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ABSTRACT: The coassembly of different building blocks into supramolecular
copolymers provides a promising avenue to control their properties and to thereby
expand the potential of supramolecular polymers in applications. However, contrary
to covalent copolymerization which nowadays can be well controlled, the control over
sequence, polymer length, and morphology in supramolecular copolymers is to date
less developed, and their structures are more determined by the delicate balance in
binding free energies between the distinct building blocks than by kinetics.
Consequently, to rationalize the structures of supramolecular copolymers, a thorough
understanding of their thermodynamic behavior is needed. Though this is well
established for single-component assemblies and over the past years several models
have been proposed for specific copolymerization cases, a generally applicable model
for supramolecular cooperative copolymers is still lacking. Here, we provide a
generalization of our earlier mass-balance models for supramolecular copolymerizations that encompasses all our earlier models.
In this model, the binding free energies of each pair of monomer types in each aggregate type can be set independently. We
provide scripts to solve the model numerically for any (co)polymerization of one or two types of monomer into an arbitrary
number of distinct aggregate types. We illustrate the applicability of the model on data from literature as well as on new
experimental data of triarylamine triamide-based copolymers in three distinct solvents. We show that apart from common
properties such as the degree of polymerization and length distributions, our approach also allows us to investigate properties
such as the copolymer microstructure, that is, the internal ordering of monomers within the copolymers. Moreover, we show
that in some cases, also intriguing analytical approximations can be derived from the mass balances.

1. INTRODUCTION
Supramolecular polymers are one-dimensional assemblies of
monomeric units held together viamoderately strong, reversible,
and often highly directional noncovalent interactions.1−4 The
dynamic nature of these noncovalent interactions makes such
supramolecular polymers versatile systems with high potential
for use as adaptive materials that incorporate a variety of
interesting mechanical, optical, electronic, or biological
functionalities.5−10 The coassembly of multiple building blocks
provides a promising avenue to further expand their potential in
applications and to control the properties of the produced
supramolecular polymers by changing the stoichiometry or feed
ratio of the distinct components,11 whereas for covalent
copolymers, the molecular structure can be predicted via the
classical copolymer equation12 in combination with advanced
controlled polymerization techniques13−19 and highly depends
via relative reactivities on kinetics; for supramolecular polymers,
control over sequence, polymer length, and morphology is yet
less developed, and the structure is determined by the ratio of
the binding free energies between the distinct building blocks
rather than on kinetics. It is well established that supramolecular
polymerizations can also form out-of-equilibrium,20 that is, in a
dissipative state21−24 or in a kinetically trapped state, which has
been exploited to control the degree of polymerization and form
supramolecular block copolymers via living supramolecular

polymerization.25−29 However, to understand the degree of
polymerization, polydispersity, distribution over aggregate
types, and internal structure (e.g., random, alternating, and
blocked ordering) in the majority of supramolecular (co)-
polymerizations, a thorough understanding of the thermody-
namic equilibrium is needed.
A theoretical foundation of supramolecular polymerization

thermodynamics30−41 and kinetics42−53 is now well established.
An important notion, for instance, is that of isodesmic versus
(anti-)cooperative self-assembly, depending on whether the
binding free energies in all monomer association steps are equal
(isodesmic), that up to a certain critical nucleus size the binding
free energies are smaller (cooperative), or that small aggregates
are most stable and the binding free energies for monomer
association steps to larger aggregates are smaller (anticooper-
ative). These models show how thermodynamic parameters
determine the degree of polymerization, the average lengths of
the polymers, and their length−distribution profile, as well as
their inclination to assemble/disassemble in response to
temperature. More recently, these models have been extended
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to describe supramolecular polymerization with competing
aggregation types.50,54−58

Following models of discrete coassemblies59−66 and initiator-
based reversible copolymerization,67−69 theory on supra-
molecular copolymerization has been developed as well.70

Weller et al.71 and Evstigneev et al.,72,73 for instance, considered
the case of noncooperative indefinite molecular heteroassembly.
Moreover, van der Schoot et al. extended their original modeling
for cooperative homopolymers74 to sergeants and soldiers,75

majority rules,76,77 blocky,78 and most recently, alternating79

copolymerizations. While their approach is based on Ising
models and the transfer matrix method, we proposed a more
direct approach, based on expressing the equilibrium concen-
trations of all aggregates in terms of the monomer equilibrium
concentrations and on analytical expressions for the infinite
sums in the resulting mass-balance equations.80,81 We initially
focused on majority rule-based chiral amplification in the
copolymerization of two enantiomers. Later, we extended this
approach to multiple monomer82 and aggregate types,83 and
competition between cooperative and isodesmic aggregates.84

Finally, extending the description that the free energy changes
uponmonomer associations may not only depend on the type of
the monomer and the type of aggregate it binds to but also on
the monomer at the end of the aggregate, we could investigate
how the balance of interaction energies not only influences the
size distribution but also the polymer microstructure, that is,
from self-sorting to blocky, random, and alternating internal
order.85

Here, we present the extension of this latter model to multiple
aggregate types. We show that this model comprises all our
earlier mass-balance models56,80−85 and can be used to describe
cooperative as well as noncooperative polymerization, homo-
assembly as well as two-component coassembly, and the
aggregation into a single aggregate type as well as competition
between multiple aggregate types. In the next section, we
describe this copolymer model, the derivation of the
corresponding mass-balance equations, and the consequent
limits on the equilibrium monomer concentrations. Moreover,
we show how to calculate monomer/polymer concentrations
and length distributions as well as other properties such as the
sizes of blocks of repeating monomer units making up the
polymer microstructure. In Section 3, we demonstrate how the
scripts provided in the Supporting Information to numerically
solve our general copolymerization model can be applied to not
only reproduce our earlier model results but also to properly
describe sergeants and soldiers data from the literature86 as well
as some new data on solvent-dependent triarylamine triamide-
based supramolecular block copolymerizations. After this
illustration of the general applicability of our model, which for
most cases must be solved numerically, we show in Section 4
that in several special cases, it can also provide interesting
analytical approximations, such as (i) for a threshold on the
heterointeraction above which polymers elongate rather than
shorten upon mixing in small amounts of a comonomer, (ii) for
the fraction of homo- and heterobonds as a function of the
heterointeraction upon mixing two distinct highly polymerized
homopolymers, and (iii) for the free monomer concentrations
and polymerized fraction in the case of purely alternating
copolymers.

2. COPOLYMERIZATION MODEL
2.1. Copolymer Types.We consider the coassembly of two

types of monomers, which we denote as A and B, into one or

more types of supramolecular polymers. We assume that the
aggregates have an intrinsic direction, that is, from a bottom
element to a top element, and that the binding strength between
two neighboring monomers in an aggregate is determined by the
type of this aggregate as well as the types and order of the two
monomers. The formation of aggregates of one type can then be
described by four dimer formation reactions and four elongation
reactions as schematically illustrated in Figure 1a. In the case of

multiple possible copolymer types, for example, differing in
helicity or morphology, we assume that copolymers of distinct
types have no direct interaction. They do interact indirectly, as
schematically illustrated in Figure 1b, because they share the
same monomer pool. In the following subsections, we will first
derive the mass-balance equations for the case of only one
copolymer type. Also, the computation of various properties of
copolymers, such as block lengths or amounts of bonds, will first
be given for the case of a single-aggregate type. The step to
systems with several distinct copolymer types will be made in
Section 2.11.

