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Abstract: In general, acoustic channels are not Gaussian distributed neither are second-order
stationary. Considering them for signal processing methods designed for Gaussian assumptions is
inadequate, consequently yielding in poor performance of such methods. This paper presents an
analysis for audio signal corrupted by impulsive noise using non-Gaussian models. Audio samples
are compared to the Gaussian, α-stable and Gaussian mixture models, evaluating the fitting by
graphical and numerical methods. We discuss fitting properties as the window length and the
overlap, finally concluding that the α-stable model has the best fit for all tested scenarios.

Keywords: noise estimation; non-Gaussian noise; maximum likelihood; acoustic channel

1. Introduction

The acoustic channel has received much attention in recent years due to many practical
applications and some emerging technologies, such as speech recognition, smart speaker, sound
source tracking and assistive technologies. It is known that the audio signals reception is degraded by
the presence of undesirable interference caused by noise from vehicles, crowds, wind, machines and
human-made audio noise.

One way to describe the acoustic noise characteristics is based on the use of probability
distributions such as the α-stable, Gaussian mixture, Bernoulli-Gaussian, Poisson–Gaussian, hidden
Markov model, among others. In this paper, we use the α-stable model and Gaussian mixture
distributions because they are the most frequently used distributions employed to model impulsive
noise. Especially for signal processing methods that rely on second-order statistics [1], the Gaussian
assumption of acoustic noise behavior derives meaningful degradation or does not work well. Thus,
the adoption of suitable models must be considered to reach accuracy and acceptable performance for
these solutions. Although there are some studies on more realistic noise model with non-Gaussian
distributions [2], few signal processing solutions have been established compared to those with
Gaussian assumption.

The analysis of impulsive noise characteristics can be found for acoustic and non-acoustic channels.
Overview of wireless communication solutions considering impulsive noise are presented in [3,4],
including specific protocols and transmission mediums such as power line communications [5],
underwater environment [6], and satellite communications [7]. However, their noise data and analysis
are not able to generalize the model and characteristics to an audible acoustic channel. Depending on
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the carrier frequency and the transmission medium, different interferences are presented, and different
conclusions may be achieved. Therefore, complementary works towards the modeling and estimation
of audible acoustic channels in the presence of impulsive noise by non-Gaussian models are essential
to contribute to the near future solutions in acoustic.

There is a considerable number of estimators for the chosen models. For α-stable distribution, there
is an usual method that uses a plot to observe the data on a logarithm scale [8]. This method is empirical;
hence, it is not always reliable. Another conventional method, found in distinct areas of studies [9],
is based on quantiles of the stable distribution [10]. For a particular case, when the distribution is
symmetric, a method based on the fractional moments is an alternative [11]. Several works use the
Maximum Likelihood Estimator (MLE) due to the feasibility of its estimation, even for large data
sets [12,13]. Additionally, there is a fast algorithm to compute the MLE, and it achieves the Cramér-Rao
bound [14]. For these reasons, the MLE is used as the estimator for studies herein presented.

Several research groups have been working with Gaussian Mixture Model (GMM) to model
audio signals [15]. They claim that the source noise is not only originating from a unique source (i.e.,
electromagnetic interference). For instance, the audio message can be corrupted by vehicle noise or
unknown speakers. Each undesirable source (noise source) is modeled by a single class noise or an
individual Gaussian from the GMM. Thus, besides the α-stable, we also consider the Gaussian Mixture
Model (GMM) as a candidate noise model.

The analysis and investigation of impulsive noise in acoustic channels are still challenging,
allowing some rooms for research opportunities. First, several commercial products, using traditional
signal processing solutions, are emerging and subject to severe acoustic scenarios such as smart
speakers [16,17], robotics [18] and video conference systems [19]. Second, researches have shown
methods for non-Gaussian noise without justifying the real occurrence of these cases. Moreover, few
works have exposed a qualitative analysis among the non-Gaussian models that include experimental
validation, and the identification of real-life scenarios for each model. Finally, little effort has been
presented to assess different acoustic scenarios over the same unified quantitative analyses.

