
Fluorescence Anisotropy Imaging Microscopy Maps Calmodulin 
Binding during Cellular Contraction and Locomotion 
Alber t  H.  G o u g h  and  D. Lans ing  Taylor 

Center for Light Microscope Imaging and Biotechnology, and Department of Biological Sciences, Carnegie Mellon University, 
Pittsburgh, Pennsylvania 15213 

Abstract. Calmodulin is a calcium transducer that ac- 
tivates key regulatory and structural proteins through 
calcium-induced binding to the target proteins. A fluo- 
rescent analog of calmodulin in conjunction with ratio 
imaging, relative to a volume indicator, has demon- 
strated that calmodulin is uniformly distributed in 
serum-deprived fibroblasts and there is no immediate 
change in the distribution upon stimulation with com- 
plete serum. The same fluorescent analog of calmodu- 
lin together with steady state fluorescence anisotropy 
imaging microscopy has been used to define the tem- 
poral and spatial changes in calmodulin binding to 
cellular targets during stimulation of serum-deprived 
fibroblasts and in polarized fibroblasts during wound 
healing. In serum-deprived fibroblasts, which exhibit a 
low free calcium ion concentration, a majority of the 
fluorescent analog of calmodulin remained unbound 
(fraction bound, fs < 10%). However, upon stimulation 
of the serum-deprived cells with complete serum, cal- 

modulin binding (maximum j~ = 95%) was directly 
correlated with the time course of the elevation and 
decline of the free calcium ion concentration, while 
the contraction of stress fibers continued for an hour 
or more. Calmodulin binding was also elevated in the 
leading lamellae of fibroblasts (maximum j~ = 50 %) 
during the lamellar contraction phase of wound healing 
and was spatially correlated with the contraction of 
transverse fibers containing myosin II. Highly polarized 
and motile fibroblasts exhibited the highest anisotropy 
(calmodulin binding) in the retracting tails and in as- 
sociation with contracting transverse fibers in the cor- 
tex of the cell. These results suggest that local activa- 
tion of myosin H-based contractions involves the local 
binding of calmodulin to target proteins. The results 
also demonstrate a powerful yet simple mode of light 
microscopy that will be valuable for mapping molecu- 
lar binding of suitably labeled macromolecules in liv- 
ing cells. 

U 
NDERSTANDING the chemical and molecular basis of 
cell functions requires the definition of the temporal 
and spatial interplay of ions, metabolites, macro- 

molecules, and organelles in living ceils (Taylor and Wang, 
1980; Taylor et al., 1984; Kolega and Taylor, 1991; Taylor 
et al., 1992). Calcium, in particular, is a second messenger 
which has a number of intracellular effects, some of which 
are mediated by calmodulin. In vitro biochemical data sug- 
gest that the calcium-calmodulin complex leads to a modi- 
fication in the phosphorylation state of key regulatory pro- 
teins by binding to and activating protein kinases and 
phosphatases, as well as cyclic nucleotide phosphodiester- 
ases (Cohen and Klee, 1988). In the specific case ofnoumus- 
cle and smooth muscle contractile events, studies of myosin 
II regulation suggest the following sequence of events: stimu- 
lation ~ a rise in free calcium concentration ([Ca2+]f) ~ --- 

I. Abbreviations used in this paper: ATR, acetamidotetramethylrhodamine; 
CaM, caimodulin; CS, calf serum; EBS, Earles Balanced Salts; FAIM, 
fluorescence anisotropy imaging microscopy; MLCK, myosin n light chain 
kinase; PDE, 3'-5' cyclic nucleotide phosphodiesterae; SSFA, steady state 
fluorescence anisotropy. 

calcium binding to calmodulin --- the calcium-calmodulin 
complex binding to and activating myosin II light chain ki- 
nase (MLCK) 1 and other targets ~ MLCK phosphorylation 
of the 20-kD regulatory light chain of myosin II (LC20) --" 
permitting the interaction of myosin II with actin to produce 
a contractile force (Sellers and Adelstein, 1987). A key step 
in the calmodulin-based signaling sequence involves the 
binding of the calcium-calmodulin complex to MLCK and 
other calmodulin targets upon the elevation of [Ca2+]f. 

Physiological indicators and fluorescent analogs of spe- 
cific proteins have established a temporal-spatial relation- 
ship between calcium ion fluctuations, calcium binding to 
calmodulin, and the contraction of stress fibers containing 
actin and myosin II. Indicators of [Ca2+]f demonstrate that 
[Ca2+]f is very low in serum-deprived cells (~<10 -7 M) and 
that when stimulated with serum or specific growth factors 
the [Ca2+]f transiently increases to near 10 -6 M (McNeil et 
al., 1985; McNeil and Taylor, 1987; Byron and Villereal, 
1989; Tucker and Fay, 1990; Hahn et al., 1992). Stress fibers 
in serum-deprived cells exhibit a semi-sarcomeric organiza- 
tion of fluorescent analogs of myosin II, and can be shown 
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to contract following stimulation (Giuliano and Taylor, 
1990; Kolega et al., 1991; Giuliano et al., 1992). Tem- 
porally, the calcium transient and the resulting contraction 
are not tightly coupled, since the calcium response lasts only 
a few minutes, while the contraction continues for about an 
hour (Giuliano and Taylor, 1990; Hahn et al., 1992). 

Using a new fluorescent analog ofcalmodulin, MeroCam I, 
as an optical biosensor (Hahn et al., 1990), it has been 
shown that calmodulin binds calcium in phase with the eleva- 
tion and decline of [Ca2+]f (Hahn et al., 1992). It has also 
been shown that patterns of elevated [Ca2+]f and calcium 
binding to calmodulin (Hahn et ai., 1992) colocalize with 
contracting transverse fibers in fibroblasts undergoing the 
lamellar contraction phase of wound healing (DeBiasio et 
al., 1988). Examination of the phosphorylation state of the 
LC~0 by biochemical assays reveals that there is a sustained 
increase in phosphorylation following serum stimulation that 
continues through the ,,ol-h contraction time (Giuliano et ai., 
1992). This implies either that the MLCK remains activated 
despite the transience of the increase in [Cae+]f and calcium 
binding to calmodulin or that the phosphatase which dephos- 
phorylates the LC20 remains inactivated. In this study we 
have mapped calmodulin binding relative to contracting 
fibers containing a fluorescent analog of myosin H, to ex- 
plore the suggested role of calmodulin in regulating this 
contraction. 

Interactions of calmodulin with MLCK and other targets 
in living cells are predicted to result in a substantial decrease 
in the mobility of calmodulin since calmodulin is a relatively 
small protein (Mr = 16,790). Indeed, Luby-Phelps et al. 
(1985) and Stemple et al. (1988), using FRAP to measure the 
translational mobility of fluorescent analogs of calmodulin in 
living cells provide evidence that supports this prediction. In 
interphase Swiss 3T3 cells, an immobile fraction of 15-20% 
of the fluorescent calmodulin was present in all cells, while 
some cells exhibited calrnodulin localization to stress fibers 
and in other cells the calmodulin was diffusely distributed 
(Luby-Phelps et al., 1985). In mitotic PtK1 cells, it was 
shown that calmodulin associates with the spindle poles, 
probably through an interaction with microtubule associated 
proteins, since no direct interaction with microtubules has 
been observed (Stemple et al., 1988). These results and 
others (Cohen and Klee, 1988) suggest that calmodulin acti- 
vation in vivo may be more complicated than the simple 
[Ca~+]rdependent interaction observed using in vitro sys- 
tems of a few purified components. However, the depen- 
dence of the translational mobility, as measured by FRAP, 
on the structural organization of the cytoplasmic matrix, as 
well as the hydrodynamic properties of the molecule and the 
solution viscosity, complicates the interpretation of transla- 
tional mobility measurements specifically in terms of bind- 
ing interactions (Luby-Phelps et al., 1987; Luby-Phelps et 
ai., 1988; Kao et al., 1993). The rotational mobility, how- 
ever, is predicted to be a much more sensitive indicator of 
binding interactions (see Appendix) and is relatively insensi- 
tive to the long range organization of the cytoskeletal mesh- 
work (Fushimi and Verkman, 1991; Kao et al., 1993). Mea- 
surements of rotational mobility by steady state fluorescence 
anisotropy imaging microscopy (FAIM) also allow higher 
spatial and temporal resolution than FRAP, facilitating the 
correlation of changes in rotational mobility, and therefore 
binding, with the distributions of other cellular components 

such as myosin II and other physiological parameters such 
as [Ca2+]f. Finally, FAIM is a relatively simple mode of 
light microscopy that can be easily added to an existing im- 
aging system. 