2.2. Equilibrium Reactions. The copolymers will be
written as sequences, with bottom left and top right. AABAB
thus represents a copolymer of length five with an Amonomer at
the bottom and a B monomer at the top, which differs from
BABAA with bottom B and top A. When needed, the length of a
copolymer will be indicated by a subscript, that is, Pi denotes a
copolymer of length i, and PiA is a copolymer of length i + 1 with
top monomer A. Without the subscript, P represents a
copolymer of arbitrary length.
Homopolymers of A can be generated by nucleation

elongation reactions of the form

+ −
H Ioooooo
K

A A AA (nucleation)
A A

(1)

+ * −
H Ioooooooo
K

PA A PAA (elongation)
A A

(2)

where KA−A and K*A−A are the equilibrium constants of
nucleation and elongation, respectively, and PA represents an
arbitrary polymer with top A and length at least 2. The
corresponding cooperativity parameter is σA = KA−A/K*A−A.
Note that elongation reaction 2 describes only growth at the top

Figure 1. Schematic illustration of the considered supramolecular
copolymerization. (a) Equilibrium constants of elongation of a
supramolecular copolymer with a monomer may depend on the type
of the monomer added and the type of the monomer at top of the
copolymer, and they may differ from the equilibrium constants for the
four possible dimerization reactions. Monomers that are not on the top
of the copolymer do not influence the equilibrium constants of
elongation and are drawn gray. (b) In the case of formation of multiple
copolymer types, they compete for the same monomers and each
aggregate type may have its own equilibrium constants for the eight
reactions as illustrated in part (a).
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of the polymer. Growth at the bottom is described by the
additional reaction

+ − *
H Iooooooo
K

AP A AAP (elongation)
A A

(3)

A consequence of adding growth at the bottom is that
different ways arise to generate the same polymer. Polymer AAA,
for instance, can be generated by the initial formation of dimer
AA and subsequent association of an Amonomer either at its top
or at its bottom. As the equilibrium concentrations should satisfy
according to the first route, [AAA] = K*A−A[AA][A] and
according to the second route, [AAA] = KA−A*[AA][A],
elongation of the homopolymer at the top or bottom must
occur with the same equilibrium constant, that is,KA−A* =K*A−A.
This is a so-called detailed balance condition. In general, the
detailed balance condition requires that at thermodynamic
equilibrium, the product of the equilibrium constants along two
different routes to generate a (co)polymer must be equal.
Homopolymers of B can be generated by an analogous

reaction scheme with nucleation equilibrium constant KB−B,
elongation equilibrium constant K*B−B, and cooperativity
parameter σB = KB−B/K*B−B. If growth at the bottom is also
possible, the detailed balance condition gives again that the
corresponding equilibrium constant KB−B* equals K*B−B.
Because of the assumption that the binding strength between

two monomers is determined by the types of those two
monomers, the generation of mixed copolymers is described by
the additional reactions

+ −
H Ioooooo
K

A B AB (nucleation)
A B

(4)

+ −
H Ioooooo
K

A B BA (nucleation)
B A

(5)

+ * −
H Ioooooooo
K

PA B PAB (elongation)
A B

(6)

+ * −
H Ioooooooo
K

PB A PBA (elongation)
B A

(7)

Note that now in the reactions 6 and 7, but also in the
reactions 2 and 3, P may be an arbitrary copolymer but with the
same sequence at both sides of the reaction. These copolymers
may also elongate at their bottom, but we do not require explicit
description of those reactions as these reactions do not result in
aggregates that cannot be made via the already given reactions.
Their equilibrium constants are thus fixed via detailed balance
relations, and their presence or absence does not influence the
equilibrium concentrations.
2.3. Detailed Balance Conditions. The copolymer AAB

can be generated in two ways, namely, initial AA dimer
formation followed by association of B at the top

+ + + *− −
H Ioooooo H Ioooooooo
K K

A A B AA B AAB
A A A B

(8)

and initial AB dimer formation followed by association of A at
the bottom

+ + +− − *
H Ioooooo H Iooooooo
K K

A A B AB A AAB
A B A A

(9)

Detailed balance now implies that KA−AK*A−B = KA−BKA−A*,
and because KA−A* = K*A−A, we obtain

σ* = * =− − − −K K K K/ /A B A B A A A A A (10)

Analogously, the two possible routes for construction of BBA
lead to

σ* = * =− − − −K K K K/ /B A B A B B B B B (11)

Hence, from the four equilibrium constants KA−B, KB−A,
K*A−B, K*B−A in the copolymerization reactions 4−7, only two
are independent. The total set of reactions to construct all
possible copolymers can thus be described with just six
independent parameters: K*A−A, σA (for the A homopolymers),
K*B−B, σB (for the B homopolymers), and K*A−B and K*B−A (for
the heterointeraction between A and B).
Note that eqs 10 and 11 do not imply that KA−B = KB−A.

Hence, the concentrations of the two dimers AB and BA will in
general not be equal. If, by symmetry considerations, [AB] =
[BA] is required, the additional symmetry condition KA−B = KB−A
may be imposed. Then, K*B−A = σAK*A−B/σB, and the A−B
interaction is described by only a single parameter K*A−B. In
Section SI-1 of the Supporting Information, we show that in this
case the concentration of a copolymer and its reversed version
are equal. In the sequel, we shall not impose this additional
symmetry condition. Of course, all results for the general case
also hold for this symmetric case.

2.4. Copolymer Concentration. To derive the mass-
balance equations for general A- and B-based copolymers
described above, we start with an iteration process for the
concentration of polymers of given length. As the equilibrium
constants for elongation of a copolymer with a given monomer
depend on the top of the copolymer, it is useful to distinguish
copolymers with top A and top B. Hence, we define cn

A and cn
B as

the concentration of all copolymers of length n with top
elements A and B, that is, Pn−1A and Pn−1B, respectively. For the
monomer concentrations, we write a = [A] and b = [B].
For a copolymer Pnwith top element A, that is, a copolymer of

form Pn = Pn−1A, we know that [PnA] = [Pn−1AA] =
K*A−Aa[Pn−1A]. Also, for copolymer Pn with top element B,
that is, a copolymer of form Pn = Pn−1B, the relation [PnA] =
[Pn−1BA] = K*B−Aa[Pn−1B] holds. Because each copolymer Pn
has either top A or top B, we obtain

= * + *+ − −c K ac K acn n n1
A

A A
A

B A
B

(12)

For the copolymers with top B, we obtain in this way

= * + *+ − −c K bc K bcn n n1
B

A B
A

B B
B

(13)

Consequently, the concentrations of all possible copolymers
are given by an iteration process, which can be written in the
matrix form as

= ·
+

+

c

c
M

c

c

n

n

n

n

1
A

1
B c

A

B

i

k

jjjjjjj
y

{

zzzzzzz
i

k

jjjjjjj
y

{

zzzzzzz
(14)

where the 2 × 2 matrix Mc is given by

= * *

* *

− −

− −
M

K a K a

K b K bc
A A B A

A B B B

i

k
jjjjj

y

{
zzzzz

(15)

As the equilibrium concentrations of the shortest (co)-
polymers, that is the dimers, are coupled to the equilibrium
monomer concentration, equation 14 implies that once the
monomer concentrations are known, the concentrations of all
copolymers are known, as well.

2.5. Equivalent Concentrations. For the mass-balance
equations, knowledge of the concentration of the copolymers
alone is not sufficient. We also need the amount of A and B
monomers that is present in those copolymers. Therefore, we
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introduce the notion of equivalent concentration of a part X of a
copolymer P (in computing science terms: a substring X of a
string P). The part X can be a monomer (A or B) or a bond (A−
A, A−B, B−A, B−B). The equivalent concentration of X in
polymer P is the product of the number of occurrences of X in P
and the concentration of P. It will be written as [P]X. For
instance, if P = AAABAB, then [P]A = 4[P], [P]A−A = 2[P] and
[P]A−B = 2[P]. Note that the equivalent A (B) concentration in
copolymer P equals the concentration of free A (B) monomers
that results if all copolymers P would be broken down to
monomers.
We now describe how equivalent concentrations can be

computed. Let X be one of the possible parts mentioned above.
Define f n

A and f n
B to be the equivalent X concentration in

copolymers of length n with top A and B, respectively. To derive
recurrence relations for these variables, we study first what
happens with the equivalent X concentration if copolymer PA or
PB is elongated at its top with an A monomer. Consider first the
case that PA is elongated with an A monomer. Suppose that PA
contains k occurrences of X, so [PA]X = k[PA]. All these k
occurrences of X will also be present in PAA. Moreover, it is
possible that the elongation of PA with an additional A
monomer has introduced one additional X. Let δAA be the
number of additional parts X that is introduced in this step. Then
PAA contains k + δAA parts X. The equivalent X concentration
now becomes

δ δ[ ] = + [ ] = + * [ ]−k k K aPAA ( ) PAA ( ) PAX AA AA A A
(16)

δ= * [ ] + * [ ]− −K a K aPA PAA A X A A AA (17)

This formula gives the equivalent X concentration in PAA,
expressed in the equivalent X concentration of (shorter)
copolymer PA and the (ordinary) concentration of PA. Note
that δAA is simply 0 or 1, depending on whether the elongation of
PA with an A on its top leads to a new X part.
Analogously, when copolymer PB containing k occurrences of