This paper offers an evaluation of some acoustic scenarios using an experimental setup. First, two
indoor environments are examined with less impulsiveness. Then, one outdoor scenario with severe
impulsiveness is analyzed. We propose to analyze the fitting for the Gaussian, GMM, and α-stable
models for all scenarios. We present graphical and numerical evaluation, addressing their properties,
disadvantages, and advantages.

This paper is organized as follows. Section 2 presents the specificities of parameter estimation for
non-Gaussian models related to impulsive noise characterization. We then introduce our experimental
setup on Section 3, where measurements situations are described. The evaluation scenarios are defined
on Section 4, along with the presentation and evaluation of the results. Finally, conclusions are
summarized on Section 5.

2. Parameters Estimation

We use the Maximum Likelihood Estimation to determine the parameters of the non-Gaussian
models (GMM and α-stable) of the collected data. This Section presents the main distribution
parameters and how we applied the MLE to its estimation.

2.1. GMM Parameters Estimation

The GMM is a linear combination of Gaussians functions where the sum of all weight coefficients
is equal to one. Thus, a random variable y with GMM distribution is defined by

p(y) =
M

∑
i=1

ci N(xi|µi, σi), with
M

∑
i

ci = 1, (1)
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where ci is the weight of the i-th Gaussian distribution function, M represents the number of Gaussian
distributions in the mixture, and N (xi|µi, σi) is a Gaussian distribution function given by

N(xi|µi, σi) =
1√

2πσi
e
− (xi−µi)

2σ2
i , (2)

where xi is the i-th Gaussian random variable with its expected value µi and standard deviation σi [20].
The MLE method is a way to estimate the parameters θ which specify a probability function

f (xi|θ) of a random variable X [21]. The estimation is based on the independent and identically
distributed (i.i.d.) samples xi (observations) from the distribution, and a log-likelihood function, which
is given by

`(θ) =
N

∑
i=1

log f (xi|θ). (3)

Thus, the MLE chooses the model parameters θ̂ that maximize the likelihood function, yielding
the most likely parameters to generate the observed data [22].

The Expectation-Maximization (EM) is a method to determine the MLE of the parameters θGMM
of a GMM [23]. Therefore, assuming that the observed data is generated by M Gaussians, the estimated
parameters θGMM are (µi, σ2

i , ci) for the whole set of M Gaussians.
The EM algorithm employs an iterative procedure that is obtained by alternating the expectation

step (E-Step) with the maximization step (M-Step). In the E-Step, we calculate the expected value
of the log-likelihood concerning the current estimate of the distribution (estimation of µi and σ2

i
parameters). In the M-Step, we maximized these expected parameters of the E-Step, also improving
the estimation of ci. These parameters are then used to determine the new parameters in the next
E-Step until convergence is detected [24].

We selected the initial parameters using a heuristic to find centroid seeds based on k-means, and
the algorithm iterates over the steps until convergence.

2.2. α-Stable Parameters Estimation

Theoretical reasons for statistical modeling using α-stable distributions are based on the
Generalized Central Limit Theorem and the stability property [8]. The Generalized Central Limit
Theorem states that if the sum of i.i.d. random variables with or without finite variance converge, the
limit distribution must be α-stable. According to the stability property, α-stable distributions are closed
under convolution, i.e., the sum of two independent random variables with the same characteristic
exponent is also α-stable, keeping the same characteristic exponent [2]. The third reason for using this
model is that the measured data exhibits heavy tails and skewness. This behavior may come from a
combination of different random variables, which justify the usage of α-stable model by Generalized
Central Limit Theorem.

