
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15958  | https://doi.org/10.1038/s41598-022-19836-8

www.nature.com/scientificreports

Semiclassical relativistic stars
Julio Arrechea1*, Carlos Barceló 1, Raúl Carballo‑Rubio2,3 & Luis J. Garay4,5

We present strong evidence that semiclassical gravity can give place to self‑consistent ultracompact 
stars beyond the Buchdahl limit. We integrate the semiclassical equations of (spherically symmetric) 
stellar equilibrium for a constant‑density classical fluid. The semiclassical contribution is modelled by 
a quantum massless scalar field in the only static vacuum state compatible with asymptotic flatness 
(Boulware vacuum). The Renormalized Stress‑Energy Tensor (RSET) is firstly approximated by the 
analytic Polyakov approximation. This already reveals a crucial difference with respect to purely 
classical solutions: stars with compactness close to that of a black hole exhibit bounded pressures 
and curvatures up to a very small central core compared with the star radius. This suggests that a 
more refined approximation to the RSET at the core may give rise to strictly regular configurations. 
Following this suggestion, we prove that a minimal deformation of the Polyakov approximation inside 
the central core is sufficient to produce regular ultracompact stellar configurations.

In the dawn of gravitational-wave astronomy, we are closer than ever to unveiling the mystery that surrounds 
astrophysical black holes. One of the main outstanding questions is whether these astronomical objects lurking 
in the universe are General Relativity (GR) black holes—in the sense of having long-lived horizons and essen-
tially empty interiors—or material stellar-like objects with no horizons. There exists no conclusive experimental 
confirmation that astrophysical black holes must correspond to strictly classical (or Hawking-evaporating) black 
 holes1–5. On the other hand, the standard paradigm of black hole evaporation is not free from problems, which 
have been discussed for more than 40  years6–9. Given the new observational possibilities, the search for viable 
models of exotic compact-and-dark objects as alternatives to GR black holes is becoming popular, if only as a 
catalog with which to compare the GR  predictions5. Although probing them observationally is not easy, it is 
also far from  hopeless10–17.

The current alternative models involve more or less exotic new physics according to taste. Many of them 
investigate new forms of stellar equilibrium which could represent intermediate steps in the stellar ladder between 
neutron stars and GR black holes (e.g. boson  stars18,19, fluid  stars20,21, anisotropic  stars22,23, and solutions obtained 
through minimal and complete geometric deformation  approaches24,25). Other models propose that GR black 
holes are only a mathematical approximation to a more complex situation in which, from a few Planck lengths 
above the gravitational radius (where the event horizon would appear in GR) inwards, the spacetime geometry is 
substantially different or even ceases to exist. Examples in which the internal spacetime geometry is substantially 
modified include  gravastars26,27 and, closer to the spirit of our approach, the 2+2 hole  geometries28 based on a 
modified gravity prescription. Examples in which the classical notion of spacetime ceases to exist in the interior 
include  fuzzballs29 and collapsed  polymers30.

Our own approach is to search for semiclassical relativistic stars. Semiclassical gravity amounts to a straight-
forward modification of classical GR that takes into account vacuum polarization effects, analogous to those 
observed for instance in Quantum Electrodynamics. Thus, it is a conceptually simple and rather conservative 
framework. This approach suggests that trapping horizons are possible only as a transient notion, never to be 
found as a static  property31–33. Within semiclassical gravity we will provide the strongest theoretical evidence 
thus far of the existence of stellar configurations beyond relativistic stars.

Semiclassical gravity. It has its roots in the idea that spacetime curvature must locally deform the ener-
getic contribution of the zero-point fluctuations of quantum fields in a way that cannot be renormalized away. It 
assumes the preservation of an effective classical spacetime structure, introducing only an additional zero-point 
Stress-Energy-Tensor (SET) TZP

µν into the Einstein equations:

(1)Gµν = 8π
(

Tµν + TZP
µν

)

.
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This definition deliberately omits leaning towards any specific operational procedure followed to obtain the TZP
µν.

