑

d

drspd

〈drs〉 (1 − ρd,rs), (6)

hrt (x) = x0
∑

d

∑
d′

nrtpd

〈nrt 〉 (1 − ρd,rs)
n′

rtpd′

〈n′
rt 〉

(1 − ρd′,rs) + 2x
∑

d

∑
d′

nrtpd

〈nrt 〉 ρd,rsD(drs,nrt − 1,dbs,nbt )
n′

rtpd′

〈n′
rt 〉

(1 − ρd′,rt )

+ x2
∑

d

∑
d′

[
nrtpd

〈nrt 〉 ρd,rsD(drs,nrt − 1,dbs,nbt )

][
n′

rtpd′

〈n′
rt 〉

ρd′,rsD(d ′
rs ,n

′
rt − 1,d ′

bs,n
′
bt )

]

+ 2x2
∑

d

∑
d′

[
nrtpd

〈nrt 〉 ρd,rsD(drs,nrt − 1,dbs,nbt )

][
n′

rtpd′

〈n′
rt 〉

(
ρd′,rt − ρd′,rs

)
D(d ′

rs ,n
′
rt − 1,d ′

bs,n
′
bt )

]
. (7)

By conservation of probability and the definition of
generating functions, we know that H (1) = 1 only if final
number of activated nodes is finite with probability one. In
other words, global cascades that lead to a positive fraction

of influenced nodes are possible only if H (1) < 1. This
prompts us to seek a fixed point of the recursive equations
when x = 1. For notational convenience, we define h1 :=
hrs(1), h2 := hrt (1), h3 := hbs(1), and h4 := hbt (1). From (3),
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this gives

H (1) =
∑

d

pdh
drs

1 h
nrt

2 h
dbs

3 h
nbt

4 , (8)

while the recursions take the form

hi = gi(h1,h2,h3,h4), i = 1,2,3,4. (9)

Here, the functions g1,g2 are easily obtained from (6) and (7),
and similarly g3 and g4 can be obtained from the recursions
for hbs(x), and hbt (x). To give an example, we have

g3(h1,h2,h3,h4)

=
∑

d

dbspd

〈dbs〉
(
ρd,bsh

drs

1 h
nrt

2 h
dbs−1
3 h

nbt

4 + 1 − ρd,bs

)
.

It is clear that the recursions (9) have a trivial fixed point
h1 = h2 = h3 = h4 = 1 which yields H (1) = 1, meaning that
cascades will die out without reaching a positive fraction of the
population with high probability. To check the stability of the
trivial solution, we linearize the recursive equations (9) around
x = 1, and compute the corresponding Jacobian matrix J via

J(i,j ) = ∂gi(h1,h2,h3,h4)

∂hj

∣∣∣∣
h1=h2=h3=h4=1

(10)

for each i,j = 1,2,3,4; the exact expression for the 4 × 4
matrix J is not given here in order to save space. Now, the
trivial solution h1 = h2 = h3 = h4 = 1 is linearly stable if and
only if the largest eigenvalue in absolute value of J, denoted
σ (J), is less than one. Otherwise, if σ (J) > 1, then there exists
another fixed point for the recursion with h1,h2,h3,h4 < 1,
leading to H (1) < 1. In that case, the probability deficit
1 − H (1) > 0 gives the probability that the contagion process
reaches infinitely many nodes, i.e., a global spreading event
takes place. Collecting, we conclude that the condition of

global cascades is given by σ (J) > 1, while the probability of
global cascade equals Ptrig = 1 − H (1).

IV. EXPECTED CASCADE SIZE

Next, we are interested in computing the expected size of
global cascades when they take place. Put differently, we will
analyze the expected fraction of nodes that will eventually
become active as we pick a node in the network uniformly
at random and set it active. We follow the approach used
in [29,52,62], which has been proven to be an effective way to
analyze expected cascade size in networks.