There are different parametrizations of α-stable distribution for different specifications of the
characteristic function. We assume the parameters θα = (α, β, γ, δ) and the following characteristic
function [2]:

ϕ(ω; θα) = exp(−γα|ω|α[1− jΘ(ω; α, β)] + jδω), (4)

with

Θ =

{
β(tan πα

2 )(sign ω), α 6= 1
−β 2

π (ln |ω|), α = 1,
(5)

where
α: is the characteristic exponent such that 0 < α < 2,
β is the symmetry parameter such that −1 ≤ β ≤ 1,
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γ is the dispersion or scale parameter such that γ > 0,
δ is the location parameter such that −∞ < δ < ∞.
Finally, we also assume a Symmetric α-Stable (SαS) class, because it has proved to be very useful

in modeling impulsive noise [11]. For such distribution class, β = 0 and δ = 0 [8].
Considering MLE for α-stable distribution, the fundamental issue is that there is no known

a general closed formula for the probability density. Only when α has a specific value, there are
expressions for densities. This is a problem regarding the calculation of the log-likelihood function in
Equation (3).

However, we apply the direct integration method, detailed in [25], to estimate α and γ parameters
by MLE for the SαS model, with the characteristic function described as

ϕ(ω; α, γ) = exp(−γα|ω|α). (6)

The primary parameter, α, describes the heaviness of the distribution tails. The smaller the α,
the heavier are the tails; thus, more impulsive is the noise. When the parameter α is close to 0 or 1,
the density function may not be accurate because of numerical issues. On the other hand, the scale
parameter γ behaves similarly to the variance of the Gaussian distribution. However, the α-stable
distributions have unbounded variance. The only exception is for α = 2 (the Gaussian case) when the
α-stable distribution has a second-order moment.

The α-stable distributions have finite moments only for order lower than the parameter α. For
instance, assuming a moment of order equal to p, the α-stable distribution has the following relation
with α

α < 2, E[Xp]→ ∞ ∀p ≥ α

α < 2, E[Xp] < ∞ ∀0 ≤ p < α

α = 2, E[Xp] < ∞ ∀p ≥ 0
(7)

3. Experimental Setup

We use two sets of measurement equipment to collect audio data: (i) a low-cost setup with a
ReSpeaker Core v1 (MT7688) board [26] using the Analog-to-Digital Converter (ADC) AC108 with four
ADC delta-sigma, 48 kHz of sample rate, and 3.3 V voltage range, with four microphones connected
to a Raspberry Pi 3 (model B) processor to collect and store the data; and (ii) a Data Acquisition
(DAQ) NI-6361 from the National Instruments (National Instruments, Austin, TX, USA) as redundant
equipment to validate the measures of low-cost setup with 16 bit resolution and 1 MS/s of sample rate.
In this case, a Sony Vaio laptop (Core i3 processor, model PCG-61A11X, Vaio Corporation, Azumino,
Japan) is used to receive the data from the DAQ.

The data is measured using the ReSpeaker at 48 kHz of sample rate, collecting 240,000 samples in
5 s. The microphone directional sensitivity is perpendicular from the source, and there is no obstruction
or person between the source and the receivers. We acquired the audio signal for three situations:

1. Without audio source (only noise);
2. With a source emitting an audio tone of 1 kHz. This tone is produced by the Android App

named Function Generator (keuwlsoft) [27], installed in a smartphone LG K10. The audio was
reproduced by one of the channels of a JBL Flip 3 Portable Speaker (Harman International,
Stamford, CT, USA). The microphones are set in a fixed position at 1.5 m from the audio source;

3. With a speech source. The speech source is from a person saying “this is just a test”.
The microphones are set at the same position from the audio source.

The setup is mobile, allowing the instruments to move. The experimental setup is shown in
Figure 1.
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Figure 1. Experimental measurement setup.

4. Experimental Results and Analysis

We acquired the data in three different scenarios:

1. Indoor scenario: A silent environment inside an empty auditorium;
2. Hall scenario: A mixed indoor/outdoor environment at the same auditorium hall;
3. Outdoor scenario: Outside the auditorium.