X is elongated with an A monomer, the elongated copolymer
PBA contains k + δBA occurrences of X, with δBA, the number (0
or 1) of additional parts X introduced in this elongation step. For
the equivalent X concentration, this means

δ δ[ ] = + [ ] = + * [ ]−k k K aPBA ( ) PBA ( ) PBX BA BA B A
(18)

δ= * [ ] + * [ ]− −K a K aPB PBB A X B A BA (19)

This formula gives the equivalent X concentration in PBA,
expressed in the equivalent X concentration of (shorter)
copolymer PB and the (ordinary) concentration of PB.
Because each polymer with top element A is either of the form

PAA or of the form PBA, we obtain that the equivalent X
concentrations in copolymers PA with length n + 1 are given by

δ

δ

= * + * + *
+ *

+ − − −

−

f K af K a c K af

K a c
n n n n

n

1
A

A A
A

A A AA
A

B A
B

B A BA
B

(20)

Similarly a recurrence relation for the equivalent X
concentration in copolymers of form PB can be derived as

δ

δ

= * + * + *
+ *

+ − − −

−

f K bf K b c K bf

K b c
n n n n

n

1
B

A B
A

A B AB
A

B B
B

B B BB
B

(21)

The iteration processes described in eqs 14, 20, and 21 can be
combined. In terms of vector un = (cn

A, cn
B, f n

A, f n
B)T where

superscript T indicates transposing the vector to make it a
column vector again; this process is written as

= · =+ M M
M

M M
u u with

0
n n1

c

X c

i

k
jjjjj

y

{
zzzzz

(22)

with Mc given in eq 15, and the 2 × 2 matrix MX defined by

δ δ

δ δ
= * *

* *

− −

− −
M

K a K a

K b K bX
A A AA B A BA

A B AB B B BB

i

k
jjjjjj

y

{
zzzzzz (23)

The matrixMX describes the number of additional X parts in a
copolymer for the four possible ways a copolymer can be
elongated. For instance, for X = A, δAA = δBA = 1 and δAB = δBB =
0, because only the elongation of PA and PB with an Amonomer
leads to an extra A monomer. For the case X = B−A, δBA = 1 and
δAA = δAB = δBB = 0, only the elongation of PB with an A
monomer leads to an extra B−A bond. Hence,

= * * = *− −
−

−M
K a K a

M
K a

0 0
and

0

0 0
A

A A B A
B A

B Ai
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

(24)

The iteration process can be started from n = 1 with vector u1
= (σAa, σBb, f1

A, f1
B)T. The initial values for f1

A and f1
B depend on

the considered part X. For X = A, we find that f1
A = σAa and f1

B =
0, as the only “copolymer”with length 1 and top A is monomer A
(the additional σA comes from the nucleation step). If X is one of
the four bond types, the initial values are always f1

A = f1
B = 0, as

the “copolymers” of length 1 do not contain bonds. For more
details, see the Supporting Information, Section SI-2. The
equivalent X concentrations for an arbitrary copolymer length
can now be computed from

= ·−Mu un
n 1

1 (25)

For the mass-balance equations, we need the sum of the
equivalent A and B concentrations over all copolymer lengths.
To obtain sum PX of the equivalent X concentration over all
copolymer lengths, n = 2, 3, ... corresponding to free monomer
concentrations a and b, we proceed as follows

∑ ∑= + = + = +
=

∞

=

∞

P a b f f u u U U( , ) ( ) ( )
n

n n
n

n nX
2

A B

2
,3 ,4 3 4

(26)

where U3 and U4 are the third and fourth components of the (4-
dim.) vector U given by

∑ ∑= = · = − · ·
=

∞

=

∞
−M I M MU u u u( )

n
n

n

n

2 1
1

1
1

(27)

In this formula, I is the 4 × 4 identity matrix, and we used the
matrix identity∑n=1

∞ Mn = (I − M)−1·M, which only holds if the
absolute eigenvalues of M are all smaller than 1. This condition
holds because the total equivalent X concentration PX, as defined
in eq 26, is finite in any chemically relevant system.
This method, with correct matrices MX and initial values for

f1
A and f1

B, can be used to compute the equivalent X
concentration for all mentioned X parts. The resulting sum of
equivalent X concentration will be called PA, PB, PA−A, PA−B,
PB−A, and PB−B, respectively. Sometimes, we will write PA(a,b),
and so forth to stress that all these equivalent X concentrations
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depend on the used values for the free monomer concentrations
a and b.
Finally, note that the sum of all copolymer concentrations Ctot

can easily be computed from

∑ ∑= + = + = +
=

∞

=

∞

C c c u u U U( ) ( )
n

n n
n

n ntot
2

A B

2
,1 ,2 1 2

(28)

2.6. Mass-Balance Equations. The mass-balance equa-
tions state that each monomer is either a free monomer or
occurs in some copolymer. In the case of one copolymer type,
they read

+ =a P a b a( , )A tot (29)

+ =b P a b b( , )B tot (30)

where a and b are the unknown free monomer concentrations,
and atot and btot are the given total monomer concentrations.
The solution of these equations, with absolute eigenvalues of
matrixM smaller than 1, are the free monomer concentrations a
and b in thermodynamic equilibrium. The mass-balance
equations form a system of two nonlinear algebraic equations
that in general can only be solved by numerical methods. In
Section SI-8 of the Supporting Information, a MATLAB
function to solve the mass-balance equations is described.
2.7. Limits on Equilibrium Monomer Concentrations:

The Allowed Region. The solution of the mass balance
equations is only useful if it corresponds to a situation where the
total amount of the material in the copolymers is finite. Hence,
only solutions, for which all absolute eigenvalues of matrixM are
smaller than 1, are chemically relevant. For each X (monomer or
bond), the eigenvalues ofM are the same as those ofMc. Hence,
the free monomer concentrations a and b must be in the part of
the a, b plane, where the absolute eigenvalues of Mc are smaller
than 1 (and a ≥ 0, b ≥ 0), which we shall denote as the allowed
region.
The degree of polymerization depends on the largest absolute

eigenvalue λ1 ofM. If λ1 ≪ 1, then the vectors un tend to 0 very
fast for increasing n, which means there is hardly any material in
the copolymers. If λ1 ≈ 1, then vectors un tend to 0 very slowly
for increasing n, which corresponds with a high degree of
polymerization. The part of the boundary of the allowed region
where a > 0 and b > 0 is the critical curve, that is, the curve where
λ1 = 1. By setting the determinant ofMc− I equal to 0, this curve
is found to satisfy

− * − * + =− −Dab K a K b 1 0A A B B (31)

with D = K*A−AK*B−B − K*A−BK*B−A.
In Figure 2, the allowed regions for weak and strong

interaction between the A and B monomers are shown. The
shape of the allowed region depends on the value of D. If D > 0,
the homopolymer interactions are stronger than the hetero-
polymer interactions, and the allowed region is convex (Figure
2a). If D < 0, the heterointeractions are the strongest and the
allowed region is nonconvex (Figure 2b). If D = 0 the (right-
upper) boundary is a straight line. Some more examples of
allowed regions can be found in the Supporting Information,
Section SI-3.
Consider a point (atot, btot) that lies outside the allowed

region. Because the corresponding free monomer point (a, b)
must always lie inside the allowed region, some degree of
polymerization must be present. If the point (atot, btot) lies inside
the allowed region, that argument does not hold. Therefore, a
point (atot, btot) on the critical curve is called a critical
concentration pair. Note that there is no fixed critical
concentration for atot and btot individually. Only the pair (atot,
btot) can be considered critical, if it satisfies eq 31. In the case of a
titration experiment (at fixed temperature), the point (atot, btot)
changes and therefore may pass the critical curve. At that point,
the degree of copolymerization will change drastically.