First, consider the network H as a tree structure with an
arbitrary node selected as the root. Then, label the levels of the
tree from � = 0 at the bottom to � = +∞ at the top of the tree.
Similar to [29,52], we assume that nodes begin updating their
states starting from the bottom of the tree and proceeding to the
top. In other words, we assume that a node at level � updates
its state only after all nodes at the lower levels 0,1, . . . ,� − 1
finish updating. We define qrs,� as the probability that a node
at level � of a tree, which is connected to its unique parent by
a red single edge, is active given that its parent at level � + 1
is inactive. Then, we consider a pair of nodes at level � that
together with their parent at level � + 1 form a red triangle.
Given that the parent is inactive, we let qrt1,� (resp. qrt2,�)
denote the probability that only one (resp. both) of the two
child nodes of this triangle is active.

We define qbs,�, qbt1,�, and qbt2,� for blue edges in the same
manner.

According to our model, an active node is never deactivated,
meaning that qrs,�, qrt1,�, qrt2,�, qbs,�, qbt1,�, qbt2,� are all nonde-
creasing. Therefore, they will converge to qrs,∞, qrt1,∞, qrt2,∞,
qbs,∞, qbt1,∞, qbt2,∞. Then, the expected cascade size (i.e., the
fraction of active individuals) S is given by the probability that
the arbitrary selected node at the top of the tree becomes active.
In order to computer S, we first derive recursive relations for
qrs,�, qrt2,�, qrt2,�, qbs,�, qbt2,�, qbt2,�. We have

qrs,�+1 =
∑

d

drspd

〈drs〉
drs−1∑
i=0

nrt∑
j=0

j∑
x=0

dbs∑
m=0

nbt∑
n=0

n∑
y=0

Q�[(i,j,x,m,y,n),(drs − 1,nrt ,dbs,nbt )]F [(i,x,j − x,m,y,n − y),d],

qrt1,�+1 = 2
∑
d,d′

nrtpd

〈nrt 〉
n′

rtpd′

〈n′
rt 〉

drs ,d
′
rs∑

i,i ′=0

nrt−1,n′
rt−1∑

j,j ′=0

j,j ′∑
x,x ′=0

dbs ,d
′
bs∑

m,m′=0

nbt ,n
′
bt∑

n,n′=0

n,n′∑
y,y ′=0

{Q�[(i,j,x,m,y,n),(drs,nrt − 1,dbs,nbt )]

× Q�[(i ′,j ′,x ′,m′,y ′,n′),(d ′
rs ,n

′
rt − 1,d ′

bs,n
′
bt )]F [(i,x,j − x,m,y,n − y),d]

× (1 − F [(i ′,x ′ + 1,j ′ − x ′,m′,y ′,n′ − y ′),d′])},

qrt2,�+1 =
∑
d,d′

nrtpd

〈nrt 〉
n′

rtpd′

〈n′
rt 〉

drs ,d
′
rs∑

i,i ′=0

nrt−1,n′
rt−1∑

j,j ′=0

j,j ′∑
x,x ′=0

dbs ,d
′
bs∑

m,m′=0

nbt ,n
′
bt∑

n,n′=0

n,n′∑
y,y ′=0

{Q�[(i,j,x,m,y,n),(drs,nrt − 1,dbs,nbt )]

× Q�[(i ′,j ′,x ′,m′,y ′,n′),(d ′
rs ,n

′
rt − 1,d ′

bs,n
′
bt )](F [(i,x,j − x,m,y,n − y),d]F [(i ′,x ′ + 1,j ′ − x ′,m′,y ′,n′ − y ′),d′]

+ (F [(i,x + 1,j − x,m,y,n − y),d] − F [(i,x,j − x,m,y,n − y),d])F [(i ′,x ′,j ′ − x ′,m′,y ′,n′ − y ′),d′])},
where we define

