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A comparison of the anatomical structure of the pancreas in 
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Abstract: As basic knowledge for evaluation of pancreatic toxicity, anatomical structures were compared among experimental ani-
mal species, including rats, dogs, monkeys, and minipigs. In terms of gross anatomy, the pancreases of dogs, monkeys, and minipigs 
are compact and similar to that of humans. The rat pancreas is relatively compact at the splenic segment, but the duodenal segment is 
dispersed within the mesentery. In terms of histology, the islet of each animal is characterized by a topographic distribution pattern of 
α- versus β-cells. β-cells occupy the large central part of the rat islet, and α-cells are located in the periphery and occasionally exhibit 
cuffing. In dog islets, β-cells are distributed in all parts and α-cells are scattered in the center or periphery of the islet (at body and left 
lobe); whereas β-cells occupy all parts of the islet and no α-cells are present in the islet (at right lobe). Monkey islets show two distinct 
patterns, that is, α-cell-rich or β-cell-rich islets, and the former represent peripheral β-cells forming an irregular ring. Minipig islets 
show an irregular outline, and both α- and β-cells are present in all parts of the islet, intermingling with each other. According to mor-
phometry, the endocrine tissue accounts for <2% of the pancreas roughly in rats and minipigs, and that of monkeys accounts for >7% 
of the pancreas (at tail). The endocrine tissue proportion tends to increase as the position changes from right to left in the pancreas in 
each species. (DOI: 10.1293/tox.2016-0016; J Toxicol Pathol 2016; 29: 147–154)

Key words: pancreas, β-cell, α-cell, endocrine-exocrine interface, peri-islet, extra-insular endocrine cell

Introduction

The pancreas is composed of exocrine digestive gland 
and endocrine cell islets, the latter being scattered through-
out the former in mammalian species1-3. Exocrine injury 
can be induced by various agents, and endocrine injury can 
also be induced by certain chemicals4-9. Furthermore, exo-
crine injury may involve endocrine tissue10, 11. Recently, the 
endocrine-exocrine interface has been proposed as another 
target of injury with regard to pancreatic toxicity, and it is 
adaptable to a certain type of pancreatic lesions, peri-islet 
hemorrhage, and/or fibrosis, as has been previously report-
ed12–15. To understand pancreatic toxicity, it is important 
to understand the anatomical histology related to the cor-
relation between exocrine and endocrine tissues. There is 
species-specific variation in the macroscopic structure and 
histological appearance of the pancreas; in particular, the 
distribution and composition of each endocrine cell in the 
islets varies among experimental animals1, 4, 8, 10, 16–18. Rats 

and mice and dogs and monkeys have been used in toxic-
ity studies as rodents and non-rodents, respectively, in the 
process of developing new pharmaceutical products. Mini-
pigs have been utilized as experimental animals in recent 
years19, 20. The aim of this article was to describe the com-
parative gross and microscopic structures of the pancreas 
in rats, dogs, monkeys, and minipigs and to distinguish the 
distribution patterns of endocrine cells within the islet of 
Langerhans.

Development of the Exocrine and Endocrine 
Pancreas

The pancreas develops from the endoderm at the cau-
dal end of the foregut growing into the duodenum. The 
dorsal and ventral pancreatic anlagen appear as separate 
evaginations of the foregut, and with cell division, each an-
lage forms a pancreatic duct to the acinar lobule structure 
independently2, 4, 21. The dorsal pancreas forms part of the 
head, body, and tail, and the ventral pancreas forms part of 
the head; these growing glands merge2, 4, 21. The endocrine 
pancreas develops at the same time as the exocrine pancre-
as, and endocrine cells appear to be derived from the same 
pool of epithelial cells forming the exocrine pancreas2, 21. 
The precursor cells may be developmentally plastic; that 
is, they may differentiate into either endocrine or exocrine 
cells21. Endocrine cells are first observed along the base of 
the developing acinus2. Repetition of modified cell division 
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such that daughter cells escape linkage to the neighboring 
epithelial cells leads to accumulation of endocrine cells free 
of the acinar-tubular structure21.