The method usually followed to find physically sensible expressions for TZP
µν consists in promoting the cor-

responding SET into an operator in the quantum field theory (QFT) whose expectation value can be computed 
in a suitably chosen vacuum state: TZP

µν = �T̂µν�
34–37. As the SET operator is not well defined in the quantum 

 theory38, this procedure requires regularization and renormalization. The resulting Renormalized SETs (RSETs) 
have several shortcomings. First, the outcome is not unique, exhibiting  ambiguities38. Second, in generic situ-
ations in 3+1 dimensions the resulting RSETs have higher-derivative  terms36,39–41, which hinder the search of 
reliable self-consistent solutions. Additionally, these RSETs might even lack a closed analytic  form42–45.

Even with these shortcomings in mind, it is important to realize that semiclassical effects have some robust 
generic features. (i) The RSETs can and must provide violations of the pointwise energy  conditions46–49, if only 
to be able to encode effects like Hawking evaporation. This evaporative process is caused by a combination of 
negative and positive matter fluxes that penetrate the horizon and escape to infinity, respectively. In the static 
situations considered here, the RSET accounts for (the most part negative) energy and pressure contributions 
coming from the vacuum state of the quantum scalar field and that permeate the entire spacetime. This by itself 
indicates the potentiality of avoiding standard classical results such as the singularity  theorems50. (ii) Although 
the semiclassical corrections appear multiplied by the Planck constant, there are scenarios—essentially when 
matter remains extremely close to its gravitational radius—in which energy-condition violations can become 
 huge51–54. (iii) The RSET naturally brings anisotropic pressures into GR even if absent at the classical level. (iv) 
As we will show in this work, the total energy density (i.e. the sum of classical and semiclassical contributions) 
can decrease inwards in some layers of a stellar structure even when the classical densities are compelled to grow 
inwards. These generic features suggest the possibility of violating the Buchdahl compactness limit for classical 
 stars5,12,55.

Finally, let us stress the remarkable fact that semiclassical gravity effects cannot coexist with static horizons of 
any  kind31–33. Then, within semiclassical gravity one has either objects with evaporating horizons (the standard 
view), or genuinely static configurations without horizons.

Beyond the Polyakov approximation. We analyze the semiclassical Eq. (1) seeking to find the form of 
spherically symmetric, static, and asymptotically flat self-consistent solutions, i.e., geometries that can represent 
stellar objects. The corresponding line element is

where d�2 is the angular line element of the 2-sphere. The functions e2φ and C denote the redshift and the 
compactness, respectively. The former measures the redshift suffered by outgoing null  rays56 and the latter is the 
quotient 2m(r)/r, with m(r) the Misner-Sharp  mass57–59.

To explore the characteristics of the set of semiclassical solutions, we consider a regularized version of the 
Polyakov RSET of a single massless scalar  field32,60,61. We require the vacuum state to be Boulware’s—the only 
vacuum consistent with static and asymptotically flat stellar-like  solutions34—. The Polyakov RSET is an approxi-
mation to the zero-point SET which is based on (i) modeling the propagation as if it effectively happened in a 
reduced 1+ 1 spacetime (the t, r sector of the metric) and (ii) neglecting backscattering due to the gravitational 
 potential62. However crude these two simplifications may be, they bring in exchange an RSET which is unique, 
analytic, properly captures the defining features of vacuum  states63, and contains only up to second derivatives 
of the metric, which allows to define a differential problem equivalent to that of classical GR. We then adopt a 
modified-gravity philosophy and find its associated solutions.

The Polyakov approximation leads to the RSET

where ψ = φ′ (the ′  denoting derivatives with respect to r) and F a radial function. For the Polyakov RSET,

The divergence of (4) at r = 0 forbids the existence of regular stellar configurations. Hence, the Polyakov approxi-
mation must be modified at least in a central core of radius rcore ≪ R around r = 0 , with R being the radius of 
the star. A simple example is the following:

However, this arbitrary choice does not guarantee sensible  results64. We will work with functions F(r) that differ 
from 1/r2 just for r < rcore , including but not limiting ourselves to the specific example (5). Our main result is 
the existence of an entire family of possibilities for F(r) characterized by the requirement of accommodating 
regular stellar configurations of arbitrary compactness.