Q�[(i,j,x,m,n,y),(d1,d2,d3,d4)] =
(

d1

i

)
qi

rs,�(1 − qrs,�)d1−i

(
d2

j

)(
j

x

)
qx

rt1,�q
j−x

rt2,�(1 − qrt1,� − qrt2,�)d2−j

(
d3

m

)
qm

bs,�

× (1 − qbs,�)d3−m

(
d4

n

)(
n

y

)
q

y

bt1,�q
n−y

bt2,�(1 − qbt1,� − qbt2,�)d4−n. (11)
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In words, Q�[(i,j,x,m,n,y),(d1,d2,d3,d4)] gives the proba-
bility that a node at level � with colored degree (d1,2d2,d3,2d4)
has

(i) i (resp. d1 − i) of the d1 neighbors connected through
red single edges as active (resp. inactive). Similarly, m (resp.
d3 − m) of the d3 neighbors connected through blue single
edges as active (resp. inactive);

(ii) of the d2 red triangles it participates in, x has one
active node, j − x has two active nodes, and d2 − j has no
active node. Similarly, of the d4 blue triangles it participates
in, y has one active node, n − y has two active nodes, and
d4 − n has no active node

Hence, multiplying Q�[(i,j,x,m,n,y),(d1,d2,d3,d4)] with
F [(i,x,j − x,m,y,n − y),d] and summing over all possibili-
ties for d and i,j,x,m,n,y gives the probability that the node
under consideration turns active. This confirms the first expres-
sion above. Second and third terms consider simultaneously a
pair of nodes that are part of a red triangle (where the top, i.e.,
parent, vertex is inactive). Therefore, we first condition on the
degrees of these two nodes being d and d′, respectively, and
consider all possibilities concerning the states (active versus
inactive) of these neighbors. Then, for qrt1,�+1, we realize by
symmetry that the desired expression is two times the probabil-
ity that the node with degree d turns active, and despite having
one extra active neighbor, the node with degree d′ does not turn
active. The fact that the first node turns active is incorporated
in the expression (1 − F [(i ′,x ′ + 1,j ′ − x ′,m′,y ′,n′ − y ′),d′])
by the term x ′ + 1. For qrt2,�+1, we proceed similarly and
realize that for both nodes to turn active there are two
possibilities. The node with degree d either turns active
regardless of the state of the node with degree d′ {in which
case the node with degree d′ will turn active with probability
F [(i ′,x ′ + 1,j ′ − x ′,m′,y ′,n′ − y ′),d′]}, or it turns active only
after the node with degree d′ does.

With the above recursion in place, we compute the final
cascade size via

S =
∑

d

pd

drs∑
i=0

nrt∑
j=0

j∑
x=0

dbs∑
m=0

nbt∑
n=0

n∑
y=0

Q∞[(i,j,x,m,n,y),

(drs,nrt ,dbs,nbt )]F [(i,x,j − x,m,y,n − y),d]. (12)

Namely, we first solve for the values of qrs,∞, qrt1,∞, qrt2,∞,
qbs,∞, qbt1,∞, qbt2,∞ using the recursive equations, and then
substitute them into (12) to obtain the expected size of global
cascades.

V. NUMERICAL RESULTS

A. Networks with doubly Poisson distributions

In our first simulation study, we use doubly Poisson
distribution for the number of single edges and triangles in
both networks. Namely, we set

pr
st = e−λr,1

(λr,1)s

s!
e−λr,2

(λr,2)t

t!
, s,t = 0,1, . . . ,

pb
st = e−λb,1

(λb,1)s

s!
e−λb,2

(λb,2)t

t!
, s,t = 0,1, . . . ,

where s and t are the number of single edges and triangles in
the corresponding networks, respectively. Thus, λr,1 and λr,2
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FIG. 3. Simulations for doubly Poisson degree distributions. In
(a), we set the content parameter c = 0.25, the threshold as τ = 0.18,
and α = 0.5, and vary the degree parameters. In (b), we fix τ = 0.18,
λr,1 = λr,2 = λb,1 = λb,2 = 0.3, and α = 0.5 while varying content
parameter c.