Investigations presented herein is organized as follows. Initially, we perform a time domain
analysis of the signals to compare noise characteristics in the different scenarios. A power spectrum
analysis is performed to verify the noise power level of each scenario. The impulsiveness is examined
in the spectrum as well as its power level compared to signal power. Then, we show the Probability
Density Function (PDF) fitting for Gaussian, GMM with two Gaussians and SαS models. We use the
Root Mean Squared Error (RMSE) to measure the quality of the PDF fitting. After that, an investigation
about the estimation window length is conducted to assess what is the influence of the number of
samples and the windowing strategy to the distribution fitting. Finally, as the acoustic noise could
exhibit a non-stationary behavior, we analyze the stationarity of the measured signal to ensure that the
fitting is reliable.

4.1. Scenarios Analysis

Our first scenario is a silent auditorium illustrated in Figure 2. It is an environment with low-level
noise, consequently presenting a high-quality audio signal.

Door

Auditorium

Setup

Figure 2. Indoor Scenario: Auditorium acoustically isolated without external audio noise.

We labeled this environment as the Indoor Scenario. It is an auditorium acoustically isolated
without external audio noise. This environment represents a place for conferences, presentations,
with a low level of noise. The measured signal is shown in Figure 3 when there is no audio source.
The signal does not present impulsiveness.
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Figure 3. Signal behavior in the indoor scenario without audio source.

The second measurement in indoor scenario is accomplished when a speech signal source is
present, and the person intentionally made small moves before speaking. The measured signal exhibits
a hardly ever impulsive noise (because of the person’s moving), as shown in Figure 4. This is evidence
of the independence between noise and audio source as well as the low impulsiveness of noise in this
scenario (low noise power compare to the signal power).
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Time	(sec)

-0.8
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0.5

0.8
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de
	(V

)

Low impulsiveness

Figure 4. Signal behavior in the indoor scenario with a person moving and speaking.

We labeled the second environment as the Hall Scenario. It is a scenario noisier than the indoor,
represented in Figure 5. Its mixed indoor/outdoor configuration is composed of two windows and
two doors, allowing audio noise from wind. The measures were performed at night in the absence of
noise from equipment as a Heating, Ventilation, and Air Conditioning.

Figure 6 presents the measured signal in the hall scenario, making evidence an infrequent
impulsive noise, probably from some external source.
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Windows

Door

Setup

Figure 5. Hall Scenario: A mixed indoor/outdoor environment at auditorium hall.
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Figure 6. Signal behavior in the hall scenario without audio source.

Figure 7 shows the signal when a person’s speech is present. As previously discussed in the
indoor scenario, the independence between noise and audio source is observed, but now we see
impulsiveness of noise due to some external source. However, this scenario has still low noise power
compare to the signal power.
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Low
impulsiveness

Figure 7. Signal behavior in the hall scenario with a person moving and speaking.

The third environment, named Outdoor Scenario, is illustrated in Figure 8. It is the noisiest one,
with audio noise coming from the outside environment (building, traffic and crowd noise).
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Figure 8. Outdoor scenario: Outside the auditorium with noise coming from the outside environment.

Figures 9 and 10 present the signal in the outdoor environment without audio source and with
a person’s speech, respectively. A careful observation of the signal behavior suggests that it does
not have a constant second-order moment (its variance is time-dependent). This could happen as
a consequence of different origins of noise, such as traffic, unknown speakers, crowds, wind, and
human-made. We claim there is more impulsiveness if different noises sources are present.
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Figure 9. Signal behavior in the outdoor scenario without audio source.
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Figure 10. Signal behavior in the outdoor scenario with a person moving and speaking.
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4.2. Power Spectrum Density Analysis

We complete our analyses by characterizing the measured data in the frequency domain using the
estimated Power Spectrum Density (PSD). Assuming the impossibility to measure the signal-to-noise
ratio (SNR) of a signal subjected to a highly impulsive noise (because of its infinite variance), we
estimate the PSD within a time window of 1500 samples for all scenarios. We highlighted a narrowband
part of the spectrum from 100 Hz to 20 kHz and an audio source is the tone of 1 kHz at 1.5 m from the
measurement point. Due to this proximity, the source is easily sensing, as shown in Figure 11.
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Figure 11. Power Spectrum Density of measured data in all scenarios (tone of 1 kHz of audio source).