(2)ds2 = −e2φ(r)dt2 + [1− C(r)]−1dr2 + r2d�2,

(3)

�T̂rr� = −F
l2Pψ

2

8π
,

�T̂tt� = F
l2Pe

2φ

8π

[

2ψ ′(1− C)+ ψ2(1− C)− ψC′
]

,

�T̂θθ � =
�T̂ϕϕ�

sin2 θ
= −

(

2F + rF ′
) l2Pr

2

16π
(1− C)ψ2,

(4)F(r) =
1

r2
.

(5)F(r) =
1

r2 + αl2P
.
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Exterior solution. For completeness, let us briefly summarize the properties of the external vacuum geom-
etries corresponding to the solutions to Eq.  (1) in absence of a classical SET but with a nonzero TZP

µν . These 
equations can be integrated from an asymptotically flat region  inwards32, obtaining the semiclassical counterpart 
of the Schwarzschild geometry. Far from the gravitational radius, quantum deviations from the Schwarzschild 
spacetime amount to perturbative corrections to the mass and redshift functions. As the gravitational radius is 
approached, however, quantum corrections become non-perturbative and destroy the event horizon altogether. 
The resulting geometry corresponds to an asymmetric wormhole with one asymptotically flat region and a neck 
lying above the gravitational radius. Deep inside the neck, the solution accommodates a null curvature singular-
ity whose details are not needed here, as this geometry is just the external spacetime of a stellar-like object whose 
surface is located at a given radial position around the neck, either inside, outside, or at the neck itself. From 
the selected surface inwards we integrate the Einstein equations with a classical source in addition to the always 
present semiclassical source.

Interior solution outside the core. To complete the system of semiclassical field equations we assume an 
equation of state for the classical fluid, namely, uniform density

We integrate the semiclassical equations for this equation of state, for which the classical isotropic pressure p 
adapts to the needs of the configuration. {C(r), p(r)} then turn out to obey a system of two coupled differential 
equations, from which the function φ(r) is derived and thus, the entire geometry  (see64 for details). The inte-
gration starts at the surface radius R, taking a compactness C(R) = CR and a pressure p(R) = 0 . One also has 
to decide the location of the star surface with respect to the putative wormhole neck. Let us first describe the 
properties of these geometries in the range r ∈ (rcore,R).

In64 we analyzed exhaustively these semiclassical equations of stellar equilibrium for the cutoff-regularized 
Polyakov approximation (5) and obtained an entire catalog of regular and irregular solutions. The features of 
the solutions obtained  in64 in the range r ∈ (rcore,R) are universal for all the choices of F(r) considered here. 
For example, for compactness below but close to Buchdahl’s (CR = 8/9) we found regular stellar configurations 
perturbatively similar to their classical counterparts. Here, we report on a particular family of solutions which 
are found when the compactness of the star is close to the black hole limit, that is, amply surpassing the Buchdahl 
bound. In this limit, their qualitative form is not very much affected by the location of the surface with respect to 
the putative wormhole neck. These newly found stars display a three-layered structure that appears schematically 
depicted in Fig. 1. Having outlined previously the characteristics of the exterior (vacuum) solution, we now turn 
to describing the solution for the bulk.

Criticality and classical stellar solutions. The inward integration takes as parameter the density ρ (6). In prin-
ciple, given the initial conditions {R,CR} , there is a critical value ρc for which the configuration is regular all the 
way up to the center r = 0 . When this does not occur (as for stars with CR sufficiently close to 1), we consider 
ρc as the value of the density corresponding to a qualitative change in the behavior of the compactness (or the 
Misner-Sharp mass, equivalently) at the origin (see 64 for a thorough discussion of this point).

The various regimes in our numerical integrations for a star that surpasses the Buchdahl limit CR = 8/9 are 
represented in Fig. 2. For strictly classical stars TZP

µν = 0 , the critical solution with ρ = ρc (thick line in Fig. 2A) 
has vanishing Misner-Sharp mass at r = 0 , separating solutions with positive and negative mass at r = 0.