(resp. λb,1 and λb,2) denote the mean number of single edges
and triangles, respectively, in R (resp. in B).

We consider n = 1 × 105 nodes in the population and α =
0.5 for the size of network R. We let τ = 0.18 and c = 0.25
for the threshold and content parameters, respectively. The
results are shown in Fig. 3 where the curves stand for the
theoretical results of probability Ptrig and expected size S of
cascades (obtained from our discussion in Secs. III and IV), as
a function of λr,1 = λr,2 = λb,1 = λb,2. The markers stand for
the empirical results for the same quantities, and are obtained
by averaging over 5000 independent experiments. We see a
very good agreement between the analytical and experimental
results confirming the validity of our analysis. The slight
discrepancy observed in Ptrig is due to the limited number of
experiments, and can be mitigated by increasing the number
of realizations.

Next, we change our experimental setup to demonstrate
the effect of content parameter on the probability and size
of cascades. To that end, we fix all network parameters and
observe the quantities of interest as the content parameter c

varies. In particular, we set λr,1 = λr,2 = λb,1 = λb,2 = 0.3
and τ = 0.18. We see that the probability and expected size of
global cascades vary greatly as c changes. This can be taken
as an indication that our model can capture the real-world
phenomenon that over the same population certain contents
can become widespread while others die out quickly. In the
setting used here, we see that global cascades take place
when the content parameter c is not too small or large. The
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TABLE I. Parameters of the doubly Poisson distribution. This
choice ensures that the mean and variance of the total degree
distribution (single plus triangle edges) in B are independent of η,
while its clustering varies greatly as η varies in (0,4). In Fig. 3, we
set λ = 0.5.

Network R Network B

Distribution of single edges Poi(2λ) 2 Poi
( 4−η

2 λ
)

Distribution of triangles Poi(λ) Poi
(

η

2 λ
)

reason is that with a too small or large content parameter, the
connectivity of the conjoined network is dominated by only
one of the two networks. So, if neither of them has enough
connectivity to trigger a global cascade by their own, then there
will be no global cascades in the conjoined network. When the
c is neither too large nor too small (e.g., close to unity), both
networks will contribute to the connectivity together and it
becomes possible to trigger a global cascade. For other values
of λr and λb, a completely different situation might occur, e.g.,
with very small or very large c promoting cascades; e.g., see
[29, Fig. 2] for a few such examples.

B. How does clustering affect the cascade size?

Our next goal is to reveal the impact of clustering on the
influence propagation process in the models considered here.
To do so, we should be able to vary the level of clustering
while keeping the first and second moments of the total degree
distribution fixed, as they are known to affect the contagion
behavior significantly [29]. In order to satisfy this constraint,
we use Poisson distributions for the number of single edges
and triangle in two networks with parameters given in Table I.

With the setting given in Table I, the clustering coefficient
in R will be fixed for any η ∈ [0,4], while the clustering of B
varies between the two extremes: (i) when η = 4, B will have
no single edges and consist only of triangles resulting with a
clustering coefficient close to one; and (ii) with η = 0, there
will be no triangles in B and hence its clustering coefficient
will be close to zero. Collecting, we see that the clustering
coefficient of B and thus of H increases with increasing η in
this setting.

With these in mind, we first demonstrate the impact of
clustering on the probability of triggering a global cascade.

Figure 4(a) shows the probability of triggering a global cascade
as a function of λ for three different η values. The resulting
clustering coefficients are plotted in Fig. 4(b) where we clearly
see that clustering increases with increasing η. The main
observation from Fig. 4(a) is that increasing the clustering
(i.e., increasing η) shifts the interval of λ for which global
cascades are possible to the right. This leads to a double-
faceted conclusion that clustering decreases the probability
of global cascades when average degrees are small, whereas
after a certain value of average degree, clustering increases the
probability of cascades.