2.8. Elongation Temperatures.The equilibrium constants
(K) are often related to an enthalpy difference (ΔH) and
entropy difference (ΔS) byK = exp(−(ΔH−TΔS)/RT), where
R is the gas constant and T is the absolute temperature, see also
Section SI-6 of the Supporting Information. Consequently, in
experiments at fixed temperature (e.g., titration experiments),
the equilibrium constants do not change, whereas in cooling
experiments, the equilibrium constants do change. As usually
ΔH < 0, the equilibrium constants increase during cooling,
which means that the allowed region shrinks. Thus, a point (atot,
btot) can be inside the allowed region for high temperatures and
outside the (smaller) allowed region for low temperatures. The
temperature where the point (atot, btot) is on the critical curve
(i.e., it is a critical concentration pair for this temperature) is
called the elongation temperature Te for the copolymers. Hence,
in a cooling experiment, Te is the temperature at which the
degree of (co)polymerization must start to grow. More details
on the computation of the elongation temperature and a
MATLAB implementation are given in Sections SI-6 and SI-8 of
the Supporting Information.

2.9. Copolymer Properties. Although the solution of the
mass balance equations as described above consists of the free

Figure 2. Allowed regions for the monomer concentrations a, b. (a) For weak A−B interaction (D = K*A−AK*B−B − K*A−BK*B−A > 0), the allowed
region, that is the colored part under the critical curve, is convex. (b) For strong A−B interaction (D < 0), the allowed region is nonconvex. (c) For
multiple copolymer types, their critical curves (red and blue) may intersect, and the allowed region is the (green) area that is below all critical curves.
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monomer concentrations a and b, more information can easily
be obtained. Because PA(a,b) and PB(a,b) are the total amount
of A and Bmonomers occurring in copolymers corresponding to
the free monomer concentrations a and b, the total amount of
thematerial in the copolymers is given by Ptot = PA + PB, where to
simplify the notation, we omit the (a, b) arguments here. The
degree of polymerization can then be computed by ϕ = Ptot/(atot
+ btot). The fractions of A and B monomers in the copolymers is
given by PA/Ptot and PB/Ptot, respectively. These notions might
be useful in cases, where the experimental observables of a
copolymer depend on the number of occurring A and B
monomers, but the contribution per A or B monomer is
different. Also, the equivalent bond concentrations PA−A, PA−B,
PB−A and PB−B can easily be found from eq 26 once the
equilibrium concentrations are known. Hence, the fraction A−A
bonds is given by PA−A/(PA−A + PA−B + PB−A + PB−B), and similar
expressions hold for other bond fractions. The average
concentration-weighted copolymer length is given by

⟨ ⟩ =
∑ +
∑ +

==
∞

=
∞n

n c c

c c
P
C

( )

( )
n n n

n n n

2
A B

2
A B

tot

tot (32)

where the sum of all copolymer concentrationsCtot is given in eq
28. For the computation of the average mass-weighted
copolymer length and the corresponding MATLAB function,
see Sections SI-4 and SI-8 in the Supporting Information.
2.10. Block Lengths. The calculation of some other

properties, such as, for example, the average block lengths,
requires some more work. Blocks are defined as specific series of
monomers occurring in a copolymer. We distinguish A blocks, B
blocks, and AB (=alternating) blocks. All blocks are assumed to
be as long as possible; therefore, in copolymer BAAAABAAA
there is one A block of length 4 and one A block of length 3. AB
blocks can start and terminate with A or B, as long as the A and B
monomers inside the block are alternating. In the copolymer
above, there is thus one AB block of length 2 and one AB block
of length 3. Formally blocks can also have length 1, as the two B
blocks of length 1 in the copolymer above. It is clear that block
lengths give additional information with respect to bond
fractions. The copolymers BAAAABAAA and BAAAAAABA,
for instance, have the same number of A and B monomers and
the same bonds, but their A block lengths differ.
To quantify the amount of blocks in the copolymers, we use

the notion of equivalent block concentration. If in copolymer P, a
certain block occurs k times, the equivalent block concentration
in that copolymer is defined as k[P], that is, k times the
concentration of P. Therefore, for P = BBBABBB, the equivalent
concentration of B blocks of length 3 is 2[P], as P contains two B
blocks of length 3. Clearly, equivalent block concentrations (of
blocks with the same length) occurring in different copolymers
can be added, yielding the total amount of blocks of that length.
We first describe the computation of A blocks. In the

computation of the previously considered equivalent concen-
trations, we used an iteration process over length n of the
copolymers, thereby making a distinction between copolymers
with top A and top B. Here, the situation is more complicated.
First of all, there are blocks of different lengths. Moreover, the
effect of elongation with a new A monomer on an A block
depends on the position of that A block. Only A blocks that run
until the top of the copolymer become longer by an elongation
with A. Consider as example the copolymer P = AAAABAA.
This copolymer contains an A block of length 4 and an A block
of length 2. Only the length of this last A block grows by 1 due to

elongation with an A. Hence, it is necessary to distinguish
between closed A blocks and open A blocks. Closed A blocks are
always terminated by a B monomer. Open A blocks run until the
top of the copolymer.
To formulate the iteration process for the A block lengths, we

define for copolymers of length n and

=

= −

C k

k k n

top A: ( ) equiv. conc. of closed A

blocks of length , ( 1, ..., 2)
n
A

=

=

O k

k k n

top A: ( ) equiv. conc. of open A

blocks of length , ( 1, ..., )
n
A

=

= −

C k

k k n

top B: ( ) equiv. conc. of closed A

blocks of length , ( 1, ..., 1)
n
B

Of course, copolymers with top B cannot contain open A
blocks. Next, we explain the recurrence relations, to make the
step from length n to n + 1.
Adding A on the top of a copolymer with top A or B does not

lead to new closed A blocks. Each closed A block in the original
copolymer also occurs in the elongated copolymer. Because the
concentrations of the original and elongated copolymer differ by
factor K*A−Aa (original with top A) or K*B−Aa (original with top
B), this leads to

= * + *+ − −C k C k K a C k K a( ) ( ) ( )n n n1
A A

A A
B

B A (33)

for k = 1 ..., n − 1.
Further, open A blocks in the elongated copolymer can only

occur if A is added. Each open A block with length k ≥ 1 in the
original copolymer leads to an open A block of length k + 1 (≥2)
in the elongated copolymer. Moreover, adding an Amonomer to
copolymers with top B leads to new open A blocks with length 1.
These copolymers, with top BA, have concentration cn

BK*B−Aa.
Hence,

= − *+ −O k O k K a( ) ( 1)n n1
A A

A A (34)

for k = 2, ..., n + 1, and

= *+ −O c K a(1)n n1
A B

B A (35)

If a Bmonomer is added on the top of a copolymer with top B,
all closed A blocks in the original copolymer also occur in the
elongated copolymer. The same happens if the original
copolymer has A as top. However, in this latter case, open A
blocks at the end of the original copolymer become closed as
well because they are now followed by the newly added B. Again,
a factor occurs due to the different concentrations of the original
and elongated copolymers. This results in

= * + *
+ * =

+ − −

−

C k C k K b C k K b

O k K b k n

( ) ( ) ( )

( ) , for 1, ...,
n n n

n

1
B A

A B
B

B B
A

A B (36)

The relations in eqs 33−36 allow to compute the equivalent
concentrations of open and closed A blocks in copolymers of any
length n. This iteration proces can be started at n = 2, with C2

B(1)
= [AB] = KA−Bab,O2

A(1) = [BA] = KB−Aab, andO2
A(2) = [AA] =

KA−Aa
2.