Solutions with densities around ρc exhibit pressures that diverge at some radius far away from r = 0 (thin 
dashed lines in Fig. 2A). Stars with ρ ≫ ρc have this infinite pressure surface pushed inwards until, eventually, a 
solution where pressure diverges exactly at r = 0 is reached (thick line in Fig. 2B). All solutions surrounding this 

(6)ρ(r) = ρ ≡ const.

Figure 1.  Pictorial representation of a semiclassical relativistic star. The areal radius r of spheres is shown 
in terms of a proper coordinate l, defined as dr/dl =

√
1− C . The vacuum region (gray dashed lines) is the 

semiclassical Schwarzschild  solution32 describing an asymmetric wormhole. The bulk (gray continuous lines) 
is well described by the Polyakov approximation. This approximation breaks down at the core of the star (black 
dashed lines), but it can be minimally modified to adequately describe this region.
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separatrix between finite and infinite pressure solutions display a large negative mass at r = 0 . By increasing the 
value of ρ , pressure is made finite everywhere at the cost of making the compactness function singular at r = 0.

Quasi‑regular semiclassical stars. The semiclassical situation obtained for the simple regulator choice (5) shown 
in Fig. 2C is rather different from the classical scenario and already reveals appealing properties. The first one 
is that the critical solution for ρ = ρc represents two separatrices that appear together in mass and pressure (the 
separatrix corresponds again to the thick lines in Fig. 2C). The second compelling property is manifested for 
solutions where ρ � ρc . For these sub-critical stars close to criticality (thin continuous lines in Fig. 2C), m(r) 
acquires negative values followed by a bounce back to positive values, eventually reaching a surface where a 
wormhole neck is finally formed; the pressure reaches the neck with finite values (we have stopped these integra-
tions at the neck since it is a singular surface for the r coordinate). There are sub-critical solutions with arbitrarily 
small necks.

Both aforementioned characteristics, i.e. a simultaneous separatrix behaviour in mass and pressure and a 
vanishing central mass, must be fulfilled by any regular solution. Therefore, we state that the Polyakov approxi-
mation manages to generate quasi-regular ultracompact stars, in the following sense. For the geometry to be 
regular at the center of spherical symmetry, the mass function must vanish there while having a finite pressure. 
Hence, if we consider a small core around the center, regular configurations will have small masses (due to con-
tinuity) and finite pressures. This is not the case in the classical theory (Fig. 2A and B), where finite pressures for 
configurations beyond the Buchdahl limit require large negative values of the  mass64. Crucially, semiclassical 
physics is able to produce ultracompact configurations compatible with this vanishing of the mass and a finite 
pressure at a central core. Remarkably, the core can be Planck-sized for an ultracompact stellar object of say radius 
R ∼ 3 km . Strict regularity is not fulfilled because of the singularity at r = 0 of the Polyakov approximation (4). 
The cutoff-regularized Polyakov approximation (5) also fails to provide a strictly regular geometry (Fig. 2C), as 
a singularity beyond a wormhole neck is produced inside the core.

Core regularization. The Polyakov approximation fails to capture the correct physics close to the radial 
origin. This observation prompts the following questions: How off the mark is this approximation? Is it possible 
that slight deformations lead to regular stellar solutions? This is the motivation behind the family of approxima-
tions studied here, characterized by functions F(r) that differ from 1/r2 just for r < rcore . It is important to stress 
that deforming the Polyakov approximation is not a choice, but a necessity to avoid its singular nature at r = 0 . 
We consider the minimal extensions to achieve this goal. We now show that these minimal deformations of the 

Figure 2.  Plots of the pressure (red) and Misner-Sharp mass (blue) of solutions surrounding: (A) the classical 
critical solution with ρ = ρc ; (B) the classical separatrix in pressure; (C) the semiclassical critical solution with 
F(r) = 1/

(

r2 + αl2P
)

, α = 1.01 ; and (D) a semiclassical ultracompact stellar solution with a regular core of size 
rcore ≃ 0.2 . For every integration, we have chosen the values R = 1 and CR = 0.92 for visualization purposes. 
The values of ρ increase from right to left in the pressure profiles (e.g. thin dashed lines correspond to greater ρ 
than thin continuous lines).
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Polyakov approximation suffice to produce regular configurations in a generic way, i.e., there exists a whole fam-
ily of functions F(r) leading to regular configurations.