The double-faceted impact of clustering on cascade proba-
bility can be explained as follows. It is known [18,28] that
threshold models of complex contagion exhibit two phase
transitions as the average degree increases, a second-order
transition at low degrees that marks the formation of a giant
vulnerable component and a first-order transition at high
degrees due to increased local stability of nodes, namely, due
to the increased difficulty of activating high-degree nodes.
Given that clustering is known to decrease the size of giant
component [31], we expect that it will be more difficult for a
clustered network to contain a giant vulnerable cluster. This is
why the lower phase transition in complex contagions appear
later (i.e., at larger degrees) as clustering increases. On the
other hand, the cycles of size three (i.e., triangles) that are
common in clustered networks can help trigger cascades when
average degree is higher. For instance, in a treelike network a
single active node can only activate its vulnerable connections.
However, in a triangle, an active node may first activate one
of its vulnerable connections, making it possible for the third
node to be activated (which now has two active neighbors)
even if it is not vulnerable. This is what pushes the second
phase transition to higher degrees.

Next, we explore the impact of clustering (in the setting
considered here) on the expected cascade size in Fig. 3(c).
Here again, we see the double-faceted impact of clustering
with small average degrees favoring low clustering, while high
degrees favoring high clustering in terms of having a larger
cascade size. In fact, we see the existence of a critical average
degree [around λ = 0.6 in Fig. 3(c)] such that when λ is smaller
(resp. larger) than the critical value, expected cascade size
decreases (resp. increases) with increasing clustering. This
extends the observation that Hackett et al. [52] made for single-
layer networks to multilayer networks.
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FIG. 4. Illustration of the effect of clustering coefficient on the expected cascade and probability of global cascades. We fix τ = 0.18,
c = 0.25, and α = 0.5, then vary the degree parameter λ defined in Table I. We see (a) the probability to trigger a global cascade; (b) the global
clustering coefficient described in Sec. II A; and (c) the expected cascade size.
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FIG. 5. We show the cascade regions in the degree parameter
threshold plane when α = 0.5, τ = 0.18, and both networks follow
doubly Poisson distributions as described in Table I. Clustering
increases as η increases.

Finally, we consider the impact of clustering on the average
degree-cascade threshold plane. For each parameter pair (λ,τ ),
the curves in Fig. 5 separate the region where global cascade
can take place (areas inside the boundaries) from the region
where they cannot (areas outside the boundaries). Once again,
we confirm that increasing the clustering coefficient shifts the
interval where cascades are possible up (i.e., to higher degrees)
for any threshold τ .

VI. COMPARISON BETWEEN MONOPLEX AND
MULTIPLEX NETWORKS

In what follows, we will compare the dynamics of complex
contagions over a monoplex network with that over a multiplex
network. Of particular interest will be to find out whether the
projection of a multiplex network into a monoplex network
leads to any significant differences in the dynamics that
would warrant the separate analyses of multiplex networks
as conducted here.

To identify the factors affecting complex contagions, we
consider two different degree distributions to generate the
networks. In Sec. VI A, we use a setting similar to previous
sections, with the resulting networks having almost no degree-
degree correlations, e.g., assortativity defined as the Pearson
correlation coefficient between the degrees of pairs of linked
nodes [63]. In Secs. VI B and VI C, we use a different setting
that leads to (tunable) assortativity for multiplex networks. In
order to keep the focus on the comparison between monoplex
and multiplex networks, we shall consider only nonclustered
networks in the following discussion.