The total equivalent concentration k( )n of an (arbitrary) A
block of length k in copolymers of length n is now given by
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= + +k C k C k O k( ) ( ) ( ) ( )n n n n
A B A

Hence, in this way, we can compute the distribution of A
block lengths in copolymers of length n. The total equivalent
concentration k( ) of an (arbitrary) A block of length k in any
copolymer is now given by

∑=
=

∞

k k( ) ( )
n

n
2

This summation can be compared with the summation in eq
26 in the computation of the equivalent X concentrations. In
that case, the actual summation over all copolymer lengths n
could be avoided by using standard summation formulas based
on the formulas for the sum of geometrical series. In the case of
block lengths, we did not find a simple way to avoid performing
the actual iteration process of eqs 33−36 and computing the

k( ) during that process. In practice, the iteration process can
be stopped if the amount of the material in copolymers of length
more than n can be neglected. Depending on the average
copolymer length, the running time of the block length
computation for a whole cool curve with 100 points is on a
standard PC between seconds and a few minutes. The average A
block length can now be found from

∑ ∑⟨ ⟩ =
=

∞

=

∞

k k k k( ) ( )/ ( )
k k2 2 (37)

The computation of (average) B block lengths and also the
(alternating) AB block lengths can be done in a similar way. In
Section SI-8 of the Supporting Information, we describe a
MATLAB script that computes the average length of A, B, and
alternating AB blocks. The used method is not restricted to
block lengths. Other more complicated properties of copoly-
mers, such as the total concentration of copolymers with a given
number of (for instance) B monomers can be computed by a
similar iteration process.
2.11. Multiple Copolymer Types. So far, we have

described copolymerization with one copolymer type. Here,
we consider the case that there are multiple copolymer types; for
instance, copolymers that show a different morphology or
helicity. Each aggregate type may have its own equilibrium
constants and thus matrices, Mc and MX. For given a and b, the
equivalent monomer concentrations in each aggregate type,
which we denote as PA,i and PB,i, respectively, can be calculated.
The amount of monomers that occur in all copolymers is now
found by adding the equivalent monomer concentrations of all

copolymer types. For p copolymer types, the resulting mass-
balance equations are

∑+ =
=

a P a b a( , )
i

p

i
1

A, tot
(38)

∑+ =
=

b P a b b( , )
i

p

i
1

B, tot
(39)

The solution of the mass-balance equation gives again the free
monomer concentrations a and b in thermodynamic equili-
brium. Because the amount of material in each copolymer type
must be finite, the free monomer point (a, b) must lie in the
intersection of the allowed regions of all individual copolymer
types, see Figure 2c for an example. As the degree of
polymerization in a cooperative aggregate type is only high if
the free monomer point (a, b) is close to the corresponding
critical curve, coexistence of multiple aggregate types will
correspond to free monomer concentrations a and b close to the
intersection of critical curves. Properties such as the degree of
polymerization, average copolymer lengths, equivalent bond
concentrations, and average block lengths can be computed
straightforwardly per copolymer type. In Section SI-8 in the
Supporting Information, we provide MATLAB scripts to solve
the mass-balance equations for multiple copolymer types as well
as for the computation of their equivalent bond concentrations,
average block lengths, and so on.

3. EXAMPLES OF MODEL APPLICATION
In previous papers,56,80−85 we used several dedicated mass-
balance models, up to one component with four polymer types
and two components with three copolymer types. The
equilibrium copolymerization model presented in the previous
section encompasses all these earlier mass-balance models and
can be used to reproduce the earlier reported results. In Section
SI-8 of the Supporting Information scripts for a variety of
examples thereof are provided, illustrating how the current
model can be used to produce titration curves, cool curves, and
speciation plots in order to elucidate diverse copolymerization
phenomena. In the remainder of this section, we will illustrate
the applicability of the model also on two new examples.

3.1. Sergeants and Soldiers. The first new application of
our model concerns the copolymerization of N,N′,N″-trialkyl-
benzene-1,3,5-tricarboxamides (BTAs) equipped with achiral
and (R)-chiral aliphatic side chains (Figure 3a). These
molecules form helical aggregates in apolar alkane solvents,

Figure 3. Sergeants and soldiers. (a) Structure of BTAs equipped with achiral and (R)-chiral aliphatic side chains. (b) Schematic view of the P-type and
M-type copolymer types and the different thermodynamic parameters which here are assumed to only depend on the monomer added and aggregate
type.
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where in the absence of the chiral (R)-1monomers left (M)- and
right (P)-handed helices will be equally abundant. The addition
of small amounts of (chiral) sergeant (R)-1 to (achiral) soldier
(A)-2, while keeping the total concentration constant, results in
an excess helical sense corresponding to the preferred sense of
(R)-1, that is, the so-called sergeants and soldiers effect.87 In ref
80, we modeled this system using stochastic simulations88 as the
mass balance model presented there for the copolymerization of
two enantiomers could not describe the copolymerization of two
monomers that individually form homopolymers with distinct
cooperativity. However, it can also be described by the general
copolymerization model described here, which leads to much
more efficient computation than using stochastic simulations.
To describe this sergeants and soldiers system, we consider

twomonomer types, that is, A for achiral (A)-2monomers and B
for chiral (R)-1monomers, and two copolymer types, which will
be denoted as P and M. As described in Section 2, there are in
principle six independent equilibrium constants per aggregate
type and some of those will be the same. For instance, for reasons
of symmetry, the equilibrium constant for elongation as well as
the cooperativity factor for the achiral molecules should be equal
for both P- and M-type aggregates. To limit the number of
parameters further and to reuse the thermodynamic parameters
as found with the stochastic simulations in ref 80, we assume in
this case that the equilibrium constants only depend on the
monomer that is added, and thus independent of the top of the
aggregate, as schematically depicted in Figure 3b. The
equilibrium constants (K) are given by the corresponding
enthalpy (ΔH) and entropy (ΔS) changes under standard

conditions, that isK = e(−ΔH+TΔS)/RT, where R is the gas constant,
and T the absolute temperature. For A monomers, ΔHA = −75
kJ mol−1, ΔSA = −0.1255 kJ mol−1 K−1, and a cooperativity
parameter σA = eNPA/RT with nucleation penalty NPA = −27 kJ
mol−1 were obtained in ref 80 by fitting multiple UV coolcurves
of homopolymerizations at different concentrations. As A
monomers are achiral, these values hold for both P-type and
M-type copolymers. For the chiral B monomers that only form
homopolymers with P-type helicity, fitting CD cool curves
yielded enthalpy change ΔHB

P = −66 kJ mol−1, entropy change
ΔSB = −0.1015 kJ mol−1 K−1, and cooperativity parameter σB =
eNPB/RT with nucleation penalty NPB =−35 kJ mol−1 for those P-
type aggregates.80 Because of the choice that the equilibrium
constants only depend on the monomer that is added, for P-type
copolymers holds that K*A−B

P = K*B−B
P and also K*B−A

P = K*A−A
P .

Analogous relations with the superscripts P replaced by M hold
for theM-type copolymers. The only remaining parameters then
are for the B monomers in M-type aggregates. Following once
more ref 80, these were chosen the same as for the P-type
aggregates except for an enthalpy penalty MMP =−0.5 kJ mol−1

for incorporation in their unpreferred aggregates, that is,ΔHB
M =

ΔHB
P − MMP.

Now for a given temperature and total amounts of achiral and
chiral monomers, the mass-balance eqs 38 and 39 with p = 2 can
be solved, giving the equilibrium values of the free monomer
concentrations a and b. As an example, we computed for a total
concentration of 21 μM and for a series of eight temperatures,
the helical excess Ptot − Mtot as a function of the sergeant
fraction, where Ptot = PA + PB and Mtot = MA + MB are the total

Figure 4. Sergeants and soldiers titration curves. (a) Model computed Ptot − Mtot (lines) and experimental CD data from ref 86 (*) for eight
temperatures. (b) Speciation plot of the model results for T = 337 K.

Figure 5. Sergeants and soldiers (a) Average length of P-type andM-type copolymers. (b) Equivalent concentrations of the four possible bond types in
P-type copolymers (the equivalent concentration of a bond type in copolymer P is the concentration of P, multiplied by the number of occurrences of
that bond type in P; see also the paragraph on equivalent concentrations in Section 2).
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amounts of material in P- and M-type copolymers, respectively.
The results are, together with the experimental CD data,86

shown in Figure 4a and correspond with Figure 6a from ref 80.
To demonstrate the various possible properties that can be
computed using the scripts provided in Section SI-8 of the
Supporting Information, we computed for T = 337 K a
speciation plot with Ptot and Mtot (i.e., the total equivalent
monomer concentrations in P-type and M-type copolymers,
respectively), the contribution of the A and B monomers to
those equivalent concentrations and both the free monomer
concentrations. The result is shown in Figure 4b and is again
fully consistent with stochastic simulation results in Figure 6c in
ref 80. Furthermore, Figure 5a shows the average copolymer
length, and part (b) shows the equivalent concentration of the
four bond types. Although the stochastic simulation method in
ref 80 is consistent with the mass-balance approach in this paper,
the computing times are very different. While the computation
of one point on a cooling curve, that is, one computation of the
equilibrium state, takes on a standard PC about 90 min with the
stochastic simulationmethod, it takes less than a second with the
mass-balance method. This makes the mass-balance approach
suitable for fitting of experimental data to find thermodynamic
parameters.
3.2. Solvent-Dependent Copolymerizations. The sec-