We follow a reverse-engineering logic which consists in making an ansatz for a regular geometry in the range 
r ∈ (0, rcore) and then obtaining the regulator F(r) that sources the geometry via the RSET, in case it exists. We 
derive an expression for C from the rr component of the semiclassical equations (1) and replace it in the tt com-
ponent. Furthermore, through conservation of the classical SET, we find the relation

where

By imposing an ansatz for the pressure and its derivatives, Eq. (7) becomes a first-order differential equation for 
the regulator F which, upon solving, determines the entire core geometry. Naturally, if the resulting F is every-
where regular inside the core, the star spacetime metric will be regular as well.

We consider a pressure profile for the core (whose classical energy density is constant according to (6)) that 
is regular and has a global maximum at r = 0 . At rcore , continuity of the metric enforces pressure to be continu-
ous up to its second derivative. The simplest function that satisfies these conditions is a fifth-order polynomial

where the pressure at the origin p0 and its second derivative p′′0 are positive and negative constants, respectively. 
Determining the coefficients {ci}2i=0 is straightforward given the above conditions. Now, taking a fixed solution 
for the bulk region r ∈ (rcore,R) (hence, a particular pressure profile) and a core size rcore , the pressure function 
inside the core is determined upon fixing the two remaining free parameters {p0, p′′0}.

We have performed a numerical exploration of a wide range of values of the parameters {p0, p′′0} given a set 
of fixed solutions for r > rcore . The results are represented in Fig. 3, where whole parametric regions of regular 
solutions are shown. These regions exist for central cores of any size.

This result is remarkably non-trivial, as it is not guaranteed that a prescribed geometry will be compatible 
with the Polyakov RSET multiplied by a function. It might have happened that no F(r) existed for any regular 
ansatz. Hence, that this compatibility is realized for the simple polynomial example described above is a strong 
indication that the Polyakov approximation is able to capture an important fraction of the relevant physics.

The strictly regular solutions we have obtained have a clear interpretation in terms of the regulating func-
tions F. By modifying the regulator inside the core we are distorting the space of solutions (Fig. 2D) so that the 
new critical solution corresponds to a regular configuration. The regular separatrix solution exhibits an interior 
region of negative mass (encompassing the core and part of the bulk) that exerts the gravitational repulsion 
necessary to sustain the whole structure for values of CR for which a sphere composed of a classical fluid alone 
would inevitably collapse under its own gravity.

As the bulk geometry of the star is unaffected by the characteristics of the regular core, the surface compact-
ness CR and radius R are fixed constants in our integrations. Therefore, the mass-radius diagram for semiclassical 
relativistic stars shown in Fig. 4 is independent of rcore . The most remarkable feature that we can extract from 
this diagram is that semiclassical relativistic stars can be arbitrarily close to the black hole limit.

Parametrized shapes. To end this manuscript we provide a family of analytic geometries that shows the 
main characteristics of semiclassical relativistic stars. They exhibit a negative mass region in the interior of the 
structure together with a redshift that decreases inwards. This family accommodates qualitatively to foreseeable 
solutions found using different approximation schemes to the RSET. Alternatively, it can be taken as a para-
metrized phenomenological approach to this type of ultracompact objects.