A. Multiplex networks with limited assortativity

First we consider the limited assortativity case and use the
following degree distribution to assign blue and red stubs to
each node:

pb
k = e−λb

λk
b

k!
, k = 0, . . .

pr
k = αe−λr

λk
r

k!
+ (1 − α)δk,0, k = 0, . . . (13)

where δ denotes the Kronecker delta. In other words, each node
receives Poi(λb) blue edges, and an α fraction of nodes receive
an additional Poi(λr ) edges of color red. A multiplex network
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FIG. 6. Comparison between monoplex networks and multiplex
networks with limited assortativity. In (a) and (b), we fix the
threshold τ = 0.15, the content parameter c = 1, then vary the degree
parameters in (13). For the networks obtained by projected theory
and the networks in multiplex theory with α = 0.99, assortativity is
negligible. However, when α = 0.1, the assortativity coefficient of
the networks in the multiplex theory become significant, e.g., it can
be up to 0.21.

is generated using the colored configuration model [64,65]
where stubs that are of the same color are matched randomly.
The monoplex projected theory ignores the color of the edges
and matches all stubs randomly with each other. An important
question is whether we lose any significant information about
contagion dynamics when the monoplex projected theory is
used instead of the multiplex theory developed here and in [29].
For convenience, we set λb = λr and use c = 1 as the content
parameter.

In Fig. 6(a), we set α = 0.99. We see nearly no difference
between the theoretical cascade sizes obtained from monoplex
and multiplex theories, and they both match the simulation
results well. However, when α is reduced to 0.1 in Fig. 6(b), we
clearly see a difference between the two theories and only mul-
tiplex theory matches the simulation results. This shows that
even in the simplest case where both link types have the same
influence factor (i.e., c = 1), monoplex theory may be unable
to capture certain properties of cascade dynamics, reinforcing
the need for studying cascades using the multiplex theory.

We now explain why the two cases, α = 0.1 and 0.99, lead
to different conclusions regarding the accuracy of the mono-
plex theory in capturing contagion dynamics over multiplex
networks. One of the key differences between the two cases
is the resulting assortativity. When α = 0.1, only 10% of the
nodes have red stubs, each of which can only be connected with
other red stubs in the multiplex network case. Put differently,
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in this setting a small fraction of the population will have
statistically higher degrees than the rest, and the additional
links they have can only connect nodes with high degrees
together. This leads to a positive correlation (i.e., assortativity)
between the degrees of pairs of connected nodes. However, in
the monoplex projection, the additional edges can be used
to connect any two nodes, resulting with very little to no
assortativity in the network. Obviously, when α is close to
one, almost every node will have the additional edges and
the above phenomenon will not be observed. Our simulation
results confirm this intuition as we see that assortativity is
negligible (∼10−4) in both monoplex and multiplex cases
when α = 0.99, while with α = 0.1, assortativity varies (as
λr = λb increases) from 0.05 to 0.2 in the multiplex case while
still being negligible in the monoplex case.

The impact of assortativity on the comparison between
monoplex and multiplex theories is investigated further in the
forthcoming discussion.

B. Multiplex networks with assortativity

In this section, we change the setting slightly to generate
multiplex networks with high assortativity. To that end, we
use the degree distributions given at (13), but instead of setting
λr = λb, we enforce

αλr = λb (14)

for any α ∈ (0,1). This setting allows us to tune assortativity
without changing the mean degree in the network. In particular,
assortativity will increase as α decreases (by virtue of a small
fraction of nodes forming a highly connected cluster) [31].
In addition, this setting allows us to compare the contagion
dynamics in multilayer networks when the upper layer is (i)
small but densely connected (small α) versus (ii) large but
loosely connected (large α); see [31] for relevant results for
bond percolation processes.

Using the above degree distributions, we generate mono-
plex and multiplex networks as in Sec. VI A and analyze the
complex contagion process. In Fig. 7(a), we see that when α =
0.99, which leads to very limited assortativity, the difference
between monoplex and multiplex networks is negligible. This
is in parallel with what we observed in Sec. VI A. However,
decreasing α to 0.1 leads to two interesting observations
in Fig. 7(b). First, instead of the commonly reported two
phase transitions [18,28], we observe four phase transitions
in the cascade size as αλr = λb increases. Second, we see a
significant difference between the monoplex projected theory
and multiplex theory, with only the multiplex theory matching
the simulations well. Once again, this shows that monoplex
theory is unable to capture the cascade dynamics under certain
settings.