ond new application of our model comprises the copolymeriza-
tion of tripyridylamine triamide (1) and triphenylamine
triamide (2), both with a chiral (S)-3,7-dimethyloctyl chain
(S-1, S-2), see also Figure 6a. In ref 85, the copolymerization of
these triarylamine triamide-based monomers, with chiral and
achiral chains, was studied in decalin. Here, we study the effect of
different solvents on copolymerization. Precisely, the copoly-
merization is studied in pure apolar solvents, decalin and
methylcyclohexane (MCH) and in a solvent mixture of decalin
and 1,2-dichloroethane (DCE, decalin/DCE v/v = 97/3) in
order to evaluate the effect of an increased polarity of the
environment on the block lengths. The S-1 monomers will be
denoted by A and the S-2 monomers by B. Because of the (S)
configuration of the stereocenters, these triarylamine triamide-
based monomers form helical aggregates with one preferred
handedness. Therefore, we now use the model from Section 2
with a single aggregate type and assume that, contrary to the
above sergeants and soldiers example, the equilibrium constants
depend on the top monomer in the aggregate as well, as
schematically depicted in Figure 6b.
The first step in modeling the copolymerization is to find the

properties of the homopolymers. Fitting the results of cooling
experiments with the one-component model software81 yields

the thermodynamic parameters of the homopolymers shown in
Table 1. To avoid the complexity related to the interaction of the

supramolecular polymers with the codissolved water89 occurring
below 30 °C, we restricted the fitting of cooling curves to
temperatures above 40 °C, see Section SI-7 of the Supporting
Information for more details.
The only remaining parameters for the copolymerization of A

and B are the heteroassociation equilibrium constantsK*A−B and
K*B−A. To reduce the number of unknown parameters, we
assume the symmetry condition (see Section 2.3), retaining
K*A−B as the only remaining parameter. The temperature
dependence of K*A−B is again given by an enthalpy term ΔHA−B
and an entropy term ΔSA−B. These parameters were found by
fitting CD data of cooling curves of an A−B mixture, with
concentrations atot = 15 μM and btot = 15 μM against the model
predictions. The resulting parameters for the three solvents are
given in Table 2. The fit for the decalin solvent is shown in

Figure 7a and those for the other two solvents in Figure S6 in the
Supporting Information. These figures also contain a “no
interaction” line that gives the model result in case that there is
no copolymerization at all. In this way, the effect of
copolymerization can easily be seen. In the absence of mixing,
Figure 7a shows that two individual polymerizations can be
discerned, each with its own elongation temperature. In the case
with copolymerization, the cooling curve below the elongation

Figure 6. (a) Chemical structure of the tripyridylamine triamide- and triphenylamine triamide-based monomers. (b) Schematic of the
copolymerization reactions and the corresponding (elongation) equilibrium constants dependent on both the added monomer and top of the
copolymer.

Table 1. Thermodynamic Parameters for Triarylamine
Triamide-Based Homopolymers in Three Distinct Solvents

monomer/solvent ΔH [kJ mol−1] ΔS [kJ mol−1 K−1] NP [kJ mol−1]

A in decalin −85.4 −0.1520 −25.05
B in decalin −71.3 −0.127 −17.6
A in decalin/DCE −81.8 −0.148 −20.0
B in decalin/DCE −58.2 −0.0931 −15.4
A in MCH −92.0 −0.168 −29.5
B in MCH −87.5 −0.173 −14.0

Table 2. Thermodynamic Parameters for the
Copolymerization of Tripyridylamine Triamide- and
Triphenylamine Triamide-Based Monomers in Three
Distinct Solvents

solvent ΔHA−B [kJ mol−1] ΔSA−B [kJ mol−1 K−1]

in decalin −93.4 −0.178
in decalin/DCE −66.7 −0.108
in MCH −98.0 −0.177
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temperature is much more linear, as is the case for the
experimental cooling curve.
To investigate the differences between the three solvents, we

introduce the net free copolymerization energy ΔGcopol, defined
asΔGcopol =ΔGA−A +ΔGB−B−ΔGA−B−ΔGB−A, where the free
energy terms have their usual definition (ΔG = ΔH − TΔS).
Then, clearly,

* *
* *

=− −

− −

−ΔK K
K K

e G RTA A B B

A B B A

/copol

which means that ΔGcopol < 0 corresponds with the situation,
where the homopolymer interaction is the strongest andΔGcopol

> 0, where the heteropolymer interactions dominates. In fact,
ΔGcopol < 0 corresponds with a convex allowed region (D > 0),
and ΔGcopol > 0 corresponds with a nonconvex allowed region
(D < 0). In Figure 7b, we show ΔGcopol as function of the
considered temperatures for the three solvents. For temper-
atures below the elongation temperatures of the copolymers,
ΔGcopol is in the range from −4 to −2 kJ mol−1 for all three
solvents. In all cases, ΔGcopol < 0, which means that the

homopolymer bonds are stronger than the heteropolymer bonds
independent of the solvent.
In Figure 8, the average block lengths of the copolymers for all

three solvents are shown. All three graphs show a strong increase
in A block length during cooling, which is consistent with the
fact that the elongation temperature for the A homopolymers is
higher than that of the B homopolymers. For lower temper-
atures, more B monomers will occur in the copolymers, which
leads to a decrease of A block length and a relative growth of B
and alternating A−B block lengths. Remarkably, we observe in
decalin/DCE a smaller growth of A block lengths below the
elongation temperature but a somewhat larger A block length at
low temperatures compared to the other two solvents. Finally,
the equivalent bond concentrations for the three solvents are
shown in Figure 9. In all cases, the A−A bond occurs most often
for all temperatures, which is consistent with the longest block
length for A blocks. Note that for the decalin/DCE solvent, the
fraction of A−A bonds at low temperatures is higher than for the
other solvents, which agrees with the somewhat longer A block
lengths in this case. This result confirms the hypothesis
previously reported by the Meijer group,85 where the authors,

Figure 7. (a) Fit of the CD data of the mixture in decalin with the results of the copolymerization model and a “no interaction” model result, (b)
ΔGcopol as function of the temperature for the three solvents.

Figure 8. Average block lengths for (a) decalin, (b) decalin/DCE, and (c) MCH solvent.

Figure 9. Equivalent bond concentrations for (a) decalin, (b) decalin/DCE, and (c) MCH solvent.
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based on spectroscopic and microscopy analysis, speculate that
the presence of denaturant agents in solution favors the
homointeraction over the heterointeraction.

4. SPECIAL CASES
Usually the mass-balance equations must, in the absence of an
analytical solution, be solved numerically, as illustrated in the
previous section. However, in some cases, an analytical
approximation of the solution can be found. The advantage of
such analytical solutions is that they provide more insights into
the way the system properties depend on the parameters, that is,
the equilibrium constants and total monomer concentrations.
Here, we will consider three examples where an analytical
solution can be derived from the mass-balance equations, where
we restrict ourselves to a single aggregate type and the
symmetric case, that is, we assume in this section that KA−B =
KB−A.
4.1.Mixing in Small Amounts of Comonomers.The first

example we consider is the situation where a small amount of B
monomers is added to a system of, initially pure, A monomers,
and we study the effect on the degree of polymerization and the
length of the copolymers. We assume that the initial system is
highly polymerized, so K*A−Aatot ≫ 1, and that the B monomers
mix into those polymers rather than forming homopolymers of
their own. To simplify the formulas, we therefore put K*B−B = 0.
In the described situation, the equivalent A and B

concentration in the copolymers are approximately related by

= * *
*

− −

−
P

K K b
K

P ;B
A B B A

A A
A

(40)

see the Supporting Information, Section SI-5, for derivation.
Using this relation, the mass-balance eqs 29 and 30 can be
rewritten as

− = * *
*

−− −

−
b b

K K b
K

a a( )tot
A B B A

A A
tot

(41)

To find a second relation between a and b, note that the
system is assumed to be highly polymerized, which means that
the free monomer point (a, b) must lie inside the allowed region,
very close to the critical curve. This means that also eq 31 must
hold approximately (withK*B−B = 0). Combining this with eq 41
gives a system of two equations for the free monomer
concentrations a and b that can easily be solved, leading to

=
* + * *− − −

a
K K K b

1

A A A B B A (42)

= *
* + * * * −

−

− − − −
b

K
K K K K a

b
( 1)