We address five questions in this paper. First, what is the 
distribution of calmodulin in serum-deprived cells and is 
there a change following stimulation with serum? Second, is 
calmodulin freely mobile in serum-deprived cells at low 
[Ca2+]f as predicted by in vitro biochemistry? Third, does 
calmodulin bind to intracellular targets in response to cal- 
cium signaling? Fourth, does the release of calmodulin from 
the targets follow the kinetics of the decay of the calcium 
transient? Fifth, are there correlations between the distribu- 
tion of myosin II in contracting fibers and calmodulin bind- 
ing as would be predicted from the solution biochemistry? 

Materials and Methods 

Materials 
DTT, EGTA, MOPS, Pipes, FITC- and TRITC-calmodulin (CaM) spinach 
calmodulin, Sephadex G-25, Earles Balanced Salts (EBS), and amino acid 
mixture were purchased from Sigma Immunochemicals (St. Louis, MO); 
calmodulin-free 3'-5' cyclic nucleotide phosphodiesterase (PDE), calmod- 
ulin-free alkaline phosphatase, and calmodulin-free adenosine deaminase 
were obtained from Boehringer-Mannheim Biochemicals (Indianapolis, 
IN); tetramethylrhodamine and fluorescein isothiocyanate-labeled 10-kD 
dextrans and monobromobimane were obtained from Molecular Probes, 
Inc. (Junction City, OR); and all other chemicals were reagent grade. 

Preparation of Fluorescent Analogs 
Calmodulin activity assays and binding assays were performed in an assay 
buffer consisting of 100 mM MOPS, pH 7.0, 60 mM KCI, 2 mM MgC12, 
2.5 mM EGTA, and varying amounts of 0.1 M CaCI2 standard solution 
(Orion Research Inc., Cambridge, MA) to yield the indicated [Ca2+]f. 
Samples for microinjection were prepared in injection buffer consisting of 
2 mM Pipes, pH 7.0. Bovine brain calmodulin, prepared and characterized 
as previously described (Hahn et al., 1990) was used as a standard for pro- 
tein and activity assays. 

Spinach calmodulin was used to make the monobromobimane analog of 
calmodulin (Bimane-CaM) because it contains a single cysteine and label- 
ing at this site appears to have little or no effect on its biological activity 
(Mills et al., 1988). The lyophilized spinach calmodulin was dissolved in 
10 mM MOPS (pH 7.0), 2 mM EGTA and 0.5 mM DTT, at a concentration 
of 5 m~/mi. After the reduction, the DTT was removed by passing the solu- 
tion through a Sephadex G-25 column (1 × 10 crn) equilibrated with the 
same buffer without DTT and selecting the fractions with maximum absor- 
hance at 280 nm. Bimane-CaM was prepared by the addition of a fivefold 
molar excess of 1 mM monobromobimane in ethanol to the ,~2 mg/ml solu- 
tion of spinach calmodulin. The mixture was stirred for 2 h at room temper- 
ature, and then exhaustively dialyzed against distilled water. The labeled 
calmodulin (dye/protein "01.0) was either lyophilized or frozen and stored 
at -60°C. 

The lyophilized powders of FITC-CaM (dye/protein ffi 0.8) and TRITC- 
CaM (dye/protein -- 0.8) were resuspended in 50 mM MOPS, pH 7.2, and 
dialyzed against assay buffer or injection buffer before use. FITC-CaM was 
microinjected at a concentration of ,04 mg/ml in injection buffer. 

Acetamidotetramethylrbodamine-myosin H (ATR-myosin Il) was pre- 
pared as described previously (DeBiasio et al., 1988). The ATR-mynsin H 
had a dye to protein ratio of '~4.8 and was prepared for microinjection at 
a concentration of ,~4 mg/ml in a buffer consisting of 2 mM Pipes, pH 7.0 
(25°C), 0.1 mM ATP, 0.1 mM DTT, 0.05 mM MgC12. 

Characterization of Fluorescent Analogs 
The activation of PDE by calmodulin in assay buffer was measured by a cou- 
pled enzyme assay (Schiefer, 1986). A computer program (adapted from 
Robertson and Potter, 1984) was used to calculate the amount of 0.1 M 
CaCI2 standard solution to add to give the desired [Ca2+]f. For steady state 
fluorescence anisotropy (SSFA) measurements, a calmodulin concentration 
of I/zM and an ionic strength of ~I00 mM were used to simulate physiolog- 
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ical conditions. PDE activity assays wore used to determine the concentra- 
tion of PDE mixture which nearly saturated the calmodulin by titrating 10 
ng/mi of calmodulin with the PDE mixture to saturation, fitting a binding 
curve by nonlinear least squares, and taking the concentration where activ- 
ity was 95 % maximal. This concentration was then scaled up equivalently 
to the calmodulin concentration (final concentration of PDE mixture was 
0.5 mg/ml). Measurements wore made in a 24°C temperature controlled and 
stirred 1 cm cuvette. 

Tetramethylrhodamine-labeled neutral dextrans wore used as a volume 
marker in ratio imaging studies which map the relative distribution of total 
calmodulin (DeBiasio et al., 1988). The lyophilized powder was dissolved 
in injection buffer at 10 mg/ml stock concentration. The stock was diluted 
approximately fivefold by mixing with 8 mg/mi FITC-CaM stock and injec- 
tion buffer, giving final injection concentrations of ,,o 2 mg/mi-labeled dex- 
tran and ~ 4  mg/mi FITC-CaM. 

Cell Culture and Preparation 
For serum stimulation, cells were prepared as described previously 
(Giuliano and Taylor, 1990) except as follows. About 12 h before stimula- 
tion, the 0.2% serum medium was changed to a medium consisting of bicar- 
bonate buffered EBS, amino acid mixture, and 0.2% calf serum (CS). The 
EBS medium was used to avoid the high background signal in the fluores- 
cein channel produced by riboflavin fluorescence in complete media. Cells 
were microinjected with a 4 mg/mi stock solution of FITC-CaM in injection 
buffer, 1-3 h before stimulation as previously described (Luby-Phelps et al., 
1985). Coverslips wore mounted in a modified Sykes-Moore chamber fitted 
with perfusion ports (Bright et al., 1987). Cells were stimulated on the tem- 
perature controlled microscope stage by perfusion with EBS containing 
10% CS. 

Cells wore prepared for would healing experiments as previously de- 
scribed (DeBiasio et al., 1988). Briefly, cells were plated as above and 
grown to confluence. About 24 h after reaching confluence, cells were 
wounded by scraping a region with a razor blade in order to produce two 
clean wound edges. Ceils along the edge of the wound were coinjected with 
ATR-myosin II (1.6 mg/mi) and F1TC-calmodulin (2 mg/ml) approximately 
3-5 h after wounding. The coverslips were mounted in a Sykes-Moore 
chamber 1-3 h postinjection. Because perfusion was unnecessary, cover- 
slips were mounted without the perfusion ring forming a 0.25-nun thick 
sealed chamber. This thin chamber reduced the background riboflavin 
fluorescence enough to allow the use of complete media in wound healing 
studies. 