The emergence of four phase transitions in Fig. 7(b), which
to the best of our knowledge was not reported before, can be
explained as follows.1 When α = 0.1, only 10% of the nodes

1From a practical point of view, observing four phase transitions
rather than two signals a more chaotic system behavior (in terms of
contagion dynamics) with respect to changes in the degree parameter
λb. In turn, this would make the prediction of cascade region more
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FIG. 7. Comparison between monoplex networks and multiplex
networks with assortativity. Similar with the observation in Fig. 6,
networks in the projected theory and in the multiplex theory with
α = 0.99 have negligible assortativity coefficients. However, for the
networks of multiplex theory with α = 0.1, assortativity coefficient
ranges from 0.19 to 0.79. In general, assortativity increases with
increasing λr and λb in the multiplex theory.

have red edges, but the the mean number of red edges for
those nodes equals 10λb [see (14)]. Therefore, the first couple
of phase transitions taking place at very small λb values can be
attributed mainly to red edges. First, λb becomes large enough
(e.g., gets to around 0.1) that the subnetwork induced only
on the red edges contains a giant vulnerable cluster, giving
rise to global cascades; note that at this point λb is so small
that blue edges do not create enough local stability to prevent
cascades from happening. However, after λb reaches a certain
level (around 0.65), the subgraph on red edges, having average
degree of 10λb, reaches the second phase transition point where
cascades stop due to the increased local connectivity of nodes.
These first two transitions being second and first order, respec-
tively, also confirms that they are primarily due to the red edges.

As λb increases further, we observe an interval where there
are no global cascades due to either colors of edges; nodes with
red and blue edges are highly stubborn while nodes with only
blue edges are not connected enough to trigger a cascade. This
interval is then followed by a region where λb is large enough

difficult in the cases where system parameters are not known exactly
but estimated, e.g., social network applications.
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FIG. 8. Demonstration of multiple phase transitions.

that the subgraph on blue edges has a giant vulnerable cluster.
However, the emergence of a second-order transition in the
whole network is prevented here due to some of these nodes
turning stubborn as a result of their red edges. Eventually,
however, λb becomes large enough that even with occasional
stubborn nodes present, a giant vulnerable cluster emerges.
This point is reached much later in monoplex networks as
compared to the multiplex networks. This is because in the
former case stubborn nodes (with red edges) are equally likely
to be connected with any other node, while in the latter case
they are mostly connected with each other; thus, in the latter
case they are less likely to inhibit the emergence of a giant
vulnerable cluster on blue edges.

Finally, the system goes through a fourth transition when λb

becomes large enough that even nodes with only blue edges
become highly connected and hence stubborn. We see that
this final transition point is reached much later in multiplex
networks than monoplex networks, meaning that cascades take
place over a broader range of λb values in the former case.
Again, this can be attributed to the high assortativity seen in
multiplex networks that leads to extremely stubborn nodes (that
have both blue and red edges) being isolated from those that are
mildly stubborn (that have only blue edges). On the other hand,
in monoplex networks, every node is able to connect with the
extremely stubborn nodes, and thus the critical value of λb at
which cascades become impossible due to high local stability
is reached much earlier than that in multiplex networks.

C. Two vs four phase transitions

In Sec. VI B, we have observed the possibility of having
more than two phase transitions in the cascade size. As
discussed there, multiple phase transitions occur mainly due
to the setting (14) that, with small α, ensures a small fraction
of nodes having significantly higher connectivity than the rest,
while also being mostly connected with each other. Since the
existence of more than two transitions has not been reported
in previous studies, we are interested in exploring it further. In
particular, we now investigate the impact of α on the number
of phase transitions as well as transition points. Of particular
interest will be to find the critical α value that separates the
cases where four phase transitions occur from those with only
two transitions, e.g., the α value for which the two cascade
regions overlap. For simplicity, we only consider multiplex
networks in this section.