Gross Anatomy of the Pancreas in Experimental 
Animals

The human pancreas is a compact organ protected from 
severe trauma by lying close to the posterior abdominal 
wall in the upper abdomen3. The monkey pancreas appears 
similar to that of humans22. Macroscopic appearances of the 
pancreas in experimental animals can be divided into two 
basic patterns. The first is a diffusely distributed mesenteric 
type found in rabbits, and the second is a more compact 
type found in hamsters, dogs, and monkeys that is similar to 
that of humans10, 23. The rat and mouse pancreas is classified 
as an intermediate because the splenic portion is relatively 
compact, but the duodenal portion is dispersed within the 
mesentery23. The minipig pancreas is compact. The lobation 
and configuration pattern of the pancreas in each experi-
mental animal is illustrated in Fig. 1, and photographs of 
the macroscopic features of a removed pancreas are shown 
in Fig. 2.

Rats
The pancreas is divided into four parts, the gastric, 

splenic, parabiliary, and duodenal segments24 (Figs. 1 and 2). 
Recent textbooks and papers have begun to use somewhat 
different terms for lobation patterns, such as (1) duodenal, 

gastric, and splenic lobes4, (2) right lobe, body, and left 
lobe8, (3) gastric lobe, duodenal head, and tail23, and (4) 
head, body, and tail12, 25. The gastric lobe in rodents has no 
counterpart in the other larger species25. Based on anatomi-
cal descriptions of the human pancreas, the head (parabili-
ary and duodenal segments) is located on the duodenal side, 
and the body (gastric and splenic segments) extends from 
the head to the stomach and spleen24. The tail (terminal part 
of the splenic segment) ends near the hilum of the spleen24. 
As mentioned above, the splenic segment is a somewhat 
thicker solid gland, whereas the duodenal segment is dis-
persed within the mesentery23. The caudal part of the duo-
denal segment and the dorsal part of the splenic segment are 
joined together and extend to near the colon.

Dogs
The pancreas is located in the dorsal part of both the 

epigastric and mesogastric abdominal segments, caudal to 
the liver, and divided into three parts, the right lobe, body, 
and left lobe26 (Figs. 1 and 2). A thin, slender right lobe and 
a shorter, thicker, and wider left lobe are united at the body 
(pancreatic angle), which lies caudomedial to the pylorus26. 
The right lobe lies in the mesoduodenum extending caudal-
ly from the body along the duodenum. The left lobe extends 
caudosinistrally from the body to the hilum of the spleen. 
The pancreas, when hardened in situ, is in the form of an 
inverted-V shape26.

Monkeys
The pancreas is a thick, fairly solid gland extending 

transversely along the dorsal wall of the abdomen from the 
duodenum to the spleen and is divided into three parts, the 
head, body, and tail22, 27 (Figs. 1 and 2). The head lies within 
the duodenal loop and is in tight surface-to-surface contact 
with the duodenum. The body is directed to the left from 
the head, though there is no distinct anatomical landmark 
between the lobes. The tail is directed to the left with a nar-

Fig. 1.	 The pancreas of the rat, dog, monkey, and minipig are il-
lustrated with positional relation to the spleen and gut. The 
names of the lobes (portions) are as follows: D, duodenal seg-
ment; P, parabiliary segment; G, gastric segment; S, splenic 
segment; R, right lobe; B, body; BA, anterior portion of body; 
BP, posterior portion of body; L, left lobe; H, head; T, tail.

Fig. 2.	 Macroscopic features of the pancreas in the rat, dog, monkey, 
and minipig.
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rowing of the gland and ends near the hilum of the spleen.