A A
2

A A
2

A B B A A A tot
tot

(43)

Hence, with increasing btot, (i) b and PB = btot − b both grow
linearly, (ii) a decreases, and (iii) PA = atot − a increases. This
means that the total material in the copolymers PA + PB also
increases with increasing btot. Note that this does not imply that
the degree of polymerization ϕ = (PA + PB)/(atot + btot) also
increases because the denominator of this quotient grows as
well.
To study the effect of the addition of B monomers on the

degree of polymerization ϕ and the average copolymer length
⟨n⟩, we first introduce the dimensionless parameter γ by setting
btot = γatot. Keeping all other parameters fixed, we consider all

(equivalent) concentrations, the average copolymer length ⟨n⟩,
and the degree of polymerization ϕ as function of γ. The
derivatives of these notions with respect to γ in γ = 0 indicate
what happens if B monomers are added to a pure A
homopolymer solution. The derivatives will be written with a
prime, like a′, b′, Ptot′ , and ϕ′ and can be computed with the
standard calculus rules, starting from eqs 42 and 43. The
resulting expressions for ϕ′ and ⟨n⟩′ are given in the Supporting
Information, Section SI-5. It turns out that upon addition of B to
a pure A system, the degree of polymerization ϕ decreases for
small values of the heterointeraction constant K*A−B and
increases for large values of K*A−B. This behavior for small
K*A−B is not surprising. For very small K*A−B, hardly any of the
added B monomers will be included in a polymer, which means
that the total amount of material in copolymers Ptot will almost
not increase. Because the total amount atot + btot does increase,
the quotient ϕ decreases. For larger values of K*A−B, this
argument does not hold and ϕ increases. The turning point
K̃ *A−B can be found by solving the equation ϕ′ = 0 for K*A−B, see
Section SI-5 of the Supporting Information for details. This
results in

σ
σ

α
α

̃
* = *

−
−− −K K

1
2 1A B A A

B

A

where α = K*A−Aatot. Therefore, for K*A−B < K̃*A−B (K*A−B >
K̃ *A−B), the degree of copolymerization decreases (increases)
upon addition of B monomers.
The average copolymer length shows a similar behavior. Also,

here, there is a turning point K̂ *A−B given by

σ
σ

α
α

̂
* = *

−
−− −K K

1
1

A B A A
B

A
3
2

such that the addition of B to a pure A system leads to a decrease
(increase) of the average copolymer length for K*A−B < K̂*A−B

(K*A−B > K̂ *A−B). Again, for small values ofK*A−B, the addition of
B monomers will lead to a very small increase of Ptot. The total
concentration of the copolymers Ctot grows much faster, which
leads to a decreasing copolymer length.
In the example in Figure 10a, the degree of polymerization ϕ

(left) is shown as a function of btot/atot for three values of β =
K*A−B/K*A−A, namely, for β = 0.6, the turning point value β ̃ =
K̃ *A−B/K*A−A = 0.487 and for β = 0.4. Figure 10b gives the
corresponding copolymer length ⟨n⟩ as a function of btot/atot, for
β = 0.4, the turning point value β ̂̂ = K̂ *A−B/K*A−A = 0.321 and for
β = 0.3. Indeed ϕ and ⟨n⟩ decrease upon addition of B
monomers for values of β below the turning points β ̃ ̃ and β ̂
respectively. Note that in this case for β = 0.4, the addition of B
monomers leads to a decrease of ϕ but an increase of ⟨n⟩.

4.2. Mixing of Two Highly Polymerized Monomer
Types. In this second case, we are interested in the dependence
of the fraction of homo- and heterobonds on the hetero-
association K*A−B under conditions where both monomer types
individually would be highly polymerized, that is, K*A−Aatot ≫ 1
and K*B−Bbtot ≫ 1. It can be shown in all cases, where
K*A−AK*B−B≠ 0 (see Supporting Information, Section SI-5) that

= * *
* *

− −

− −

− −

− −

P P
P P

K K
K K

A B B A

A A B B

A B B A

A A B B (44)

Because we restrict ourselves here to the symmetric case, PA−B
= PB−A. Moreover, PA−A + PA−B ≈ PA ≈ atot. The first
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approximation holds because each A in a copolymer, except A at
the top, is either followed by another A or by B. For long
copolymers, the relative error we make by omitting Amonomers
at the top of a copolymer is very small. The second
approximation holds because we assume a high degree of
copolymerization; hence, almost all A monomers occur in
copolymers. Substitution of PA−A = atot− PA−B and similarly PB−B
= btot− PA−B in eq 44 gives a quadratic equation for PA−B with as
only positive solution

κ κ
κ

κ

=
−κ + + − +

−

= * *
* *

−

− −

− −

P
a b a b a b

K K
K K

( ) ( ) 4

2(1 )

with

A B
tot tot

2
tot tot

2
tot tot

A B B A

A A B B (45)

In this way, for this special case, the amount of A−B (and B−
A) bonds and hence also the remaining A−A and B−B bonds
can be computed as function of the interaction parameters,
without solving the mass-balance equations. It is easily verified
that PA−B = 0 for K*A−B = 0. To describe the results for large
heterointeraction, assume that atot > btot. Then, for K*A−B
becoming very large, it is readily inferred from eq 45 that PA−B
→ btot and hence PA−A→ atot− btot and PB−B→ 0. Therefore, for
large heterointeraction, all B−B bonds disappear and the
amount of A−A bonds equals the excess of the total amount of A
monomers over the total amount of B monomers.
In Figure 11, we give an example. In part (a) of that figure, the

equivalent bond concentrations computed by the approximation
are compared with the bond concentrations obtained by solving

the mass-balance equation. Part (b) shows the block lengths,
computed as described before. Note the very sharp decrease of
the length of the A blocks and B blocks for small positive
interaction parameter K*A−B.

4.3. Purely Alternating Copolymers. The final special
case we consider is that where all copolymers are alternating,
that is, where K*A−A = 0 and K*B−B = 0, and consequently no A−
A and B−B bonds can be formed. This case, which was also
recently considered by van Buel et al.79 with a dedicated model,
is also captured by our general model. For long copolymers, the
absence of homo bonds implies that PA and PB are almost equal.
The mass balance in eqs 29 and 30 now implies that

= − +b a a btot tot

If K*A−B is so large that most monomers occur in some
(alternating) copolymer, the free monomer point (a, b) must lie
inside the allowed region, but very close to the critical curve.
Hence, eq 31 yields for this case that

* * ≈− −K K ab 1A B B A (46)

From the last two equations, the free monomer concen-
trations can be solved, which gives the following approximations

=
− + − + * *− −a

a b a b K K( ) 4/

2
tot tot tot tot

2
A B B A

(47)

=
− + − + * *− −b

b a a b K K( ) 4/

2
tot tot tot tot

2
A B B A

(48)

Figure 10.Mixing in comonomers example. (a) Degree of polymerizationϕ and (b) average copolymer length ⟨n⟩ and their slopes for three values of β
= K*A−B/K*A−A. Parameters: atot = 10−4 M, K*A−A = 105 M−1, K*B−B = 0 M−1, σA = 10−4, and σB = 5 × 10−5.

Figure 11. Mixing highly polymerized monomer types example. (a) Approximated and exact equivalent bond concentrations. (b) Corresponding
block lengths. Parameters: atot = 2 × 10−4 M, btot = 1.5 × 10−4 M, K*A−A = 1.2 × 105 M−1, K*B−B = 1.5 × 105 M−1, σA = 5 × 10−5, and σB = 7 × 10−5.
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= = = − = −−P P P a a b bA B A B tot tot (49)

In this way, for this case of purely alternating polymers, the
free monomer concentrations, the amount of A and B
monomers in the copolymers, and the amount of A−B (and
B−A) bonds can be computed as a function of the interaction
parameters, without solving the mass-balance equations. To
describe the results for large hetero interaction, assume that
atot > btot. Then, as K*A−B (and hence as K*B−A) becomes very
large, a→ atot − btot, b→ 0 and PA−B, PA and PB all tend to btot.
Therefore, all B monomers occur in the copolymers and the
excess of A monomers occur as free monomers.
The example in Figure 12 shows that for K*A−B > 0.9 × 104

M−1, the approximations for the free monomer concentrations
and the material in copolymers are very good. For smaller values
of K*A−B, where the degree of copolymerization is not yet large
enough and eq 46 hence does not hold, the monomer
concentration is limited to the total monomer concentration.