Fluorescence Spectroscopy 
All fluorometer measurements were made on a Fluoroiog-2 (SPEX, 
Mctuchen, NJ) equipped with 450 W xenon arc lump, dual grating mono- 
chromators and Glan-Thompson polarizers. SSFA measurements of Bimane- 
CaM, FITC-CaM, and TRITC-CaM wore made with excitation at 380, 495, 
and 556 nm and emission at 470, 520, and 580 nm, respectively. For FITC- 
and TRITC-CaM the excitation and emission bandwidths wore 2 and 4 urn, 
respectively. FOr Bimane-CaM the excitation and emission bandwidths 
wore 4 and 10 urn, respectively, because Bimane-CaM has a weaker absor- 
bance and the xenon lamp output is lower at the shorter excitation wave- 
length. 

Fluorescence Microscopy 
Images were acquired on a prototype Zeiss microscope (Carl Zeiss, Ober- 
kochen, Germany) using a 75 W xenon arc lamp, a thermoelectrically 
cooled CCD camera (CH220; Photometrics LTD, Tucson, AZ) containing 
a Thompson 576 x 384 CCD with 14-hit precision and a Zeiss Plan 
Nenfluor 40x (1.3 NA) objective lens. Bimane-CaM was imaged with Zeiss 
BP 356/60 excitation and Omega (Brattleboro, VT) 470 DF 40-emission 
filters. FITC-CaM was imaged with Zeiss BP 484/20 excitation and BP 
546/50 emission filters. ATR-myosin II was imaged with Omega 530 DF 
30 excitation and 580 DF 30 emission filters. A mounted film polarizer 
(Melles Griot, Irvine, CA), with orientation fixed to give horizontally polar- 
ized light, was inserted in the epifluorescence path. A standard Zeiss rotat- 
able analyzer was inserted in the emission path and aligned perpendicular 
to the excitation polarizer by minimizing the intensity of the reflection from 
a front surface mirror. The analyzer was then rotated 90 ° for the parallel 
orientation. 

FOr the serum stimulation experiments imases wore integrated for 3 s 
with a 0 .30D neutral density filter in the excitation path and binned 2 x 
2 on the CCD to increase the signal to noise ratio. Images wore acquired 

the same for wound healing studies except without binning, to obtain better 
spatial resolution. 

Ratio images of FITC-CaM to tetramethylrhodamine--dextran were ob- 
tained using the Multimode Light Microscope Workstation (Biological De- 
tection Systems, Inc., Pittsburgh, PA). The methods wore the same as devel- 
oped previously for determining the relative distribution of fluorescent 
analogs (DeBiasio et al., 1988; Pagliaro and Taylor, 1988). 

Demonstration of the Ability to Image 
Fluorescence Anisotropies 
To test the accuracy of the FAIM measurements, solutions of sodium 
fluorescein in glycerol wore prepared and fluorescence anisotropies wore 
measured both by conventional fluorometry and by steady state FAIM. Fig. 
1 compares these measurements and shows that at low magnification and 
low numerical aperture the values obtained by the two methods are the 
same, within the error of the measurements. At high magnification and high 
numerical aperture (40x 1.3 NA), the values obtained by imaging are con- 
sistently 87% of the fluorometer measures, as determined by linear least 
squares analysis (see Fig. 1, legend). This result demonstrates that although 
the anisotropy values are somewhat reduced in the imaging measurements, 
they are strongly correlated with the fluorometer measures and therefore can 
simply be corrected to true sample anisotropies. 

Selection of a Fluorescent Analog for FAIM 
To find a fluorescent analog with both sensitivity to changes in rotational 
correlation time and adequate brightness (defined as the product of the ex- 
tinction coefficient and the quantum yield of fluorescence) (see Taylor et al., 
1986; Waggoner, 1990) for intraceilular imaging, we screened three fluores- 
cent analogs of calmodulin; TRITC-CaM, FITC-CaM and Bimane-CaM 
(see Table I). The viscosity of cytoplasm, as measured by time resolved 
fluorescence anisotropy, has been reported to be in the range of 1.2-1.4 cP 
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Figure 1. Anisotropy of fluomscein in glycerol solutions measured 
by steady state FAIM and in a standard fluorometer. Solutions of 
3 /~M sodium fluorescein buffered with 10 mM MOPS (pH 7.0) 
were loaded into 200-pro path length flat capillaries for imaging or 
1 cm cuvettes for fluorometer measures. Samples contained glyc- 
erol in fractions varying from 0 to 99% wt/vol. The effect of numer- 
ical aperture (NA) on imaging anisotropies was investigated by 
using two different objectives, a Zeiss 5 x ,  0.15 NA (A) and a Zeiss 
4 0 x ,  1.3 NA (o). The G correction factor (described in the Ap- 
pendix) was determined separately for each objective. The line 
shown has a slope of 1 and therefore represents identity of the mea- 
surements by the two methods. A line fit by linear least squares to 
the data points obtained at 40×  has a slope of 0.87, and intercept 
of 0.002, and a correlation coefficient of 0.999 (line not shown). 
The deviation to somewhat lower anisotropies for the images ac- 
quired at 4 0 x ,  1.3 NA, most likely results from depolarization at 
high NA (Axelrod, 1989). 
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Figure 2. Viscosity dependence of the SSFA for three fluorescent 
analogs of calmodulin. SSFA was measured in the fluorometer 
on 1 /zM solutions o f  Bimane-CaM (o ,  ), FITC-CaM (ra, 
- - - ) ,  and TRITC-CaM (,x, • . . . . .  ) in assay buffer as descr ibed 
in Materials and Methods.  The viscosity (at 24°C) was increased 
by the addition of  increasing fractions (wt/vol) o f  glycerol. The  stan- 
dard deviations of  the data points were about the size of  the mark- 
ers. The slopes of  the lines fit by linear regression indicate the rela- 
tive response,  o f  each of  the analogs, to the increased rotational 
correlat ion t ime resulting f rom increased viscosity. 

(Fushimi and Verkman, 1991). When we measured the change in SSFA for 
each of the analogs, as a function of viscosity from 1 to 3 cP (Fig. 2), 
Bimane-CaM exhibited the greatest increase in artisotropy ('~90%), as ex- 
pected because of its theoretically optimal lifetime (see Appendix), while 
FITC-CaM increased ,~40%, and TRITC-CaM '~30%. Because Bimane- 
CaM was most sensitive to the change in viscosity (as indicated by the large 
slope in Fig. 2) and therefore rotational correlation lime, we used Bimane- 
CaM for our initial imaging experiments. In the PDE assay, Bimane-CaM 
had nearly the same activity as unlabeled bovine brain calmodnlin (data not 
shown). 

We microinjected serum-deprived Swiss 3T3 cells with Bimane-CaM in 
injection buffer. Although the perinuclear region was just bright enough to 
be seen by eye, long integration times (910 s) were required to record any 
detail in the periphery of the cell (data not shown). Because the addition 
of the tv~ polarizers required for FAIM measurements reduces the fluores- 
cence signal to ,x,25%, and since the anisotropy (Appendix, Eq. A1) in- 
volves taking the difference between two images, the signal to noise ratio 
in the calculated Bimane-CaM FAIM images was too low to be of practical 
value. FITC-CAM is ~15-fold brighter than Bimane-CaM (Table I), how- 
ever, and more sensitive to anisotropy differences than TRITC-CaM (Fig. 
2). We therefore chose to test FITC-CaM as an intraceilular probe of 
calmodulin binding. 