Minipigs
The pancreas is an extensive thick gland with an ir-

regular outline and is basically divided into three parts, the 
head (right lobe), the body (including the neck), and the tail 
(left lobe) 3, 25, 28, 29 (Figs. 1 and 2). The head, which is in 
contact with the gut from the end of pylorus to the proximal 
duodenum, extends to the left and connects to the body. The 
body separates into two (anterior and posterior) portions that 
encompass the portal vein and make the pancreas appear to 
be “ring-shaped”, and the posterior portion extends caudally 
ventral to the right kidney28–30. The tail is located at the left 
of the body and extends caudosinistrally ventral to the left 
kidney, and it ends near the hilum of the spleen. Meanwhile, 
other terms for the lobation pattern, such as “splenic” lobe 
(corresponding to the tail and body in the human pancreas), 
“duodenal” lobe (corresponding to the head of the pancreas), 
“connecting” lobe (corresponding to the uncinate process), 
and “bridge” (serving as an anatomical connection between 
the splenic and connecting lobes), have been used in the lit-
erature30. Moreover, a recent textbook sited two simplified 
lobes, the right or head (duodenal portion) and the left or tail 
(splenic portion) of the pancreas, in minipigs8.

Histology of the Pancreas in Experimental Ani-
mals

The pancreas is composed of exocrine and endocrine 
tissues3, 16. The exocrine pancreas has a basic common 
structure among rats, dogs, monkeys, and minipigs, being 
composed of two epithelial cell types, acinar and ductal epi-
thelial cells4. The acinar epithelial cells make up the major 
portion of the pancreas, and the ductal system is composed 
of centroacinar cells, followed by the intercalated, intralob-
ular, interlobular, and main ducts4. The endocrine cells form 
islets of Langerhans, and extra-insular endocrine cells are 
scattered randomly as single cells or as clusters composed 
of two to five cells in the components of exocrine gland tis-
sue31–34. The extra-insular endocrine cells are topographi-
cally related to ductal cells31-33. The topographic distribution 
and number of islet endocrine cells differ between the lobes 
of the pancreas and species8, 17, 18, 35. The histological fea-
tures of the pancreas in rats, dogs, monkeys, and minipigs 
are shown in Fig. 3, with pictures of islets characteristic to 
each species being shown in Fig. 4. Comparative charac-
teristics of pancreatic islets in each species of experimental 
animal are summarized in Table 1.

Rats
Large- and small-sized islets are mostly present in all 

segments of the pancreas35. The distribution of α- versus 
β-cells in the islet is basically uniform in all segments of 
the pancreas regardless of the size of the islet. In the islet, 
β-cells occupy the large central part, and α-cells are located 
in the periphery and occasionally exhibit cuffing8, 17, 18, 35. 
A small number of the δ-cells are scattered in the periph-

ery8, 35. Extra-insular endocrine cells are rare.

Dogs
Middle- and small-sized islets are present in the body 

and left lobe of the pancreas, whereas only small islets are 
present in the right lobe. The distribution pattern of α- ver-
sus β-cells in the islet is also different between the former 
and latter. In the body and left lobe, β-cells are distributed 
in all parts of the islet, and α-cells are scattered in the center 
or periphery of the islet against the background of β-cells 
regardless of the size of the islet8, 35. Fewer δ-cells are scat-
tered in the center or periphery of the islet. In the right lobe, 
β-cells occupy all parts of the islet, and no α-cells are pres-
ent in the islet, though a few δ-cells are scattered8, 35. Extra-
insular endocrine cells recognized as α-, β-, and δ-cells are 
scattered throughout all lobes including the right one.

Monkeys
Large- to small-sized islets are present in all lobes of 

the pancreas. Two main distribution patterns of α- versus 
β-cells are recognized, that is, α-cell-rich or β-cell-rich is-
lets, in all lobes of the pancreas; although the intermediate 
pattern of α- and β-cells is comparable, it is rarely present. 
In the α-cell-rich islet, α-cells are distributed in all parts of 
the islet, and β-cells are scattered or accumulated in the pe-
riphery of the islet, forming an irregular ring35. In the β-cell-
rich islet, β-cells are distributed in all parts of the islet, and 
α-cells are scattered mainly in the center but are occasion-
ally scattered in the periphery or in all parts of the islet35. 
Large islets tend to be α-cell rich and to be located in the 
central area of lobules. Relatively numerous δ-cells are scat-
tered in the center or periphery equally in both α-cell-rich 
and β-cell-rich islets35. Extra-insular endocrine cells recog-
nized as α-, β-, and δ-cells are scattered throughout all lobes.