5. DISCUSSION AND CONCLUSIONS

The mass-balance model described in this work allows a fast
computation of the thermodynamic equilibrium state in a large
number of supramolecular copolymerizations, where two
monomer types can aggregate into an arbitrary number of
copolymer types. The homopolymers corresponding to the
monomers can have arbitrary and different cooperativity. The
bonds between two monomers in a copolymer may depend on
both monomers, their order, and the copolymer type. The
solution of the mass-balance equations gives both monomer
concentrations, the amount of monomers of each type occurring
in each copolymer type, and the average length of the
copolymers. This information gives already some insight in
the microstructure of the copolymers. Once the thermodynamic
equilibrium state is known, information on the occurring bond
types and the block lengths of homogeneous and alternating
blocks can be computed, which provides additional insight in the
structure of the copolymers. The latter are often difficult or
impossible to obtain via experimental methods. The model
encompasses all our earlier mass-balance models56,80−85 and the
MATLAB scripts provided in the Supporting Information are
able to reproduce the earlier reported results. Here, we used the
mass-balance model and the MATLAB scripts to model the
sergeants and soldiers system, that we previously described with
stochastic simulations, and for the copolymerization of triaryl-
amine triamide-based monomers in three different solvents.

Note that our method computes the thermodynamical
equilibrium state, that is, it does not give a good description of
for instance kinetically trapped systems. For those systems
kinetic models are needed, like the stochastic approach to
copolymerization in ref 90. However, stochastic simulations are
computationally muchmore expensive than our method. Hence,
to compute the thermodynamical equilibrium state, and also in
cases where only a part of the system is in equilibrium,82 our
method is preferable.
The model can straightforwardly be generalized to 3 or more

monomer types. In the case of m monomer types, the iteration
matrix Mc given in eq 15 becomes a m × m matrix. Also, the
assumption that the equilibrium constant of an elongation at the
top (or the bottom) of a copolymer depends only on the added
monomer and the top (respectively bottom) element of the
copolymer and of course on the copolymer type, may be relaxed.
All methods described in this paper can be extended to the case
where an elongation equilibrium constant depends on the added
monomer and the upper k (or lower k) elements of the
copolymer, for k = 1, 2, 3, .... Note, however, that both these
generalizations lead to many more unknown parameters that
must be given a useful value.
The detailed balance condition, the assumption that the

copolymers can grow at top and bottom, and the assumption
that the equilibrium constants for elongation at the top or
bottom of a copolymer depend only on the two monomers
forming a new bond are essential for deriving the relations 10
and 11 between the nucleation and elongation equilibrium
constants. In fact, the detailed balance condition states that the
total gain in free energy when constructing a molecule along two
different routes must be the same. This condition ensures that
the free energy is a function of the state of the system, and not,
for instance, depends on its history. However, in principle, the
used method to formulate and solve the mass-balance equations
and also the computation of bonds and block lengths can easily
be adapted to a case where the relations 10 and 11 do not hold.
The method we used to compute the equivalent monomer

concentrations in the copolymers and also the methods to
compute equivalent bond concentrations and average block
lengths always considered elongation of the copolymers at their
top element. Of course, it is equally well possible to compute
these notions by elongation of copolymers at their bottom or
even by a fragmentation and coagulation mechanism. As long as
the equilibrium constants of used equilibrium reactions satisfy
the detailed balance condition, the resulting concentrations of

Figure 12. Example for purely alternating copolymers: (a) exact and approximated monomer concentrations. (b) PA and PB and their approximation.
The lines of PA and PB almost coincide; therefore, PA is not visible. Parameters: atot = 2 × 10−4 M, btot = 1.5 × 10−4 M, K*A−A = K*B−B = 0M

−1, σA = 5×
10−5, and σB = 7 × 10−5.
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copolymers and so forth are always the same. Although the
kinetics of the reactions may change drastically by the possibility
of the additional reactions, the equilibrium state does not.
The general copolymerization model and the MATLAB

scripts given here form a powerful tool to unravel supra-
molecular copolymerizations and hereby make a next step in
controlling supramolecular copolymerizations. They provide
tools to obtain a better insight into the microstructure of
supramolecular copolymers which is experimentally difficult to
attain. Ultimately, this will expand the potential of supra-
molecular copolymer applications.
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F.; Lochbrunner, S. Biphasic self-assembly pathways and size-
dependent photophysical properties of perylene bisimide dye
aggregates. J. Am. Chem. Soc. 2013, 135, 18722−18725.
(55) Cai, K.; Xie, J.; Zhang, D.; Shi, W.; Yan, Q.; Zhao, D. Concurrent
cooperative J-aggregates and anticooperative H-aggregates. J. Am.
Chem. Soc. 2018, 140, 5764−5773.
(56)Mabesoone,M. F. J.; Markvoort, A. J.; Banno,M.; Yamaguchi, T.;
Helmich, F.; Naito, Y.; Yashima, E.; Palmans, A. R. A.; Meijer, E. W.
Competing interactions in hierarchical porphyrin self-assembly
introduce robustness in pathway complexity. J. Am. Chem. Soc. 2018,
140, 7810−7819.
(57) Liu, Y.; Zhang, Y.; Fennel, F.; Wagner, W.; Würthner, F.; Chen,
Y.; Chen, Z. Coupled cooperative supramolecular polymerization: A
new model applied to the competing aggregation pathways of an
amphiphilic aza-BODIPY dye into spherical and rod-like aggregates.
Chem.Eur. J. 2018, 24, 16388−16394.
(58) van der Zwaag, D.; Pieters, P. A.; Korevaar, P. A.; Markvoort, A.
J.; Spiering, A. J. H.; de Greef, T. F. A.;Meijer, E.W. Kinetic analysis as a
tool to distinguish pathway complexity in molecular assembly: an
unexpected outcome of structures in competition. J. Am. Chem. Soc.
2015, 137, 12677−12688.
(59) Wu, A.; Isaacs, L. Self-sorting: the exception or the rule? J. Am.
Chem. Soc. 2003, 125, 4831−4835.
(60) Sun, W.-Y.; Yoshizawa, M.; Kusukawa, T.; Fujita, M. Multi-
component metal-ligand self-assembly. Curr. Opin. Chem. Biol. 2002, 6,
757−764.
(61) Prins, L. J.; Timmerman, P.; Reinhoudt, D. N. Amplification of
Chirality: The ″Sergeants and Soldiers″ Principle Applied to Dynamic
Hydrogen-Bonded Assemblies†. J. Am. Chem. Soc. 2001, 123, 10153−
10163.
(62) Mateos-Timoneda, M. A.; Crego-Calama, M.; Reinhoudt, D. N.
Controlling the amplification of chirality in hydrogen-bonded
assemblies. Supramol. Chem. 2005, 17, 67−79.
(63) Ballester, P.; Oliva, A. I.; Costa, A.; Deya,̀ P. M.; Frontera, A.;
Gomila, R. M.; Hunter, C. A. DABCO-induced self-assembly of a
trisporphyrin double-decker cage: thermodynamic characterization and
guest recognition. J. Am. Chem. Soc. 2006, 128, 5560−5569.
(64) Lombardo, T. G.; Stillinger, F. H.; Debenedetti, P. G.
Thermodynamic mechanism for solution phase chiral amplification
via a lattice model. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 15131−
15135.
(65) Castilla, A. M.; Miller, M. A.; Nitschke, J. R.; Smulders, M. M. J.
Quantification of Stereochemical Communication in Metal-Organic
Assemblies. Angew. Chem., Int. Ed. 2016, 55, 10616−10620.
(66) Wang, Y.; Fang, H.; Tranca, I.; Qu, H.; Wang, X.; Markvoort, A.
J.; Tian, Z.; Cao, X. Elucidation of the origin of chiral amplification in
discrete molecular polyhedra. Nat. Commun. 2018, 9, 488.
(67) Tobolsky, A. V.; Owen, G. D. T. A general treatment of
equilibrium copolymerization. J. Polym. Sci. 1962, 59, 329−337.
(68) Szwarc, M.; Perrin, C. L. General treatment of equilibrium
copolymerization of two or more comonomers deduced from the initial
state of the system. Macromolecules 1985, 18, 528−533.
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