SSFA of FITC-CaM Can Be Used to Detect the 
Binding of  Calmodulin to Target Proteins 

To test the biological activity of FITC-CaM we measured the calcium de- 
pendence of the activation of PDE and the maximal level of activation of 

Table L Spectral Properties of Derivatives of the Three 
Fluorophores Used to Label Calmodulin 

e ( x 10 -3) hexc rf 
Fluorophore (M-'cm-') ~F* (nm) (ns) 

Bimane* 5.3 0.26§ 380 9.5H 
FITC** 60 0.23 490 4.0 
TRITCS$ 85 0.28 554 2.0 

* Quantum yield of fluorescence. 
$ Monobromobimane derivative of BSA (Chen and Scott, 1985). 
§ Kosowar and Kosower (1987). 
II All fluorescence lifetimes are taken from Chen and Scott (1985). 
** Taylor et al. (1986). 
$$ Waggoner (1990). 
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F i g u r e  3. Calcium dependence  of  the interaction between FITC- 
CaM and PDE determined by enzyme assay (A) and SSFA (0).  
The anisotropy of  I #M solutions of  FITC-CaM in assay buffer, in 
the presence  of  nearly saturating amounts of  PDE,  were measured 
in the fluorometer. The solution, in a stirred and temperature-  
controlled (24°C) cuvette, was titrated with calcium standard solu- 
tion and the anisotropy measured at the indicated [Ca2+]f con- 
centrations. The normalized PDE activity at similar [Ca2+]f was 
measured on a separate set o f  samples by a coupled enzyme assay 
(Schiefer, 1986). 

PDE using a coupled enzyme assay. The calcium dependence of the activa- 
tion of PDE (Fig. 3) showed a transition at 'x,10 ~ M [Ca2+]f, indistinguish- 
able from unlabeled calmodulin and consistent with the calcium depen- 
dence of the interaction of calmodnlin with other target proteins (Cohen and 
Klee, 1988). In the presence of saturating [Ca2+]f (1 raM), FITC-CaM- 
activated PDE to the same extent as unlabeled bovine brain calmodulin 
(data not shown). 

The intracellular SSFA of a caimodulin analog will depend both on the 
cytoplasmic viscosity and the effective size of calmodnlin, either free or 
bound to a target protein. To test the sensitivity of FITC-CaM to changes 
in rotational mobility resulting from calcium-dependent interactions with 
other proteins, we measured the anisotropy of a mixture of 1 ~tM FITC-CaM 
in the presence of near saturating amounts of PDE as a function of [Ca2+]r 
(Fig. 3). These data indicate that at least a 32 % increase in anisotropy oc- 
curs as a result of FITC-CaM binding to PDE in aqueous solution. Fig. 3 
also slows that the half maximal binding as measured by anisotropy and the 
half maximal PDE activation as measured by a coupled enzyme assay both 
occur at the same [Ca2+]f, txJ10 -6 M. 

The fraction of calmodulin bound to targets (fa) can be determined from 
SSFA measurements using the equation (Lakowicz, 1983)" 

f s  = ( r  - rF)/(rB --  re) ,  (1) 

where r is the SSFA, re is the SSFA of the free molecule, and rB is the 
SSFA of the bound molecule. Fluorescence anisotropy imaging measure- 
merits of dye molecules indicate that the intracellular viscosity is only 
slightly greater than that of water and that it is relatively insensitive to a 
variety of cellular perturbations (Fushimi and Verkman, 1991; also see Dis- 
cussion). The SSFA of free intracellular FITC-CaM is therefore estimated 
to be the same as that of the molecule in water. We measured the SSFA of 
FITC-CaM in water and found that re = 0.088. Because the SSFA is 
strongly dependent on molecular size (see Appendix) the SSFA of bound 
FITC-CAM can be estimated from the SSFA of FITC-CaM in the presence 
of a nearly saturating amount of PDE and 1 mM [Ca2+]f, giving rB = 
0.205 (Fig. 3). Any difference in the intraceUular viscosity will primarily 
affect our estimate of re, since bound calmodulin is essentially immobi- 
lized and therefore not much effected by viscosity. Our estimate offB when 
fs  is near 0 then, can be considered as an upper limit, since the intracellu- 
lar viscosity may be somewhat greater than that of water. We will however, 
only use the fB as a relative indicator of the state of calmodulin binding. 

Results 

FITC-Calmodulin Is Freely Mobile 
in Serum-deprived Cells 

FITC-CaM was microinjected into serum-deprived Swiss 
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Figure 4. Steady state FAIM 
images of serum-deprived 
cells stimulated with media 
containing 10% CS. The cells 
were plated in DME + 10% 
CS which was replaced with 
DME + 0.2% CS 48 h be- 
fore stimulation. Cells were 
injected with 4 mg/ml FITC- 
CaM and allowed to recover 
for =1 h. The coverslip was 
mounted in a temperature- 
controlled chamber for obser- 
vation on the microscope. Im- 
age pairs were acquired before 
stimulation and at approxi- 
raately 30-s intervals post- 
stimulation. SSFA before stim- 
ulation (a), 60 s (b), 90 s (c), 
and 120 s (d) after stimulation 
with media containing 10% 
CS. The color bar indicates 
the anisotropy scale from 0.05 
(blue) to 0.25 (red). The 
SSFA was consistently higher 
in the nucleus of serum de- 
prived cells (a) which could 
be either a viscosity effect or 
an indication of increased 
bound fraction. Bar, 10/~m. 

3T3 cells, a prestimulation image pair was acquired, the cells 
were perfused with medium containing 10% CS and a se- 
quence of image pairs were acquired at 30-s intervals (Fig. 
4). Fig. 4 ~ js a prestimulation FAIM image of FITC-CaM 
in a serum-deprived cell. The anisotropy was very uniform 
and had an average value of 0.10 (+0.02) in 20 cells inves- 
tigated, comparable to that of FITC-CaM in water (0,088). 
This anisotropy value is consistent with a very low bound 
fraction of calmodulin (f~r~10 %) at low [Ca2*]f and an intra- 
cellular microviscosity not much higher than that of water 
(1.0 cP). This low viscosity is supported by time-resolved 
fluorescence anisotropy measurements of dye molecules in 
cells which yielded a uniform local viscosity of 1.2-1.4 cP 
(Fushimi and Verkman, 1991). Our results demonstrate that 
the cytoplasmic viscosity seen by a small tumbling protein, 
like that of a free dye, primarily reflects the viscosity of the 
water solvent. Furthermore, while measurements by FRAP 
indicate that for most proteins, including calmodulin, the 
translational mobility in cells is reduced about an order of 
magnitude from that in water (Luby-Phelps et al., 1987), the 
rotational mobility of FITC-CaM in cells at low [Ca2+]f 
more nearly reflects its mobility in water. 

Calmodulin Binding Follows the Time Course 
of  Calcium Elevation and Decline 

Fig. 4 (b-d) are FAIN[ images of the same cell at time points 
following stimulation with medium containing 10% CS. The 
anisotropy increased rapidly (Fig. 4 b) and diminished 
nearly as rapidly, consistent with the time course of the cal- 
cium response in these cells (McNeil et al., 1985; McNeil 
and Taylor, 1987; Byron and Villereal, 1989; Tucker and 
Fay, 1990; Hahn et al., 1992). There was heterogeneity in 

the response (Bright et al., 1989b) but the kinetics of the rise 
and fall of the transient calmodulin binding were consistent 
among the cells in which a response was recorded. Fig. 5 a 
is a plot of the average of the histograms of anisotropy values 
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Figure 5. Plot of the distributions of anisotropy values in cells be- 
fore, immediately after and several minutes after stimulation. The 
histograms of the SSFA values in individual cells were normalized 
to an area of 1, and averaged. The prestimulation histograms (a) 
have a mean SSFA of 0.10 (SDEV = 0.02, n = 20). The spatial 
and intercellular heterogeneity of the response is illustrated by the 
histograms of the SSFA in individual cells immediately after stimu- 
lation with 10% CS (b) and Fig. 4 b. Within 10 rain after stimula- 
tion the distribution of SSFA values (c) is similar to prestimulation 
(mean SSFA of 0.10, SDEV = 0.02, n = 10). 
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Figure 6. Fluorescence ratio images de- 
pict the FITC-CaM distribution in se- 
rum deprived cells stimulated with 10% 
CS. Cells were prepared as described in 
Fig. 4 and were coinjected with 4 mgml 
FITC-CalVI and 2 mg/ml tetramethyl- 
rhodamlne--dextran (10 kD), a volume 
marker. (a) Distribution before stimula- 
tion and (b) distribution 3-min poststim- 
ulation, The pseudocolored images show 
relatively high ratios, and therefore 
FITC-CaM concentrations, as red and 
low ratios as blue. Image ratios were ta- 
ken from before stimulation to more 
than 30-min poststimulation with no 
measurable change. The concentration 
of FITC-CaM relative to dextran in the 

cytoplasm was essentially uniform and constant over time, inde~ndent of serum stimulation. The concentration of FITC-CaM in the nu- 
cleus was consistently higher than in the cytoplasm. Bar, 10 ~m. 

in prestimulation cells (mean = 0.I0, sdcv = 0.02). Fig. 5 
b illustrates the shift in the distribution of anisotropy values 
within a representative set of individual cells. Fig. 5 c shows 
the average of the histograms of cells 4 to 15 min after stimu- 
lation with I0% CS (mean = 0.I0, sdev = 0.02). These 
results demonstrate that the contraction of myosin H-based 

stress fibers, which follows stimulation and continues for an 
hour or longer (Giuliano and Taylor, 1990), does not require 
a continuous binding of  a large fraction of  calmoduiin to tar- 
get proteins in order to function. 