Figure 8 shows the expected size of global cascades
under (13) and (14) for three different values of α. We see that

global cascades take place over a single interval of αλr = λb

when α is large (e.g., α = 0.99) while over two disjoint
intervals when α is small (e.g., α = 0.1). When α is somewhere
in-between (e.g., case α = 0.166) it is possible to have the
cascade intervals partially overlap. In such cases, we only see
a single interval where global cascades take place. However,
an additional transition point appears, manifested by a shift of
slope in cascade size, marking possibly the overlapping point
of (what would be) the two cascade intervals.

Figure 8 allows us to comment also on the impact of the size
and density of the online social network layer in facilitating
influence propagation. With (14) in effect, a small α corre-
sponds to a social network with few but densely connected
individuals, while large α corresponds to a social network with
many subscribers, each with few connections on average. In all
cases, the total number of edges in the social network is fixed
by virtue of (14). We see from Fig. 8 that the comparison
between the three cases leads to a multifaceted picture as
the mean number of links αλr varies. For instance, the large
but loosely connected case of α = 0.99 leads to the largest
expected global cascade size over a certain interval, but it has
the smallest cascade interval among all three. The intermediate
case of α = 0.166 seems like a stretched version (over the
x axis) of the case with α = 0.99. In particular, this case
leads to the largest interval where global cascades are possible,
although the expected cascade size is smaller than that obtained
with α = 0.99 (and also with α = 0.1) over certain intervals.
Finally, the case of a small but densely connected extra layer
(i.e., with α = 0.1), falls right under the case with α = 0.166
for most values of αλr , although it gives the largest size of all
three in small intervals where αλr is very small or very large.

VII. CONCLUSION AND FUTURE WORK

We studied the diffusion of influence in a class of clustered
multiplex networks. We solved analytically for the condition,
probability, and expected size of global cascades, and con-
firmed our results via extensive computer simulations. One
of our key findings is to show how clustering affects the
probability and expected size of global cascades. We also com-
pared several interesting properties of complex contagions on
a multiplex network and its monoplex projection. We demon-
strate that ignoring link types and aggregating network layers
may lead to inaccurate conclusions about contagion dynamics,
particularly when assortativity is high. Finally, we show that
linear threshold models do not necessarily exhibit two phase
transitions as previously reported. Depending on assortativity,
we show that both in monoplex and multiplex cases (with two
link types) it is possible to observe four phase transitions.

Our analysis and modeling framework subsumes some
previous studies. For instance, by setting hrt (x) = hbt (x) = 1
in the recursive relations, we ensure that R and B are
nonclustered random networks. So, our analysis corresponds
to complex contagions in nonclustered networks, which was
studied in [29]. Similarly, if we let hrs(x) = hrt (x) = 1 in
the recursions and set the content parameter c = 1, then
our analysis corresponds to complex contagions in clustered
monoplex networks, which was studied in [52].

Future work may consider in more details the impact
of assortativity or other topological features on the cascade
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dynamics. It would also be interesting to compare multi-
plex networks and their monoplex projections in terms of
other dynamical processes, e.g., site percolation, transport
processes, etc. Another interesting direction would be to
consider networks that exhibit clustering not only through
triangles, but also through larger cliques [66]. Finally, it would
be interesting to study multiplex threshold dynamics that
implement nonlinear rules as well, e.g., see [32,67].
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Phys. Rev. E 90, 032816 (2014).
[23] G. Bianconi and S. N. Dorogovtsev, Phys. Rev. E 89, 062814

(2014).
[24] F. Radicchi, Nat. Phys. 11, 597 (2015).
[25] A. A. Saberi, Phys. Rep. 578, 1 (2015).
[26] T. W. Valente, Social Networks 18, 69 (1996).
[27] J. P. Gleeson, Phys. Rev. E 77, 046117 (2008).
[28] D. J. Watts, Proc. Natl. Acad. Sci. USA 99, 5766 (2002).
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[33] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno,
and M. A. Porter, J. Complex Networks 2, 203 (2014).
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053033 (2015).
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