4.3. PDF Fitting

Table 1 presents the estimation of the distribution’s parameters using 240,000 samples for each
scenario without an audio source (only noise). From the estimation point of view, the mean of the
Gaussian model is always zero, and the standard deviation is the parameter to be analyzed. Among
the tested scenarios, the outdoor presents the highest Gaussian variance, indicating a lower SNR. As
previously presented, the SαS model is characterized by α and γ parameters. The lowest values of
such parameters are estimated for the outdoor scenario, evidencing a high impulsiveness level and a
lower dispersion, respectively. The α value of about 1.27 of outdoor scenario indicates a non-Gaussian
noise with frequent impulsiveness characteristics. We assume two Gaussian distributions for GMM
model. In the indoor scenario, the GMM does not have zero mean. In this case, the two Gaussians
are not enough to fit the data. In the outdoor scenario, variances of two Gaussians are very different,
capturing the impulsiveness characteristic of the noise.

Table 1. Parameters estimated for Gaussian, Gaussian mixture model, and α-stable models.

Gaussian SαS GMM

Scenario σ α γ c1 µ1 σ1 c2 µ2 σ2
Indoor 0.003793 1.9817 0.3390 0.5934 −0.0009358 0.003618 0.4066 0.001466 0.003584
Hall 0.002837 1.9764 0.3513 0.6165 0 0.002402 0.3835 0 0.003422
Outdoor 0.04743 1.2669 0.005058 0.7043 0 0.01809 0.2957 0 0.08264

For illustrative purposes, we build the Figures 12 and 13 for 1500 samples of outdoor scenario in
a time window with severe impulsiveness (a lower SαS’s α value). Figure 12 presents a comparison of
the Gaussian and GMM PDFs with the estimated parameters as well as the two Gaussians’ PDF of
GMM. As the GMM is the linear combination of two Gaussians weighted by c1 and c2, each Gaussian
has its different variances σ1 and σ2 that can be associated to different sources of noise. Although the
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individual Gaussians of GMM has a poor fit due to heavy tails of the data, the GMM may reach a
better fit using its two Gaussian components.

0.3 0.2 0.1 0 0.1 0.2
Data

0

5

10

15

20

D
en
si
ty

Data
Gaussian
GMM
1st Gaussian
2nd Gaussian

Gaussian 
σ = 0.047 

2nd Gaussian 
c1 = 0.70 

σ1 = 0.018 

1st Gaussian 
c2 = 0.30 

σ2 = 0.083 

GMM 

Figure 12. Illustration of Gaussian mixture model fitting with two Gaussians (data from the outdoor
scenario in a time window with severe impulsiveness).

Figure 13 shows a similar plot including the SαS fitting. The PDF is computed using the direct
integration method, as described in [25]. We also visualize the significant error from the Gaussian
model fitting. However, it is very hard to precise if GMM is better than the SαS model.
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GMM 
c1 = 0.70; c2 = 0.30 

σ1 = 0.018; σ2 = 0.083 

Figure 13. Illustration of PDF fitting for all models (data from the outdoor scenario in a time window
with severe impulsiveness).

This behavior is also observed when we draw similar plots for indoor and hall scenarios,
Figures 14 and 15, respectively. In the indoor scenario, no difference is noticed among the models.
The low impulsiveness causes a better fit from the Gaussian model as shown in Figure 14. The two
components from the GMM model have similar behaviors; probably they are modeling the same
class of noise. The α from SαS model has the value close to 2, indicating that the model is similar to a
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Gaussian model. In the hall scenario, all models also have similar performance, as shown in Figure 15.
However, compared to the indoor case, the α can reach slightly lower values, indicating a higher
impulsiveness condition. Therefore, as mentioned before, we can not determine the best model by
only a visual inspection.