Minipigs
Middle- and small-sized islets are present in all lobes 

of the pancreas. The islets frequently show an irregular out-
line for the following reasons: the islet cells get in the adja-
cent exocrine tissue and occasionally constitute a part of the 
acinus35. The distribution pattern of α- versus β-cells in the 
islet is not distinctive and is basically uniform in all lobes of 
the pancreas regardless of the size of the islet. Both α- and 
β-cells are present in all parts, central or periphery, of the 
islet, intermingling with each other. In the islet, β-cells tend 
to make a small cluster or band, whereas, α-cells of a large 
or small number tend to be scattered separately. Relatively 
few δ-cells are scattered in all parts of the islet. Extra-in-
sular endocrine cells recognized as α-, β-, and δ-cells are 
scattered throughout all lobes.

Proportion of the Endocrine Component in the 
Pancreas

According to a histology textbook, the endocrine com-
ponent represents about 2% of the pancreas volume, where-
as a toxicologic pathology textbook states that the endocrine 
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tissue comprises <5% of the pancreas and that the exocrine 
pancreatic tissue comprises the remaining >95% of the pan-
creas3, 8. Though the number or volume of endocrine cells 
per pancreas varies between different stages of development 
and also changes due to age-related or disease-related alter-
ations1, 36, 37, the percentage area of each morphometrically 
detected endocrine tissue in the pancreas of each sample 
animal is shown in Fig. 5. The histological preparations of a 
6-week-old male rat (Crl:CD(SD)), a 21-month-old male dog 
(beagle), a 56-month-old male monkey (Macaca fascicu-

laris), and a 21-month-old male minipig (Göttingen) were 
used as actual samples of appropriate age for toxicity stud-
ies. There is large interspecies and intersegment variability 
in the proportion of endocrine tissue. Endocrine tissue ac-
counted for roughly <2% of the pancreas in the rat and mini-
pig, regardless of intersegment variability. The endocrine 
component of the monkey accounted for >7% of the pan-
creas (tail). In the dog, monkey, and minipig, the endocrine 
tissue proportion increased with the change in the position 
from right (head) to left (tail). In the rat, the endocrine tis-

Fig. 3.	 Histological features of the pancreas in the rat, dog, monkey, and minipig with H&E staining and immunohistochemistry for insulin 
and glucagon in serial sections. All photographs were taken using a 4× objective lens. Large islets are visible in the rat and monkey, and 
middle-sized islets are visible in the dog (left lobe) and minipig; only small islets are visible in the dog (right lobe).
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sue proportion increased similarly from right (parabiliary) 
to left (splenic). It is notable that the α-cell proportion in the 
right lobe of the dog is 0.02% of the pancreas. In the monkey 
and minipig, the α-cell proportion in the tail is higher than 
in the other lobes as compared to β-cells. Similar tenden-
cies for the endocrine cell proportions were indicated in the 
previous literature35.

Acknowledgments: We would like to thank Ms. Yuki To-
monari and Mr. Naoaki Yamada for their diligent support in 
preparation of the photographs and collection of the materi-
als. We also thank Mr. Stephen Filiatrault and Ms. Kanae 
Tamatsukuri for language editing of the manuscript.

Disclosure of Potential Conflicts of Interest: The authors 
declare that they have no conflicts of interest.

Fig. 4.	 Histological features of typical islets in the rat, dog, monkey, and minipig with H&E staining and immunohistochemistry for insulin, glu-
cagon, and somatostatin in serial sections. The photographs of the rat, dog, and minipig were taken using a 20× objective lens, and those 
of monkey were taken using a 10× objective lens. The photographs in the second and third rows show peripheral α-cell and central α-cell 
islets of a dog. The photographs in the fourth row show a small islet in serial sections of the right lobe of a dog, and the inset photograph 
in the third column shows an extra-insular α-cell found in the same section. The photographs in the fifth and sixth rows show α-cell-rich 
and β-cell-rich islets of a monkey.
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