Defining r̂ = r/R , our 5-parameter family of metrics is:

with

(7)p′′ = D

[

A0 +A1

(

p′
)

+A2

(

p
)′2

+A3

(

p′
)3
]

,

(8)

A0 =− 8πr
(

ρ + p
)3(

ρ + 3p
)

,

A1 = 4
(

ρ + 3p
)2[

6πr2
(

ρ + p
)

+ 4πFl2Pr
2p− 1

]

,

A2 =− r
(

ρ + p
)[

16πr2
(

ρ − 2p
)

− l2P
(

2F + rF ′
)

+8πFl2Pr
2
(

ρ + 5p
)

− 8πF ′l2Pr
3p− 6

]

,

A3 = Fl2Pr
2
[

8πr2
(

ρ − p
)

− l2P
(

2F − rF ′
)

−8πF ′l2Pr
3p− 2

]

,

D = 2r
(

1− l2PF
)(

ρ + p
)2(

1+ 8πr2p
)

.

(9)p = p0 + p′′0r
2/2+ c0r

3 + c1r
4 + c2r

5,

(10)ds2 = −e2φ(r̂)dt2 + R2
[

1− C(r̂)
]−1

dr̂2 + R2r̂2d�2
2,
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The constants {ai}3i=0 depend on the 5 independent parameters {βi}4i=0:

(11)
e2φ(r̂) =

{

1− CR/
(

r̂ + β0
)

, 1 ≤ r̂ < ∞

β1a
β2 r̂

2

0 + a1 r̂
6ea2(r̂−1), 0 ≤ r̂ < 1

C(r̂) =

{

CR/r̂, 1 ≤ r̂ < ∞

β3
[

cos
(

β4 r̂
)

− 1
]

e−β4 r̂ + a3 r̂
2, 0 ≤ r̂ < 1

Figure 3.  The left and right panels denote the parameter space for the analytical-pressure core of stars with 
R ≃ 163, CR = 1− 10−4 . We have chosen rcore/R = 0.037 and rcore/R = 0.125 for the core radius, respectively. 
The colored region denotes entirely regular solutions. The horizontal axis is the quotient between the central 
and the core-boundary pressures p0 , pcore . The vertical axis is the quotient between the second derivatives of the 
pressure at the origin, p′′0 , and at the core boundary, p′′core.

Figure 4.  Mass-radius diagram of semiclassical relativistic stars with ρ = 10−5 . The black line represents the 
compactness parameter of black holes (CR = 1) , the dashed red line denotes the Buchdahl compactness bound 
(CR = 8/9) , and the dashed green line is the minimum compactness of objects that exhibit a photon sphere 
(CR = 1/3) . The blue curve represents semiclassical relativistic stars. For stars surpassing the Buchdahl limit, 
the total mass M grows approximately linearly with the radius R. Each point within the blue curve admits entire 
families of regulator functions F for which the whole geometry is regular.
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Thus, the family of metrics (11) is characterized by five form parameters {βi}4i=0 with a clear physical interpreta-
tion. β0 introduces an offset in the redshift e2φ(r) associated with the fact that the external semiclassical metrics 
we have found are almost Schwarzschild up to very close to the gravitational radius. β1 ∈ (0, e2φ(R)) represents 
the redshift at the origin. β2 ∈ [0, 1) controls the flatness of the redshift profile in the interior region. Finally 
β3,β4 > 0 determine the width and depth of the negative energy internal region. Figure 5 shows a comparison 
between a numerical solution and the corresponding analytical fit (see the supplemental material at https:// 
github. com/ JArre chea/ Semic lassi cal- Relat ivist ic- Stars for a Mathematica notebook containing these families 
of solutions, particularly to visualize how shifting the parameters modifies them).

Conclusion. Neutron stars are the most compact relativistic stars known to exist. We have shown that semi-
classical gravity can accommodate more compact stellar configurations supported by quantum vacuum polari-
zation. This result has been obtained using a well-motivated semiclassical source given by a minimal deforma-
tion of the Polyakov approximation. A clear extension of this work is to analyze whether similar solutions exist 
when using more refined proposals for the RSET in (3+1) dimensions (e.g.42). We have found preliminary evi-
dence that the existence of solutions as described here persist in more elaborate approximations, and will present 
the corresponding results elsewhere. These investigations open the possibility for the existence of new stages of 
stellar evolution beyond relativistic stars.
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