The anisotropy of  FITC-CaM in the nucleus of  serum 
deprived Swiss Yr3 cells was consistently about 20% higher 

Figure Z FAIM images of fluorescein dextran in serum-stimulated cells. Cells were prepared as in Fig. 4 and a 5 mg/ml solution of F1TC- 
dextran (10 kD) in injection buffer was microinjected. Images were recorded (a) before stimulation, (b) immediately following stimulation. 
The anisotropy was very uniform over the cell, including the nucleus, and the mean anisotropy was comparable to that of the same dextran 
in water (r = 0.030). Images were recorded for up to 2 h poststimulation. There was no evidence of a change in the SSFA of FITC-dextran 
after stimulation. The anisotropy remained uniform even in cytoplasmic domains exhibiting contraction (Giuliano and l~ylor, 1990). The 
color bar indicates the anisotropy scale from 0.00 (blue) to 0.20 (red). Bar, l0 #m. 
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than in the surrounding cytoplasm (Fig. 4 a). Furthermore, 
upon stimulation with serum, the anisotropy in the nucleus 
increased to about the anisotropy measured in vitro for 
bound FITC-CaM (Fig. 4 b). This increase is consistent with 
observed changes in calcium concentration in nuclei (Tucker 
and Fay, 1990; Hahn et al., 1992) and the possible calmodu- 
lin regulation of specific gene expression following stimula- 
tion of cells (see McNeil and Taylor, 1987). 

FITC-Calmodulin Is Uniformly Distributed 
in Serum-deprived Cells 
Although the anisotropy is normalized to the total emission, 
changes in the SSFA could be attributed to concentration in- 
duced quenching or alteration of the brightness of FITC- 
CaM by interaction with other cellular components. We 
tested for changes in the brightness of FITC-CaM relative to 
tetramethylrhodamine--dextran, a volume indicator, by ratio 
imaging. FITC-CaM and tetramethylrhodamine-dextran 
were co-injected into serum-deprived Swiss 3T3 cells. Fig. 
6 shows a pair of ratio images depicting the relative concen- 
tration of calmodulin before and ,~4 min after the stimula- 
tion of serum-deprived cells. FITC-CaM is relatively uni- 
formly distributed in serum-deprived cells (Fig. 6 a), 
although the nucleus consistently shows an elevated concen- 
tration of calmodulin relative to the volume marker. There 
is little or no change in the distribution of calmodulin im- 
mediately following stimulation (Fig. 6 b). We examined 
cells for up to 5 rain poststimulation and found no evidence 
for any change in the local FITC-CaM concentration or 
brightness in this time frame. Therefore, the change in SSFA 
measured early in the stimulation response (Fig. 4, a and b 
and 5, a and b) cannot be due to artifacts of fluorescein 
fluorescence. However, later stages of contraction exhibited 
some apparent concentration of calmodulin in contracting 
domains (Hahn et al., 1992). 

Changes in Rotational Mobility of FITC-CaM Are Not 
the Result of Changes in Intraceilular Viscosity 
To test whether the change in SSFA following serum stimula- 
tion reflected an increase in the viscosity of the cytoplasm, 
FAIM measurements were made on neutral, fluorescein la- 
beled dextrans (10 kD) microinjected into cells. Fig. 7 shows 
the typical distribution of SSFA observed in cells during 
stimulation. The average value of the anisotropy in Fig. 7 is 
0.033 (+ 0.007), comparable to the anisotropy of the same 
fluorescein dextrans in water (data not shown). The unifor- 
mity of the dextran SSFA across the cell was consistent be- 
tween cells and did not change during contraction, even in 
regions where condensation of cytoplasmic Structures could 
be observed an hour or more after stimulation. 

Calmodulin Binds to Domains in 
the Leading Lamellae of Migrating Fibroblasts That 
Exhibits Contraction of Transverse Fibers 
We used the wound healing model to generate polarized, 
motile cells with a well-defined spatial organization of actin 
and myosin II in transverse fibers (DeBiasio et al., 1988; 
Fisher et al., 1988; Conrad et al., 1989; Conrad et al., 
1993), a predictable sequence of contractile events (DeBia- 
sio et al., 1988), and slow kinetics which allow observation 

during these contractile events. In the wound healing model, 
fluorescent analogs of myosin II are incorporated into trans- 
verse fibers which form behind the leading edge, the trans- 
verse fibers are transported toward the nucleus and contract 
as the cell migrates into the wound region (DeBiasio et al., 
1988; Hahn et al., 1992; Conrad et al., 1993). The trans- 
verse fibers undergo a large contraction early in the process 
of wound healing. It is predicted that calcium-calmodulin 
binds to MLCK and any other calmodulin targets in the 
transverse fibers and regulates the contractile activity, since 
[Ca'÷]f is elevated in this region and calcium binding to 
calmodulin is detected by the optical biosensor, MeroCam I 
(Hahn et al., 1992). To test this prediction we coinjected 
FITC-CaM and ATR-myosin II into fibroblasts during 
wound healing and compared calmodulin binding as detected 
by FAIM with the distribution and contraction of transverse 
fibers identified with the fluorescent analog of myosin II 
(Fig. 8). Fig. 8 (a and c) are fluorescence images of the dis- 
tribution of ATR-myosin II in a cell at two time points (15- 
rain apart) during the lamellar contraction phase of wound 
healing. The white arrows indicate regions where myosin II 
has been incorporated into transverse fibers (Fig. 8 a). These 
fibers contracted at a later time point (Fig. 8 c), concentrat- 
ing the myosin II. In the associated FAIM images, we have 
marked the region corresponding to the fibers (Fig. 8 b), and 
where the fibers have significantly contracted (Fig. 8 d). The 
pattern of elevated anisotropies in this and other regions of 
the cells reflects the general organization and rearrangement 
of the myosin II in transverse fibers. In these cells the nucleus 
exhibits about a 20% higher anisotropy than the surrounding 
cytoplasm, although there was variability in the nuclear 
SSFA. These results are consistent with a role of calmodulin 
binding to targets in transverse fibers during contraction. A 
major target could be the MLCK that would contribute to the 
regulation of the myosin H-based contraction responsible for 
separating and restructuring cells during the initiation of cell 
locomotion in wound healing (DeBiasio et al., 1988; Conrad 
et al., 1989; Hahn et al., 1992; Conrad et al., 1993). 