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Data

0

20

40

60

80

100

120

D
e

n
s
it
y

Data

Gaussian

GMM

Figure 14. Indoor scenario: Visual comparison among Gaussian, GMM and SαS PDF fitting.
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Figure 15. Hall scenario: Visual comparison among Gaussian, GMM and SαS PDF fitting.

Finally, we evaluate numerically the quality of fit by the Root Mean Square Error (RMSE). Results
showed in Table 2 indicates the SαS model has the best fit for all scenarios. The GMM reaches a better
fit than the Gaussian model in the hall and outdoor scenarios, where the impulsiveness exists. In the
indoor scenario, due to the absence of impulsiveness, the Gaussian model has no difficulty to fit data,
although the SαS has slightly better RMSE.

Table 2. Performance of data probability density function fitting by the root mean square error.

Gaussian GMM Sα-S

Indoor 1.1936 1.1988 1.1925
Hall 1.0221 0.6757 0.5817

Outdoor 1.4969 0.2820 0.2072
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As expected, the simplest Gaussian model has not succeeded to fit well the data with
impulsiveness due to its unbounded variance. We conclude that Gaussian is not a suitable model
for this data, whereas the GMM has better performance. Finally, the SαS model has the best fitting
performance, as a result of accurate modeling of the heavy tails. Figure 16 confirms this thought
by showing the comparison of the cumulative distribution of data and the Cumulative Distribution
Function (CDF) of Gaussian and SαS models (with the estimated parameters of the Table 1). The plots
are for the outdoor scenario where the low value of α suggests high impulsiveness and a non-Gaussian
behavior [8].
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Figure 16. Outdoor scenario: Comparison between the data distribution and the estimated Gaussian
and SαS models.

4.4. Sample Number Analysis

A crucial issue of signal estimation is the stationarity assumption [28]. If data is non-stationary,
we can not affirm that the estimated parameters (e.g., mean, variance and autocorrelation) do not
change over time. However, several researchers persist with stationarity assumption because the
problems are mathematically easier to model. Initially, we present an investigation about the number
of samples and the windowing strategy. In this section, we start the discussions about stationarity, and
in the Section 4.5, we provide a more statistically rigorous hypothesis test to legitimate the estimated
model for each scenario.

First, we show in Figure 17 the variance of the α values (from SαS model) estimated for the whole
set of 240,000 samples. We split samples in time windows of fixed size and evaluate the variances
of the estimated α inside window sizes from 1000 to 30,000. Looking at the results for indoor and
hall scenarios, we see that longer the window size is, the more stable is the estimation (the lower
the variance). However, for the outdoor scenario, this behavior is only observed for more extended
window sizes (longer than shown in the Figure 17, suppressed for better visualization of curves).
Comparing the results for the three scenarios, we can choose a window length of 1500 samples for
the parameter analysis. This window provides a trade-off of low variance (estimation stability) and
the window size. From a system point of view, a long window size could reflect higher signaling cost
or latency.
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Figure 17. Variance of the estimated α parameter versus the window length.

Secondly, only with illustrative purposes, we present the difference between overlapped and
non-overlapped estimation in Figures 18 and 19. When we use a non-overlapped estimation, shown
in Figure 18, the estimated parameters are much smoother than overlapped estimation, illustrated in
Figure 19.
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1 2 3

Figure 18. Illustration of non-overlapped estimation.

In both cases, the window size is 10,000 samples, but we overlapped 1000 samples (10% of
the window) for the estimation in Figure 19. The objective is to show that, due to the different
number of snapshots (24 for the non-overlapped and 240 for the overlapped case), the overlapped
estimation better captures the variations of the estimated parameters. Thus, we use the overlapped
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window technique to get better analysis, exploring the trade-off between low window length and high
resolution estimation.
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Time (sec)
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0

0.5
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itu
de

1 2 3

Figure 19. Illustration of overlapped estimation.

Now, we analyze the estimation stability for the Gaussian (Figure 20), GMM (Figure 21) and SαS
(Figure 22) models for all scenarios. We plot the estimated parameters of 1590 snapshots for a window
size of 1500 with 10% of window overlapping (this is the total number of snapshots with 240,000
samples, window size of 1500 and 150 overlapped samples, calculated as (240, 000− 1500)/150 = 1590
snapshots). We show the parameter estimation for the two Gaussians of GMM model (Figure 21).

Analyzing all figures, while the indoor and hall scenarios present reasonable stability on parameter
estimation, especially considering Gaussian and GMM models, the outdoor scenario presents an
estimation with significant variance.

Finally, looking at the parameters for α-stable model (Figure 22), one can confirm that the outdoor
scenario has a highly impulsive noise due to the α values near to 1. We may conclude that α values far
from 2 indicate a poor fitting of Gaussian model and noise data. It suggests that the variance from
Figure 20 is not enough to describe the noise data, especially from the outdoor scenario.

As discussed previously discussed, from a system perspective, short window size produces less
signaling cost and latency. Therefore, using a large window, the estimated parameters converge to
a specific value, and in a short window, the parameters vary with the time because the estimation
reflects the inclusion or not of impulsiveness events in the measured signal.
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Figure 20. Gaussian model estimation: Sample window of 1500 with 10% of windows overlapping.
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Figure 21. GMM model estimation: Sample window of 1500 with 10% of windows overlapping.
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Figure 22. SαS model estimation: Sample window of 1500 with 10% of windows overlapping.
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4.5. Stationarity Test

There are other ways to verify the stationarity of a time series. The autocovariance may quantify
the degree of association between two points separated by a lag. Low values of autocovariance indicate
no similarity with a delayed version of itself [28].

Figure 23 presents the autocovariance of the measured signal for all scenarios (without audio
source). Thus, it seems reasonable to consider that the outdoor scenario represents non-stationary
behavior due to the uncorrelated signal with itself. On the other hand, the indoor scenario has high
values of autocovariance, representing a stationary behavior.
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Figure 23. Autocovariance of the measured data for all scenarios (with no audio source).

Now, we use a stationarity test, named Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test for a
unit root in the univariate time series [29]. In this statistic test,H1 indicates rejection of the stationary
null in favor of the unit root alternative, and H0 indicates a failure to reject the stationary null. We
apply the test for all scenarios and evaluated if the signal is a unit root process, i.e., stationary, against
the alternative that there is no unit root.

Table 3 shows the KPSS for our measured data. The indoor and hall environments reject the
stationary null in favor of the unit root alternative with low standard error. However, the outdoor
environment test fails to reject the null hypothesis that the signal is stationary, as expected. The test
statistic p-value reaches the maximum value of 0.10, and the test statistics, computed by ordinary least
squares regression, is lower than the other scenarios.

Table 3. Stationarity Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test for all scenarios (with no
audio source).

Indoor Hall Outdoor

Hypothesis test H1 H1 H0
p-Value 0.01 0.01 0.10
Test statistics 3.6629 7.5457 0.0443
Standard error 0.0038 0.0028 0.0474

5. Conclusions

We present a complementary study about the characterization of non-Gaussian impulsive noise.
Investigations are based on collected data in three scenarios, representing real-life places for conferences
and presentations. The acoustic signal is analyzed from undesirable interference caused by noise
from vehicles, crowds, wind, machines and human-made audio noise. We also evaluate the situations
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without audio source (only noise), with a source emitting an audio tone of 1 kHz, and finally with a
speech source.

We evaluate the density model fitting, the number of samples and two windowing strategies at
the light of model complexity and accuracy. Stationarity is evaluated by more than one methodology,
helping the discussion of our fitting reliability.

For scenarios with critical impulsiveness, non-Gaussian models have better goodness of fit.
The SαS model is the best model, but unnecessary when the signal has low-level of impulsiveness.
The GMM is an alternative to SαS model due to its capacity to model noises from different sources.
Therefore, the models may be chosen based on the degree of impulsiveness present in the acoustic
channel, i.e., in the target scenario.
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