Calmodulin Binding Is Elevated in the Tails 
of Highly Polarized and Migrating Fibroblasts 
during Wound Healing 
The images in Fig. 9 illustrate the general pattern of 
calmodulin binding and myosin II organization observed in 
highly polarized, motile cells. Fig. 9 (a and c) are ATR- 
myosin II images of two highly polarized Swiss 3T3 fibro- 
blasts, locomoting from left to right. Both cells are undergo- 
ing a tail contraction (left end), and a combination of an 
extension of the leading lamellum and a contraction of the 
transverse fibers in the cortex. In the corresponding FAIM 
images we see a ,v20% higher anisotropy in the regions of 
tail retraction (Fig. 9, b and d), and some locally high 
anisotropy values in the leading lamellae, the distribution of 
which resembles the orientations of the fibers in the ATR- 
myosin II images. Note that the anisotropy in the nucleus of 
both cells is once again elevated relative to the cytoplasm. 
Notice also that the perinuclear region of the cell in Fig. 9 
a exhibits a substantial diffuse myosin II labeling, while the 
FITC-CaM binding in the FAIM image appears to be low in 
the perinuclear region. This is the pattern most often ob- 
served in motile cells. 
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Discussion 

Use of  lmmunofluorescence, Fluorescent Analogs, 
and Ratio Imaging 

The use of immunofluorescence to map the distribution of 
calmodulin in a variety of cells at different stages of the cell 
cycle have resulted in inconsistent interpretations of the lo- 
calization of calmodulin (Luby-Phelps et al., 1985; Welsh et 
al., 1978; W]llingham et al., 1983; Zavortink et al., 1983). 
This is not surprising since calmodulin is a relatively small 
protein and as we have shown, is freely mobile at low 
[Ca2+]f. Consequently, retention of calmodulin during fixa- 
tion protocols could be extremely variable and dependent on 
the specific protocol employed and the state of cellular acti- 
vation (Melan and Sluder, 1992). Therefore, extreme caution 
is required to quantitatively interpret fluorescence localiza- 
tion data on a molecule such as calmodulin in the absence 
of a reference volume indicator (Wang et al., 1982; Luby- 
Phelps et al., 1985). 

Fluorescent analogs can be used to investigate cellular dy- 
namics in living cells, by monitoring changes in the distribu- 
tions and activities of cellular components (Taylor and Wang, 
1978; Wang et al., 1982; Taylor et al., 1984; and Wang, 
1989). Ratio imaging has proven to be an important tool for 
normalizing imaging data for path length, accessible vol- 
ume, relative concentration of labeled molecules used as en- 
vironmental indicators, fluorescent analogs, and protein- 
based optical biosensors (Tanasugarn et al., 1984; Wang et 
al., 1982; Bright et al., 1989a; DeBiasio et al., 1988; Hahn 
et al., 1992; and this study). The use of fluorescent analogs 
and the related photo-activated fluorescent analogs (Theriot 
and Mitchison, 1991), especially in combination with quan- 
titative microscopic methods, should yield important chemi- 
cal and molecular information in time and space (Taylor et 
al., 1992). 

Our ratio images of FITC-CaM indicate that calmodulin 
is uniformly distributed in cells at low [Ca2+]f and remains 
uniformly distributed during serum-induced calcium tran- 
sients. However, calmodulin is shown to bind to targets dur- 
ing this same time period. The response of calmodulin to a 
calcium signal appears to involve local changes in the bound 
versus free ratio of calmodulin without a dramatic redistri- 
bution within the cell. Future studies will explore the inter- 
action of calmodulin with specific target proteins and deter- 
mine whether any other conditions result in the concentration 
of calmodulin in any cellular domains. 

Steady State FAIM of Calmodulin: Comparison 
with Previous Fluorescence Methods 

This study represents the first application of steady state 
FAIM to the measurement of protein interactions and macro- 
molecular mobility in living cells. Previous studies of 
calmodulin mobility in living cells by FRAP were limited to 
low spatial resolution spot measurements which showed both 
intracellular and cell to cell variations in the mobility (Luby- 
Phelps et al., 1985; Stemple et al., 1988) demonstrating that 
calmodulin exhibited localized interactions. The low spatial 
resolution of FRAP, and the dependence of the translational 
mobility on long-range cytoplasmic organization (Luby- 
Phelps et al., 1987) complicated the interpretation and sug- 
gested the need for a method to map mobility in two dimen- 
sions. FRAP measurements show that the translational 
mobilities of nearly all microinjected proteins are reduced 
substantially from that in simple aqueous solution due to in- 
teractions with the cytoplasmic matrix proteins (Luby- 
Phelps et al., 1987). 

The ratio imaging approach to fluorescence polarization 
measurements, originally proposed by Tanasugarn et al. 
(1984) has previously been used to investigate the mobility 
of free dye molecules in vitro and in vivo (Dix and Verkman, 
1990; Fushimi and Verkman, 1991; Keating and Wensel, 
1991). Measurement of the rotational mobility of dye mole- 
cules in cytoplasm indicates that the viscosity of the aqueous 
phase of cytoplasm is only slightly higher than that of water. 
The uniform and low values of the anisotropy measured for 
FITC-CaM and FITC-dextran in this work indicates that the 
rotational mobility of proteins and macromolecules of up to 
16,790 Mr in cytoplasm is not strongly effected by the pres- 
ence of the cytoplasmic matrix. Instead, macromolecules in 
this size range tumble about the same as they would in water, 
and changes in the rotational mobility result from binding in- 
teractions. We believe FAIM to be a powerful and simple 
mode of light microscopy for studying macromolecular in- 
teractions in living cells. 

Cakium Signaling, the Calmodulin Response, and 
Contraction of  Stress Iqbers in Serum-stimulated Cells 

The serum-deprived fibroblast has become a valuable model 
cell for investigating the mechanism and regulation of the 
formation, transport and contraction of stress fibers (Kolega 
and Taylor, 1991). The formation, transport, and disassem- 
bly of stress fibers occurs as a constitutive process in serum- 

Figure 8. Comparison of the distribution of FITC-calmodulin fluorescence anisotropy with the distribution of ATR-Myosin II in transverse 
fibers during wound healing. (a and c) Fluorescence images of ATR-Myosin II in a migrating cell during the lamellar contraction phase 
of wound healing, at two time points 15-rain apart. (b and d) Corresponding FAIM images of FHC-calmodulin. The cells are migrating 
from the top toward the bottom of the figure, into the wound region. The white arrow indicates a region in which transverse fibers contract 
between acquisition times. The color scale bar indicates the anisotropy values from 0.04 (black) to 0.16 (red). Bar, 10/~m. 

Figure 9. The distribution of calmodulin binding in highly polarized, migrating cells. Cells were prepared as described in Fig. 8. (a and 
c) Fluorescence images of ATR-myosin II in two typical cells migrating from left to fight into the wound region. (b and d) Corresponding 
FAIM images of the same two cells. Both cells exhibit higher anisotropy in the tail region (left), and locally high anisotropies in regions 
of the leading lamellum containing transverse fibers. The pattern of elevated anisotropy in the leading lamellae is similar to the orientation 
of the fibers in the same region. The color scale bar indicates the anisotropy values from 0.04 (black) to 0.16 (red). Bar, 10 #m. 
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deprived ceils (Giuliano and Taylor, 1990)-. The contraction 
of stress fibers can be initiated by the addition of complete 
serum, a purified growth factor, or other pharmacological 
agents (Giuliano and Taylor, 1990; Giuliano et al., 1992). 
The stress fibers in stimulated cells contract and disassemble 
over a 1-h time period, while the elevation of free calcium 
and calcium binding to calmodulin, upon stimulation, lasts 
only a few minutes (Hahn et al., 1992). We hypothesize that 
the serum-deprived fibroblast system reflects general princi- 
ples of the formation, transport, and contraction of myosin 
H-based contractile systems in nonmuscle cells including 
the cleavage furrow (Pollard et al., 1990) and the cell cortex 
during locomotion (DeBiasio et al., 1988). 

The serum-deprived fibroblast exhibits a low free calcium 
ion concentration (McNeil et al., 1985; McNeil and Taylor, 
1987; Byron and Villereal, 1989; Tucker and Fay, 1990; 
Hahn et al., 1992). Biochemical assays in vitro have demon- 
strated that calmodulin is free in solution at low free calcium 
ion concentrations. Therefore, if calmodulin functions the 
same way in vivo, then the fluorescent analog of calmodulin 
would be predicted to have a low fluorescence anisotropy 
value in the serum-deprived state. Our results are consistent 
with this prediction and demonstrate that a large fraction of 
calmodulin is part of the soluble phase of cytoplasm (Luby- 
Phelps et al., 1987; Pagliaro and Taylor, 1988) under condi- 
tion of low free calcium ion concentration. The uniformly 
low fluorescence anisotropy suggests that the calmodulin had 
free rotational mobility throughout the cell, and therefore 
was not bound to its target molecules. This suggests that the 
constitutive formation, transport, and disassembly of stress 
fibers that has been observed in serum-starved ceils does not 
require extensive calmodulin binding to cellular targets. If 
myosin II motor activity is required for this process it must 
involve some mechanism other than calcium-calmodulin ac- 
tivated MLCK phosphorylation of the LC20 (Giuliano and 
Taylor, 1990). Since calmodulin is a high affinity subunit of 
some enzymes, either calmodulin dissociates from the en- 
zymes in serum-deprived cells, the fluorescent analogs did 
not exchange with this subpopulation of caimodulin-binding 
proteins or these proteins are present at very low concentra- 
tions in serum-deprived ceils. The extent of exchange of 
fluorescent analogs of calmodulin with a variety of potential 
target enzymes is currently under investigation. 

Stimulation of serum-deprived fibroblasts with complete 
serum induces only a transient rise in free calcium, yet the 
myosin II-based contraction of stress fibers continues for an 
hour or more. It has been shown that the binding of calcium 
to calmodulin reflects the same time course as the calcium 
transient (Hahn et al., 1992). In contrast, it has been shown 
by previous SSFA solution biochemistry, that autophosphor- 
ylation of the multifunctional calcium-calmodulin-depen- 
dent protein kinase traps calcium-calmodulin, increasing 
the dissociation time 100--1,000-fold (Meyer et al., 1991). 
The present results demonstrate that calcium signaling in 
serum-stimulated cells results in the binding of calrnodulin 
to target proteins and that the dissociation of calmodulin oc- 
curs with kinetics similar to the decrease in [Ca~+]f. Some 
signal must continue during the contraction, since ealmodu- 
lin is only transiently activated. It will be important to deter- 
mine whether MLCK remains activated by some other 
mechanism, the phosphatase is inactivated, or there is an- 
other force generating regulatory mechanism for myosin II 

that does not involve calmodulin binding. Recently, it has 
been shown that an increase in the phosphorylation level of 
the LC20 occurs within seconds of serum stimulation and 
remains elevated during the ~1 h time period of a contraction 
(Giuliano et al., 1992). R will also be important to determine 
how this occurs without continued binding of calmodulin to 
targets such as MLCK. 

The spatial variation in the anisotropy during serum- 
stimulation could occur as a result of spatial variations in the 
localization of binding sites for calmodulin, propagation of 
a calcium wave or differences in the off rate of calcium re- 
lease from calmodulin once the calcium concentration drops 
below the/G (Meyer et al., 1991). Preliminary results with 
a fluorescent analog of MLCK have indicated that MLCK is 
relatively uniformly distributed in serum-deprived cells, but 
the distribution has not been mapped as a function of time 
following stimulation (Cornwall, T. L., K. A. Giuliano, and 
D. L. Taylor, unpublished observation). Immunofluores- 
cence mapping of MLCK has indicated that it shows some 
localization along stress fibers (de Lanerolle et al., 198D, al- 
though the question remains as to whether this is total 
MLCK or a "oound" fraction as discussed above for 
calmodulin. Although the maximum measured [Ca2+]f dur- 
ing a transient is <10 -~ M (McNeil et al., 1985; McNeil 
and Taylor, 1987; Byron and Villereal, 1989; Tucker and 
Fay, 1990), measurements of calcium-calmodulin interac- 
tions with target proteins are only half maximal at ~,10 -~ M 
(Cohen and Klee, 1988). Our anisotropy results however in- 
dicate that at least in some regions of the cell nearly all of 
the microinjected calmodulin is bound during a calcium 
transient. Because calmodulin is multifunctional, calcium 
binding triggers interactions with many calmodulin targets. 
Higher local concentrations of calmodulin targets could ex- 
plain this enhanced binding at submicromolar [Ca2+]f, and 
could result in significant interactions even at lower levels of 
[Ca2+]f, ,'o10-~ M (see below). One future goal is to co-map 
the distribution of several calmodulin binding proteins and 
correlate the local concentration with calrnodulin binding 
using multiple parameter fluorescence imaging (DeBiasio et 
al., 1987; Waggoner et al., 1989) and steady state FAIM. 

Patterns of Elevated Free Calcium, Calcium 
Binding to Calmodulin, and Calmodulin Binding 
to Target Proteins 
Fibroblasts undergoing the wound healing response exhibit 
a larnellar contractile phase when the transverse fibers in the 
leading larnellae contract, causing the cells to become nar- 
row and to pull away from neighboring cells (DeBiasio et al., 
1988; Conrad et al., 1989; Hahn et al., 1992; Conrad et al., 
1993). This myosin H-based contraction was predicted to 
exhibit increases in calmodulin binding in the domains con- 
taining the contracting transverse fibers. The results pre- 
sented here demonstrate that regions containing contracting 
transverse fibers also show local regions of increased 
calmodulin binding as predicted. It has been previously 
shown that these same regions exhibit elevated free calcium 
and calcium binding to calmodulin (Hahn et al., 1992). 
Therefore, the contraction of transverse fibers involves the 
local elevation of free calcium, calcium binding to calmodu- 
lin, and the binding of calmodulin to targets within the re- 
gion of transverse fibers. 
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As the cell extends during locomotion, there is a retraction 
of the tail, believed to involve a myosin H-based contraction. 
Measurements of free calcium, and calcium binding to 
calmodulin suggest that there is a gradient of calcium in 
these polarized migrating cells, that is highest in the rear 
(Hahn et al., 1992). Our data show that calmodulin binding 
is higher in the contracting tail as well. A cortical contrac- 
tion of myosin H-actin that is also transporting from the site 
of assembly at the leading edge to the perinuclear region 
could be a component of the mechanism of cell movement 
that maintains cell shape, optimizes cell polarity, and aids in 
the delivery of cytoskeletal subunits to the leading edge 
(Hahn et al., 1992, Conrad et al., 1993). The site of 
cytoskeletal disassembly could be the perinuclear region 
where myosin H-based contraction could complete a self- 
destruct force-generating cycle (Kolega et al., 1991). 

Is There Calcium-Calmodulin Targeting in the Cell? 
Because calmodulin has many binding sites (targets) in the 
cell it is not clear whether calcium-based signaling alone ac- 
tivates the full range of calcium-calmodulin regulated 
processes, or whether there are other regulation schemes in 
the cell which allow targeting the calmodulin response to 
particular subsets of the calcium-calmodulin binding sites or 
particular regions of the cell. There is some evidence that the 
calcium dependence of the interaction of calmodulin with 
target proteins is dependent on the concentration of calmod- 
ulin (Huang et al., 1981). The presence of a high local con- 
centration ofa calmodulin target and sufficient calcium to in- 
duce some interactions could result in an increased local 
concentration of calmodulin and therefore local activation of 
one calmodulin target relative to another. This positive feed- 
back could provide a mechanism for selective activation of 
calmodulin targets, such as MLCK, at submicromolar 
[Ca2+]f, in regions where MLCK has been concentrated by 
its interaction with myosin II. We are currently developing 
a method to quantify ratio imaging in terms of analog con- 
centration in order to investigate the possible role of in- 
creased local concentrations in calmodulin function. Other 
mechanisms of targeting a signal to a particular response, 
such as the trapping of calmodulin by the autophosphoryla- 
tion of the multifunctional calmodulin kinase II (Meyer et 
al., 1991), also need to be investigated. 

Future Directions 
While this study demonstrates the use of FAIM in decipher- 
ing the role of calmodulin in regulating cellular processes, 
real time FAIM measurements in conjunction with other 
modes of light microscopy, including [Ca2+]f ion measure- 
ments and mapping a variety of calmodulin targets, will al- 
low a more detailed characterization of the sequence of sig- 
naling and effector steps. Presently, an instrument is being 
developed that will allow simultaneous acquisition of the 
parallel and perpendicular images (Taylor and Zeh, 1976; 
Kinosita et al., 1991), as well as simultaneous pairs of ratio 
images, to improve temporal resolution, while reducing the 
total illumination, so that longer sequences of images can be 
acquired. Furthermore, FAIM can be applied to laser confo- 
cal scanning microscopes with a minimum of complications. 
Tnne resolved fluorescence microscopy can also be used to 

study molecular interactions and other parameters which 
influence the lifetime of the excited state (Fushimi and Verk- 
man, 1991; Keating and Wensel, 1991; Lakowicz et al., 
1991). The advantages of steady state FAIM, compared with 
time resolved methods are the minimal requirement for addi- 
tional instrumentation, the ability to correlate spectroscopic 
information with high-resolution morphological data and the 
simplicity of the measurements. However, time-resolved 
fluorescence microscopy has the advantage of distinguishing 
multiple populations of fluorophores in different environ- 
ments and being independent of fluorescence intensity. Both 
steady state FAIM and time resolved methods should yield 
exciting information about cellular chemistry and molecular 
interactions in vivo. 

Appendix 

Principle of Steady State Fluorescence 
Anisotropy Measurements 
The steady state fluorescence anisotropy (r) is defined as: 

r = (lp~r - G*lp~)/(lp~r + 2G*lp~), (A1) 

where/par and lprp represent the image (intensity) with the excitation and 
emission polarizers oriented parallel and perpendicular, respectively, and 
G is a factor which corrects for differential polarization sensitivity of the 
detection system ~ c z ,  1983). A simple rearrangement of this equa- 
tion shows that the fluorescence anisotropy depends on the ratio between 
Ip~ and lprp, and theretbre corrects any shading effects in the imaging sys- 
tem (see Image Processing). The denominator ofEq. (AI) represents the to- 
tal fluorescence emission, and therefore normalizes for differences in inten- 
sity due to concentration and path length. When measuring intensities at 
high numerical aperture, this normalization is not strictly correct, because 
the polarization at the fringe of the field is rotated (Axelrod, 1979, 1989). 
However, measurements on solutions over a wide range of concentrations 
show that the effect was not significant (data not shown). Furthermore, this 
effect only tends to reduce the anisotropy values at higher brightness, be- 
cause there is an extra contribution to the intensity of both the parallel and 
perpendicular orientations that cancels in the numerator while adding to the 
denominator. 

The SSFA depends on the relative magnitudes of the fluorescence lifetime 
(Tf) and the rotational correlation time (ok) as described by the Perrin equa- 
tion (Lakowicz, 1983): 

r ---- ro (~b/(~ + Tf)), (A2) 

where ro is the anisotropy in the absence of rotation. From Eq. (A2) it is 
apparent that if rf<<~b, r approaches ro and becomes insensitive to changes 
in 0, and ff el>>0, r will be small and therefore difficult to measure. 
Therefore, a fluorophore must be chosen such that Tf '~ #. The rotational 
diffusion coefficient (DR = (60) -t)  is related to the hydrodynamic radius 
(RH) and the viscosity (7) by the Stokes-Einstein equation: 

DR ~- (kT)/(S~rqRH3), (A3) 

where k is the Boltzman constant and T is the temperature in Kelvin. Thus, 
the SSFA depends on Tf, to, T, 7, and R~.  In this study we take advantage 
of the size dependence to detect calmodulin binding in cells. 

Image Processing 
Images were stored as arrays of 16-bit integers, background subtracted, reg- 
istered, and corrected for bleaching before anisotropy calculations. The 
background was taken from each image in a region of the image with no 
cells. The shift of the perpendicular image relative to the parallel image, 
probably due to wedge in the mounted polarizer, was determined from im- 
ages of fluorescent beads to be slightly more than I pixel, was constant from 
day to day, and was corrected by shiRing the perpendicular images using 
an appropriate convolution kernel. The bleaching correction factor was de- 
termined for each acquisition series from the ratio between the first parallel 
image (/Ill) and the second parallel image (In2) and was g3% per image. 
Since the integration time, T, is constant, the excitation intensity, E, is con- 
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stant, and assuming the bleaching rate is constant, the fraction remaining 
after bleaching for one acquisition cycle will be constant (fb). The intensi- 
fies will be different however, for the two different positions of the emission 
polarization analyzer, so two images acquired with the same analyzer orien- 
tation were used to determine the bleaching correction factor. Since the 
parallel and perpendicular images are acquired alternately, the intensity in 
the second parallel image, In2, will be reduced by two acquisition cycles. 
The bleaching corrected perpendicular image (r±O can be determined 
from the preceding and following parallel images as follows: 

l,v. = f~  so I'±, = ~n'] ~ 1±,. (A4) 
]ll-~ [/T~J 
The bleaching correction factor (per integration time) is thus the square root 
of the ratio between the first parallel image and the second parallel image. 
Anisotropy values were checked for bleaching effects by calculating the 
anisotropy from image pairs both in the same order as acquired and 
in the reverse order. For example, after correction for bleaching the average 
value of r(Im, I±0 was approximately equal to the average value of r(lm 
/10, where Into was acquired immediately before 1±1 and Im was acquired 
immediately after l±l. 

Images for calculating the G correction factor were acquired from a 1 
pM sodium fluorescein solution in 50 mM Tris, pH 8.5, loaded into a 50-/~m 
path length flat capillary (Vitro Dynamics, Rockaway, NJ). Parallel and per- 
pendicular background images were acquired from a similar capillary 
loaded with water. The anisotropy of this solution as measured on the fluo- 
rometer was 0:011 and, after background subtraction, the G factor was cal- 
culated as described by Dix and Verkman (1990). The G factor, uniform 
across the feld, had a value of 0.814 and was constant from day to day. The 
anisotropy (r) was calculated in floating point as r ffi [(In/I±) - G]l[(In/I±) 
+ 2G] using TCL-Image (Biological Detection Systems, Pittsburgh, PA). 
The floating point FAIM images were multiplied by 32,768 and stored as 
arrays of 16-bit integers. Since the maximum theoretical SSFA value in this 
case is 0.4, this scaling factor ensures that the output integer values have 
sufficient dynamic range to preserve detail. Images were displayed and 
pseudo-colored in NIH Image version 1.44. 

Choosing a Probe for Fluorescence 
Anisotropy Measurements 
The SSFA depends on the ratio between the fluorescence lifetime (T) and 
the rotational correlation time (0), the viscosity, and the hydrodynamic ra- 
dius of the molecule (see Eqs. A2 and A3). The fluorescence lifetime is the 
average time that a fluorescent molecule remains in the excited state and 
the rotational correlation time is the time it takes for a population of mole- 
cules with anisotropic orientations to become isotropic. The dependence on 
Tf/0 necessitates using a fluorophore with a lifetime of the same order as 
the expected rotational correlation time, 7-10 ns for calmodulin (Lambeoy 
et al., 1982). Because the fluorescence lifetime is inversely related to beth 
the molar extinction coefficient and excitation wavelength (Strickler and 
Berg, 1962), fluorescent dyes with lifetimes this long are not very bright 
and have short excitation wavelengths. As an example, Bimane-CaM has 
rf=9.5 ns, but a relatively small extinction coefficient of 5,300 and a 380 
rim maximal excitation wavelength. At the other end of the spectrum, 
TRITC-CaM has an extinction coefficient of 85,000 and the excitation wave- 
length is 554 nm, but rf is only 2 ns (Table I), making it an excellent choice 
for imaging but limiting its use as a probe of macromolecular rotational mo- 
bility to only small molecules ('~2-8 kDa). 
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